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Abstract
Various endogenous and environmental factors can cause mitochondrial DNA
(mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be
its proximity to the source of oxidants, and lack of histone-like protective
proteins. Moreover, mitochondria contain inadequate DNA repair pathways,
and, diminished DNA repair capacity may be one of the factors responsible for
high mutation frequency of the mtDNA. mtDNA damage might cause impaired
mitochondrial function, and, unrepaired mtDNA damage has been frequently
linked with several diseases. Exploration of mitochondrial perspective of
diseases might lead to a better understanding of several diseases, and will
certainly open new avenues for detection, cure, and prevention of ailments.
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Introduction
Mitochondria, a key organelle of most eukaryotic cells, are not only 
essential for cellular energy generation but also important for cal-
cium metabolism and apoptotic cell-signaling1. Like the nucleus, 
both mitochondria and chloroplasts contain their own DNA, and 
mitochondrial DNA (mtDNA) damage has been frequently impli-
cated in several diseases including neurodegeneration, cancer, 
stroke, cardiomyopathy, diabetes, and aging-related disorders 
(2, Figure 1). Unlike nuclear DNA, the mitochondrial genome is 
circular, contains very few introns, and the number of mtDNA cop-
ies in one mitochondrion can be in the range of two to ten. Further-
more, the size of mtDNA is very small (16.6 kb in humans), and 
mitochondrial codon-usage is also different. The multicopy nature 
of mtDNA bestows unconventional modes of DNA maintenance 
such as selective degradation of damaged DNA, and an unusual 
form of recombination3. mtDNA is maternally inherited, and sperm 
mitochondria are mostly degraded after fertilization4. Mitochondria 
synthesize some of its own proteins, and one of the reasons for this 
could be that all proteins that are translated in cytoplasm might not 
be able to cross mitochondrial membranes owing to their varied 
hydrophobicity5. mtDNA encodes 22 tRNAs, 2 rRNAs, and 13 pro-
teins that participate in mitochondrial ATP synthesis6. Reactive oxy-
gen species (ROS) are very reactive oxygen-containing molecules. 
ROS are produced in all types of cells and can have various harmful 
effects. mtDNA, like other DNA, can not only be damaged by radi-
ation and genotoxic chemicals but also by ROS that are frequently 
produced in mitochondria7. mtDNA damage can exaggerate further 
because of errors during DNA replication, and lack of conventional 
histone proteins in mitochondria8. ROS can cause various types of 
oxidative damage including DNA strand breaks, base modification 
or removal, and cross linking. DNA polymerase γ (pol γ), the only 
DNA polymerase known to be present in the mitochondria, have 
low frameshift fidelity, and, is believed to be a major contributor to 
changes in mtDNA9.

Consequences of mitochondrial DNA damage
Several studies report the effect of genotoxic agents on mitochon-
dria10,11. However, it is not easy to draw conclusions in these cases, 
as agents that damage mtDNA also damage nuclear DNA. There-
fore, it is suggested that all studies should compare consequences of 
nuclear and mtDNA damage in such cases, as far as possible. Other 
than its involvement in cancer and neurological disorders, changes 
in mtDNA have been shown to be associated with a few hereditary 
diseases12. mtDNA damage is well known to cause impaired bioen-
ergetics, reduced cell proliferation and apoptosis, hypercholeste-
rolemia, and atherosclerosis12. Interestingly, mtDNA defects are 
known to cause defective mitochondrial ATP generation that results 
into compromised organ function and diseases13.

In case of the most common neurodegenerative disorders including 
Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyo-
trophic lateral sclerosis (ALS) also, mtDNA damage has been 
implicated as a factor that cause or exaggerate these diseases14. 
Brain tissues from Alzheimer’s patients show greater fragmentation 
mtDNA. However, similar damage to nuclear DNA is controversial 
in this case. Increased mtDNA damage was also associated with 
reduced levels of mitochondrial protein expression13. Interestingly, 
brain tissues from Alzheimer’s patients show higher levels of oxi-
dized bases. In this case, mtDNA was found to have 10-times more 
oxidized bases compared to nuclear DNA indicating that mtDNA is 
more succeptible to oxidants14.

