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Src: coordinating metabolism in cancer
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Metabolism must be tightly regulated to fulfil the dynamic requirements of cancer cells during proliferation, migration, stemness
and differentiation. Src is a node of several signals involved in many of these biological processes, and it is also an important
regulator of cell metabolism. Glucose uptake, glycolysis, the pentose-phosphate pathway and oxidative phosphorylation are among
the metabolic pathways that can be regulated by Src. Therefore, this oncoprotein is in an excellent position to coordinate and finely
tune cell metabolism to fuel the different cancer cell activities. Here, we provide an up-to-date summary of recent progress made in
determining the role of Src in glucose metabolism as well as the link of this role with cancer cell metabolic plasticity and tumour
progression. We also discuss the opportunities and challenges facing this field.
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Graphical Abstract

INTRODUCTION
The hallmarks of cancer—shared commonalities that unite all
types of cancer cells at the level of cellular phenotype—have been
recently updated [1]. They comprise the acquired capabilities for
sustaining proliferative signalling, evading growth suppressors,
resisting cell death, enabling replicative immortality, inducing/
accessing vasculature, activating invasion and metastasis, avoiding
immune destruction and deregulating cellular metabolism [1].
Src, one of the best studied oncoproteins, has been shown to

regulate these hallmarks that ultimately control the behaviour of
transformed cells and contribute to tumour progression and
metastasis [2]. Excellent reviews with comprehensive information
about Src substrates and the broad spectrum of cellular events
regulated by this kinase were published during those years in
which an exponential growth of the research in the field took
place [3, 4]. However, the effects of Src on metabolism and their
relevance on cell transformation was not yet uncovered at the
time. Importantly, “deregulating cellular metabolism” has been
recently included as a core hallmark of cancer [1]. Because of the
extensive number of studies showing a role of Src in metabolism,
in this review we will summarise the effects of Src on glucose

metabolism, and discuss their contribution to Src oncogenic
activity and the related therapeutic opportunities. Before addres-
sing this topic, we will introduce Src family kinases, their structural
properties, as well as the regulation of their activity and oncogenic
properties. We will focus on Src, the best studied and prototypical
member of the family and we will refer to other Src family
members when necessary.

SRC STRUCTURE AND REGULATION
The seminal discovery that the transforming element of the
Rous sarcoma virus (v-src) in chickens was a transduced form of
the cellular gene c-src gave rise to the identification of the first
oncogene and proto-oncogene [5]. c-Src (herein termed Src) is
the founding member of the Src family of non-receptor protein
tyrosine kinases (SFKs), which are key regulators of signal
transduction implicated in fundamental cellular processes,
many of them related to human cancers [6]. SFKs include Src,
Fyn, Yes, Lck, Hck, Blk, Lyn, Fgr and Frk. Src, Fyn and Yes are
ubiquitously expressed, while Lyn, Hck, Fgr, Blk and Lck are
predominantly and differentially expressed in the various cell
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types of the haematopoietic lineage. Although some unique
functions have been reported for some SFK members,
extensive functional redundancy among SFKs exits in different
cell types [7, 8].
SFKs share a conserved domain structure (Fig. 1A–C) composed

of the SH4 region, which contains the lipidation site (mainly
myristylation site) for membrane localisation; a unique domain
characteristic of each individual kinase; the SH3 domain, which
binds proline-rich sequences; the SH2 domain, which binds
phosphotyrosine-containing sequences; the SH1 domain, which is
the catalytic kinase domain and contains the substrate- and the
ATP- binding site, as well as the autophosphorylation site (Tyr416
in chicken Src, the most used terminology because of its
discovery and Tyr419 in human Src); and a short C-terminal tail,
which contains the negative-regulatory tyrosine residue (Tyr527
in chicken Src and Tyr530 in human Src). All family members
show extensive sequence homology in the SH1, SH2, and SH3
domains and in the SH4 region, but diverge in the unique domain
(reviewed in [9]).