In the case of Huntington disease (HD), higher levels of oxidative 
stress were observed in the brain tissues of both humans and mice16. 
In the case of a mouse model of HD, embryonic fibroblasts showed 
increased mitochondrial matrix Ca2+ loading, and higher superoxide 
generation. This confirmed that both mitochondrial Ca2+ signaling 
and superoxide generation are dysregulated in HD, and, reducing 
mitochondrial Ca2+ uptake can be a therapeutic strategy for HD16. 

Figure 1. Mitochondrial DNA damage is associated with various diseases.
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Peripheral blood mononuclear cells (PBMCs) from systemic lupus 
erythematosus (SLE) patients also exhibited enhanced mtDNA dam-
age indicating potential role of mitochondria in the pathogenesis of 
SLE17. Apolipoprotein E (ApoE) is known to play a protective role 
in preventing artery wall thickening in atherosclerosis and ApoE-/- 
mice show mtDNA damage before significant atherosclerosis18. 
pol γ-/-/ApoE-/- mice show extensive mtDNA damage, impaired 
mitochondrial respiration, and increased atherosclerosis, even 
without increased ROS. Furthermore, pol γ-/-/ApoE-/- monocytes 
showed increased inflammatory cytokine release18. Aging is often 
associated with the accumulation of deleterious changes, reduced 
physiological functions, and increased likelihood of diseases19. 
In this context, a number of mitochondrial aberrations have been 
observed with aging. These aberrations are accumulation of mtDNA 
mutation, inefficient oxidative phosphorylation, increased produc-
tion of ROS, and disorganized mitochondrial structure20. These 
mtDNA mutations are often somatic, with variable changes in indi-
vidual cells. Often, higher levels of these mutations are associated 
with respiratory chain deficiency. A mosaic pattern of respiratory 
chain deficiency can be found in different tissues because of uneven 
distribution of mutations13. The mitochondrial free radical theory 
of aging has been one of the most supported ideas of aging19. This 
theory postulates that the production of intracellular ROS is the 
major determinant during aging. Several invertebrate and mamma-
lian models already support this hypothesis. Oxidative stress, when 
propagated by active radicals, can damage DNA, phospholipids, 
proteins and other biomolecules. Reactive oxygen species medi-
ated mtDNA damage can occur directly at the sugar-phosphate 
backbone, at the bases, or in the form of single and double strand 
breaks20. Unfortunately, most of the antioxidant-supplementation 
regimens do not increase longevity, as predicted by the free radical 
theory of aging. Intracellular ROS are generated in multiple com-
partments and by multiple pathways. Important contributors in this 
case are NADPH oxidases, cyclooxygenases, and lipid metabolism 
enzymes21. Despite several non-mitochondrial contributors, almost 
90% of cellular ROS are still generated in mitochondria. In some 
cases, long-lived species were not only found to produce less ROS 
but also showed less oxidative damage22. Similarly, various animal 
and human studies suggest that the decline in muscle mitochondria 
is a leading factor for muscular abnormalities23.

Aged monkeys showed enhanced DNA damage and reduced tran-
scription of mtDNA compared to young ones24. D-gal-induced 
aging rats are important animal model of aging, and the level of 
mtDNA deletions was found to be significantly more in the hippoc-
ampus of D-gal-treated rats compared to controls25. NADPH oxi-
dase (NOX) generates ROS while transporting electrons across the 
mitochondrial membrane. Similarly, uncoupling protein 2 (UCP2) 
transports anions and protons across the mitochondrial membrane, 
and also controls ROS generation. In case of D-gal-induced animal 
model of aging, damaged mitochondrial ultrastructure was seen in 
the hippocampus region along with increased production of NOX 
and UCP2. Nicotinamide adenine dinucleotide (NAD+) is a key 
electron transporter in mitochondria. NAD+ depletion may play a 
prominent role in the aging process, not only by limiting energy 
production, but also by compromising DNA repair and genomic 