SFKs have multiple regulatory mechanisms, which converge on
tyrosine phosphorylation at two sites – residues Tyr416 and
Tyr527 for Src and nearby for other SFK members—with opposing
effects. Because most of the regulatory mechanisms are shared by
SFKs, we will refer to Src as the prototypical member of this family.
Phosphorylation of Tyr416, located within the activation loop of
the kinase domain (SH1), activates the enzyme while phosphor-
ylation of Tyr527, located within the C-terminal tail, inhibits
enzymatic activity (Fig. 1D). In resting cells, Src is maintained in an
inactive conformation, in which intramolecular contacts of the SH2
domain with phosphorylated Tyr527 and that of the SH3 domain
with the proline rich region (Fig. 1A) cause an assembled or closed
state (Fig. 1D). The oncogenic v-Src protein lacks the inhibitory
Tyr527 site and that is why it is constitutively active and highly
transforming. Thus, although v-Src and c-Src are proposed to have
the same substrates, the lack of regulation in v-Src causes the
permanent activation and the subsequent neoplastic transforma-
tion, while c-Src is not transforming unless mutated, over-
expressed or overactivated.

Fig. 1 Src structure and regulation. A The domain structure of Src. Dashed lines depict intramolecular contacts established in the inactive
conformation. B Three-dimensional structure of Src [145] (https://www.rcsb.org/structure/1FMK). C Src structure prediction with AlphaFold
[144]. The comparison between these structures indicates the accuracy of AlphaFold prediction, which might be very useful for future studies
of Src interactome, structure-function relationship and design of specific inhibitors. Note that B does not include the disordered SH4 region,
which is shown in red in C. D Regulation of Src activity. (1) Src in the inactive, “closed” or assembled conformation with intramolecular
contacts of the SH2 domain with phosphorylated Tyr527 and the SH3 domain with the proline rich region. (2) Src is activated in response to
diverse signals; activated receptors compete for binding to Src SH2 or SH3 domains and disrupt Src intramolecular interactions. (3) Src is
activated by autophosphorylation at Tyr416 and dephosphorylation at Tyr527, catalysed by the receptor protein tyrosine phosphatase α
(PTPRA), the nonreceptor tyrosine phosphatase SHP-1 (PTPN6) or PTP1B. (4) Src in the active “open” or disassembled conformation with
phosphorylated Tyr416. Src interacts with the SH3 and SH2 domain to the proline rich region and phosphotyrosine motif within the substrate
for tyrosine phosphorylation. (5) Inhibition of Src requires the binding of active Src to CSK recruiting proteins (Cbp, Cav-1, Paxillin or Cx43).
SHP-2 inhibits CSK recruitment. (6) CSK phosphorylates Src at Tyr527 promoting its intramolecular interaction with the SH2 domain. (7)
Phosphatases, such as PTEN, remove phosphate at Tyr416 causing full Src inactivation (1).
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Src is activated in response to a great diversity of extracellular
signals via integrins [10], G-protein-linked receptors [11], steroid
receptors [12], and receptor tyrosine kinases (RTKs) [13], such as
platelet-derived growth factor receptor (PDGFR), epidermal
growth factor receptor (EGF-R) family, fibroblast growth factor
receptor (FGF-R), insulin-like growth factor-1 receptor (IGF-1R), c-
Met, colony-stimulating factor-1 receptor (CSF-1R) and stem cell
factor receptor (SCF-R), among others [13]. Although the
participation of some intermediates, such as Ral-GTPase, has
been reported [14], the aforementioned receptors compete for
binding to Src SH2 or SH3 domains and disrupt the intramolecular
interactions, allowing for Src kinase activation. For instance,
PDGFR binds to Src SH2 domain while ß3 subunit of integrins
binds to Src SH3 domains (reviewed in [15]). The disassembly of
intramolecular contacts allows autophosphorylation at Tyr416
[16] and dephosphorylation at Tyr527, which can be catalysed by
the receptor protein tyrosine phosphatase α (PTPRA) [17], the
nonreceptor tyrosine phosphatase SHP-1 (PTPN6) [18] or PTP1B
[19]. Src adopts an open conformation in which the Src SH3
domain interacts with the proline rich region and the Src SH2
domain with the phosphotyrosine site, both at the target
substrate. The Src kinase domain is then in the competent
position for the phosphorylation of the specific tyrosine within
the substrate (Fig. 1D).
The inhibition of Src requires the activity of the C-terminal Src

kinase (CSK) [20] or CSK homolog kinase (Chk/MATK) [21], which
phosphorylate Src at Tyr527. In addition, several phosphatases,
such as phosphatase and tensin homolog (PTEN), have been
shown to dephosphorylate Src at Tyr416 [22, 23], a step required
to complete the inactivation and intramolecular assembly of Src
(Fig. 1D). Whereas Src is a membrane-associated protein, CSK does
not contain a membrane-binding motif and requires a membrane-
anchor protein, such as the CSK binding protein or phosphopro-
tein associated with glycosphingolipid-enriched microdomains
(Cbp/PAG). The interaction of CSK to Cbp/PAG is required for CSK
to catalyse the phosphorylation of Src at Tyr527 causing Src
inhibition. Interestingly, other membrane-associated proteins,
such as caveolin-1 [24, 25], paxillin [26] and connexin43 [27] have
the ability to recruit CSK and Src, favouring Src inhibition.
Connexin43 can recruit CSK together with PTEN, which allows a
cooperative and complete inhibition of Src [27]. This cooperative
mechanism is also found in haematopoietic cells, where CSK
interacts with the phosphatase encoded by PTPN22, which
dephosphorylates Tyr394 of Lck and Tyr417 of Fyn (the equivalent
to Tyr416 in Src) to inhibit Lck and Fyn activity concomitantly with
CSK [28]. Furthermore, phosphorylation of Cbp/PAG facilitates
the binding and activity of CSK. The protein-tyrosine phosphatase
SHP-2 (PTPN-11) prevents Src inhibition by removing the
phosphorylation of Cbp/PAG, thereby inhibiting CSK recruitment
and access to Src [29]. On top of that, other mechanisms, such as
the oxidation of key cysteine residues within the Src protein, can
contribute to the regulation of Src activity [30, 31]. In brief, the
regulation of Src activity is a complex process that involves a
dynamic conformational transition in which the crosstalk of
multiple signalling molecules takes part.

THE ROLE OF SRC ACTIVITY IN CANCER
Src activity
The relevance of Src activity can be inferred by the presence of src
genes across the whole range of metazoan evolution [3]. Src
catalyses tyrosine phosphorylation at specific positions in a wide
variety of proteins, regulating their activity. Among the proteins
that have been found proposed to be Src substrates are those
receptors mentioned previously that activate Src activity, as they
can also be reciprocally activated by Src; transcription factors,
such as Stat3 [32]; adaptor proteins, such as Shc [33], which leads
to the subsequent activation of the Ras/Raf/Erk signalling cascade;

other kinases, such as phosphoinositide 3-kinases (PI3Ks) [34],
MAPK [34] or Akt [35]; channel proteins involved in cell
communication, such as connexin43 [36] or pannexin1 [37];
cytoskeleton components such as FAK, p130 CAS, cortactin,
paxillin or p190 Rho-GTPase-activating protein (GAP) (for a review,
see [38]), and key metabolic enzymes that will be described in
detail the following sections. As a consequence of these direct
phosphorylations, extensive proteins and signalling pathways can
be secondarily affected, including cyclin D1 or HIF-1ɑ [39].
Because Src functions as both effector and regulator of a plethora
of receptors, this kinase facilitates the crosstalk between different
signalling pathways. Src is, therefore, a node of communication in
a complex network of interacting proteins [40], which can
regulate many cellular events, including proliferation, differentia-
tion, survival, migration, cytoskeletal organisation, adhesion, cell
communication, stemness and metabolism. Despite the high
diversity of Src effectors, it is important to keep in mind that Src
activity can be used differently by individual extracellular stimuli,
contributing to their ability to generate unique cellular responses
in a context-dependent manner [14].

Src in cancer
Since the seminal discovery of the transforming ability of v-Src, the
role of Src in cancer has been extensively studied: Src is the SFK
that is most often implicated in cancer. Indeed, although
mutations in Src are a rare event, both overexpression and
overactivation of Src have been observed in numerous cancer
types, including those of the brain, mainly glioblastoma (GBM), as
well as cancer of the liver, lung, colon, breast, bladder and
pancreas, contributing to their malignancy grade (Fig. 2, reviewed
in [41]). The increased Src activity found in cancer cells can be
caused by multiple factors, including an enhanced expression of
Src activators, frequently found in cancer, such as integrins [10],
EGFR [14, 42], the constitutively active mutant form EGFRvIII [43],
HER2 or ErbB2 [44] or other RTKs. Alternatively or concomitantly,
downregulation of CSK [45], upregulation of SHP-2 or alterations
in other Src regulatory molecules can contribute to the increased
Src activity found in many cancers [46]. As described previously,
Src integrates and regulates receptor signalling and directly
transduces it to downstream effectors affecting many cellular
events related to cell transformation, including metabolism,
proliferation, differentiation, apoptosis, cell adhesion, migration,
invasion, stemness and metastasis. Src may also play a prominent
role in the tumour microenvironment, by inducing angiogenesis
[43] or immune evasion [47]. Definitely, the study of Src activity
and its target proteins will help to understand the biology of
cancer, as well as its diagnosis and prognosis. For instance, the
detection of site-specific phosphorylation levels of Src target
proteins in peripheral circulating exosomes might be informative
in cancer diagnosis and/or prognosis.