signaling as NAD+ is an important substrate for the nuclear repair 
enzymes21. Poly(ADP-ribose) polymerase (PARP) controls inflam-
matory immune responses, and hyperactivation of PARP-1 is known 
to activate mitochondrial pathway of apoptosis26. Age-associated 
increase in oxidative nuclear damage was found to be associated 
with PARP-induced NAD+ depletion and absence of SIRT1 activity 
in rodents26. Ercc1 mutant mice, which are deficient in DNA repair 
pathways, show accelerated aging and progressive memory loss27. 
Defective oxidative phosphorylation, mutated mtDNA, or mitochon-
drial ROS have also been documented in cases of tumorigenesis28. 
Oxidative stress in the cardiovascular system is known to cause 
accumulation of reactive oxygen and nitrogen species, which 
increase leukocyte adhesion and endothelial permeability29. NFκB 
is one of the most important transcription factor that is known to be 
involved in important signaling pathways, development, and sev-
eral diseases. Hypoxia-Inducible Factor (HIF-1) is a protein that not 
only protects from hypoxia-induced damage, but is also important 
for smooth functioning of immune system and key metabolic path-
ways. In an interesting study, ROS, NFκB- and HIF1-activation in 
the tumor microenvironment induced accelerated aging in rodents, 
which subsequently caused stromal inflammation and altered cancer 
cell metabolism30. Certain dietary treatments or enrichment of mito-
chondrial membranes with oxidant-resistant fatty acids were found 
to increase life span in rodents31. Monounsaturated-fatty-acid-rich 
diet prevented the accelerated mtDNA mutations in the brain mito-
chondria from aged animals. Therefore, changes in mtDNA that 
gradually accumulate in a variety of tissues during aging appear to 
be involved in onset of various diseases32 and a better understanding 
of mitochondrial biology is required in this perspective. mtDNA 
ligase is essential for cell survival particularly because of its role in 
base excision repair pathway33.

Conclusions
Mitochondria are of central importance in eukaryotic cells. However, 
mtDNA is more prone to damage, and mtDNA repair pathways are 
inadequate. Together, these problems might frequently lead to unre-
paired mtDNA lesions, and defective energy metabolism. mtDNA 
damage has been frequently shown to be involved in initiation and 
progression of several diseases including various types of neurode-
generative disorders, cancer, stroke, heart-diseases, and diabetes. 
There is an urgent need for detailed investigation in this area, to 
find out the mitochondrial contribution to various diseases, so that 
improved prevention measures and cures can be developed.
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The paper is unorganised .The consequences of mitochondrial damage could have been
described under various appropriate subheadings, e.g.: Neurodegenrative diseases, Aging,
Cardiovascular diseases etc. This could have increased the clarity and quality of this review
 
There also could have been mentioned some details on amelioration of the effects using
mitochondria targeted therapies
 
Include recent references

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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 Linda Bergersen
Department of Oral Biology, University of Oslo, Oslo, Norway

This short review by Gyanesh Singh . provides useful and up-to-date information on the roles ofet al
mtDNA in disease. 

Abnormalities in mtDNA may affect all organs of the body, but cause symptoms primarily in tissues that
are dependent on high energy production. Deficient mtDNA maintenance contributes to conditions as
diverse as normal aging, neurodegenerative disease, diabetes, cardiovascular disease, and cancer.

The authors should give more precise and explicit reference to the repeated assertion that "mtDNA repair
pathways are inadequate" (e.g. in the Abstract and Conclusions sections), or moderate these statements.
The statement reads as indicating that even when the mtDNA repair mechanisms function normally, they
are inadequate. Is there direct evidence for this?

On p2, the authors correctly point out that it is difficult to distinguish the effects of genotoxic agents on
mtDNA, "as agents that damage mtDNA also damage nuclear DNA". The authors should reference work
on transgenic animal models with damage specifically in mtDNA (e.g., ; Trifunovic A et al 2004 Nature

; ).Lewis W et al 2007 Lab Invest Lauritzen KH et al 2010 Mol Cell Biol

Typography: in "NAD+" the "+" should be corrected to superscript.
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Typography: in "NAD+" the "+" should be corrected to superscript.

Please check the text for grammatical errors, e.g., on p2 "...the only DNA polymerase known to be
present in the mitochondria, have
low frameshift fidelity, and, is believed to...": "have" should be corrected to "has".
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