Src participates in the phenotypic plasticity of cancer stem
cells
Cancer stem cells (CSCs) or tumour-initiating cells are a
subpopulation of undifferentiated tumour cells with distinct stem
cell-like features, such as self-renewal and phenotypic plasticity, an
emerging cancer hallmark [1]. CSCs are involved in metastasis,
tumour recurrence and are highly resistant to conventional
therapies [48]. Although multiple signalling pathways participate
in stemness, Src activity appears as a key contributor [49]. Indeed,
the cancer stem cell marker, CD133, can interact and activate Src,
which through the phosphorylation of FAK contributes to cancer
stem cell migration [50]. At least two signalling pathways
responsible for maintaining the stemness are related to Src
activity in non-small cell lung cancer cells. Tescalin mediates the
mutual activation of Src and IGF1R, which results in Stat3
activation and stemness [51], while EGFR/Src/Akt signalling
modulates Sox2 expression and self-renewal [52]. In fact, the
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inhibition of Src activity with Dasatinib and PP2 reduces the
clonogenic, self-renewal, and tumour-initiating capacity of pan-
creatic cancer stem cells [53]. Similarly, the inhibition of Src with
Dasatinib, Saracatinib, PP2 or TAT-Cx43266-283 promotes a reduc-
tion in the expression of the inhibitor of differentiation-1 (Id1) and
Sox2, with the subsequent reversion of stemness in human
glioblastoma stem cells [54]. An important Src-regulated feature of
CSCs is their metabolic plasticity, which allows them to survive in
the ever-changing tumour microenvironment by conveniently
shifting between different metabolic pathways used in energy
production and catabolism [55]. These data, together with many
more studies on this field, suggest that Src participates in
stemness through several mechanisms triggered by a variety of

signals present in different types of tumours. Therefore, maintain-
ing the stemness should be considered as an important outcome
of the high activity of Src frequently found in cancer.

SRC REGULATES GLUCOSE UPTAKE AND GLYCOLYSIS
The transformed metabolic phenotype found in many tumours
described in the late 1920s by Getty and Carl Cori [56, 57] and Otto
Warburg [58, 59] included increased glucose uptake and
metabolism. Glucose metabolism can be anabolic as well as
catabolic, providing fuel and precursors for many if not most cell
activities. To allow for the necessarily flexible and fine-tuned
regulation of glucose metabolism, the implicated enzymes exhibit
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Fig. 2 Reverse phase protein array (RPPA) abundance of active Src (phosphorylated at Tyr419) and total Src across different cancer
types. Data obtained from The Cancer Proteome Atlas [146]. Cancer types are ranked by phosphorylated Tyr419 (upper panel) and the
corresponding total Src abundance is shown in the bottom panel. Data were generated by the TCPA by first normalising protein values across
samples, then normalising sample values across proteins, and finally combining data across multiple batches after a replicate-based
normalisation (see https://tcpaportal.org/tcpa/faq.html and [146]). The plots were generated with R (v 4.1.2) [147]. The whiskers are the
minimum and maximum value within 1.5 times the interquantile range under or over the 25th and 75th percentile respectively, the lower and
upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles), the bar corresponds to the median and the outliers
are not shown. Adrenocortical carcinoma (ACC, n= 46), Bladder Urothelial Carcinoma (BLCA, n= 344), Breast invasive carcinoma (BRCA,
n= 874), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, n= 171), Cholangiocarcinoma (CHOL, n= 30), Colon
adenocarcinoma (COAD, n= 357), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC, n= 33), Esophageal carcinoma (ESCA, n= 126),
Glioblastoma multiforme (GBM, n= 205), Head and Neck squamous cell carcinoma (HNSC, n= 346), Kidney Chromophobe (KICH, n= 63),
Kidney renal clear cell carcinoma (KIRC, n= 445), Kidney renal papillary cell carcinoma (KIRP, n= 208), Brain Lower Grade Glioma (LGG,
n= 427), Liver hepatocellular carcinoma (LIHC, n= 184), Lung adenocarcinoma (LUAD, n= 362), Lung squamous cell carcinoma (LUSC,
n= 325), Mesothelioma (MESO, n= 61), Ovarian serous cystadenocarcinoma (OV, n= 411), Pancreatic adenocarcinoma (PAAD, n= 105),
Pheochromocytoma and Paraganglioma (PCPG, n= 80), Prostate adenocarcinoma (PRAD, n= 351), Rectum adenocarcinoma (READ, n= 130),
Sarcoma (SARC, n= 221), Skin Cutaneous Melanoma (SKCM, n= 353), Stomach adenocarcinoma (STAD, n= 392), Testicular Germ Cell Tumours
(TGCT, n= 118), Thyroid carcinoma (THCA, n= 372), Thymoma (THYM, n= 90), Uterine Corpus Endometrial Carcinoma (UCEC, n= 404),
Uterine Carcinosarcoma (UCS, n= 48), Uveal Melanoma (UVM, n= 12).
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many levels of regulation, such as selective tissue expression,
substrate affinity and specificity, modulable enzyme kinetics,
subcellular localisation, and post-transcriptional modifications.
Although beautiful, this intricacy can complicate the interpretation
and generalisation of experimental results.
Sound evidence of Src-mediated modification of glycolysis

arose very early in the history of Src research. A series of seminal
works in the 1970s showed that cell transformation by Rous
sarcoma virus (i.e., Src activity) induced a marked increase in
glycolytic activity [60–62], mimicking the transformed metabolic
phenotype found in many tumours. Since then, Src has been
found to modulate glycolysis via different mechanisms, including
regulation of master glycolytic transcription factors (HIF-1ɑ [63, 64]
and MYC [65]), insulin secretion [66, 67], modulation of glycolytic
enzyme activity by phosphorylation (HK, PFKFB3, G6PD), and
through well-known Src substrates lying at the heart of energy

metabolism and cancer, such as the PI3K-AKT-mTOR axis [68–70]
and EGFR [71]. This section discusses many instances of mostly
direct regulation of glycolysis by Src, one glycolytic protein at a
time (see Fig. 3 for an overview).

Glucose transporter
Glucose is imported into the cell by glucose transporters (GLUTs),
of which there are 14 isoforms in humans [72]. Two isoforms are
the most relevant and frequently overexpressed in cancer [73].
GLUT-1 (SLC2A1), the most ubiquitous and abundant isoform
[74], and GLUT-3 (SLC2A3), the ‘neuronal’ isoform, which shows
the highest affinity for glucose [75]. In the 1980s, early work
linked higher glycolysis rates induced by v-Src transformation
(the constitutively active form of Src) to increased levels of GLUT-
1 mRNA and protein, although the underlying mechanism(s)
remained unknown [76, 77]. Since then, Src activity has been

Fig. 3 Overview of glucose metabolism proteins regulated by Src. Solid ovals represent proteins regulated by Src. Metabolic pathways
are highlighted in different colours: blue, glucose transporter; green, glycolysis; orange, anaerobic glycolysis, and pink, the pentose phosphate
pathway. References relating to Src regulation of each protein are indicated next to it. The tyrosine residues phosphorylated by Src are
indicated together with the corresponding reference. Glycolytic metabolites: G6P glucose-6-phosphate, F6P fructose-6-phosphate, F-1,6-BP
fructose-1,6-bisphosphate, F-2,6-BP fructose-2,6-bisphosphate, DHAP dihydroxyacetone phosphate, GA3P Glyceraldehyde-3-phosphate, 1,3-
BPG 1,3-bisphosphoglycerate, 3-PG 3-phosphoglycerate, 2-PG 2-phosphoglycerate, PEP phosphoenolpyruvate. Pentose phosphate pathway
metabolites: 6-PGL 6-phosphogluconolactone, R5P 5-ribulose-phosphate. Enzymes: HK hexokinase, GPI glucose-6-phosphate isomerase, PFK-1
phosphofructokinase 1, PFKFB3 6-phosphofructo-2-kinase, GAPDH glyceraldehyde 3-phosphate dehydrogenase, PGK phosphoglycerate
kinase, PMu phosphoglycerate mutase, ENO enolase, PK pyruvate kinase, LDH lactate dehydrogenase, G6PD glucose-6-phosphate
dehydrogenase, 6PGD 6-phosphogluconate dehydrogenase.
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shown to regulate GLUT expression through two transcription
factors: in astrocytes (nervous system cells) and GBM cells (their
‘tumoral counterpart’), Src activity can modulate the levels of
GLUT-1 and GLUT-3 through HIF-1α protein levels [55, 78]; in
breast cancer cells, Src inhibition can decrease MYC expression
resulting in decreased GLUT-1 mRNA and protein levels [79].

Hexokinase
Intracellular glucose is phosphorylated by hexokinases (HKs) to
glucose 6-phosphate (G6P, which is trapped into the cell), the
first rate-limiting step of glycolysis (Fig. 3). Functionally, Src
activity is known to regulate the expression and activity of
hexokinases, most notably the major 1 and 2 isoforms (HK-1
and HK-2), in healthy as well as cancerous cells [55, 78–80], yet
it was not until recently that a direct activation of HK-1 and HK-
2 by Src phosphorylation was reported [81]. Phosphorylation of
HK-1 and HK-2 by Src on residues Y732 and Y686, respectively,
enhanced glycolysis and efficiently stimulated their catalytic
activities, in the case of HK-1 by enhanced enzyme kinetics
(including initial velocity [VO], maximum velocity [Vm] and
substrate affinity [Km]) and changes in oligomerization status.
In the context of cancer, the authors showed that Src-
stimulated tumorigenesis and metastasis was dependent on
HK activity using different approaches, such as mutations in Src
phosphorylation site of either HK1 or HK2 and hexokinase
silencing in xenograft mouse models [81]. In agreement with
these results, decreased levels of GLUT-3, HK-2 and tumor-
igenicity in GBM mouse models have been found upon Src
inhibition [55, 82]. Finally, hexokinase IV (better known as
glucokinase) has also been proven to change its activity and
subcellular localisation in response to Src downregulation in
insulin-producing cells [67].

Phosphofructokinase
The resulting product of glucose phosphorylation, G6P, is
isomerised to yield fructose-6-phosphate (F6P), but the specific
rate-limiting step in the glycolytic pathway is the irreversible
phosphorylation of F6P to fructose-1,6-bisphosphate (F-1,6-BP)
by phosphofructokinase-1 (PFK-1). PFK-1 is allosterically acti-
vated by a different derivative of F6P, namely fructose-2,6-
bisphosphate (F-2,6-BP), produced by 6-phosphofructo-2-kinase/
fructose 2,6-bisphosphatase (PFK-2 or PFKFB). Among the four
currently identified PFKFB isoforms (termed PFKFB1 to 4), PFKFB3
is the strongest glycolysis-inducer and is upregulated in many
human cancers [83].
Intriguingly, PFKFB activity was found to be modulated by

Src more than 35 years ago [84]. Although the authors noted
the possibility that PFKFB phosphorylation by a tyrosine kinase
(e.g., Src) could be the underlying mechanism, they eventually
proposed an indirect mechanism involving PKC and transcrip-
tional activity [85]. It has been reported thereafter that the
absence of bisphosphatase activity strongly suggests that
PFKFB3 was the predominant isoform in these samples [86].
Recently, the same group that established the HK regulation by
Src identified PFKFB3 as a potential Src interaction candidate
by mass-spectrometry screening [87]. They subsequently
found that the N-terminal domain of PFKFB3 interacts with
the SH1 domain of Src, resulting in Src phosphorylation of
PFKFB3 at Tyr194. This modification induced increased cell
glucose uptake, glycolysis and pentose phosphate pathway
activity compared to baseline (inactive Src) and to PFKFB3-
Tyr194Phe phospho-deficient cells. As expected, the PFKFB3-
Tyr194Phe mutation impaired proliferation, migration, and
xenograft formation. In vivo, PFKFB3-Tyr194Phe knock-in mice
exhibited decreased glycolysis and attenuated spontaneous
tumorigenicity. Furthermore, the levels of active (i.e., phos-
phorylated) PFKFB3 and Src were found to correlate in clinical
tumour samples [87].

Pyruvate kinase
Pyruvate kinase (PK), contrary to what its name suggests, catalyses
the conversion of phosphoenolpyruvate (PEP) into pyruvate. As
with other glycolytic enzymes, the PK isoenzyme PKM2 (the
‘muscle’ isoform, also expressed in many other cell types) was
promptly identified as a Src substrate in the 1980s, but, in contrast
to most other glycolytic enzymes, PKM2 phosphorylation by v-Src
led to decreased affinity for PEP and more rapid ATP-mediated
inactivation; in other words, Src phosphorylation inhibited PKM2
activity [88, 89]. Indeed, PKM2 is found mainly as a tetramer in
healthy cells, which is the active PKM2 conformation and funnels
glucose to pyruvate for energy production via mitochondrial
oxidation. However, in cancer cells most PKM2 is found as a dimer
—the so-called ‘tumour’ PKM2—due to (among other mechan-
isms) [90] phosphorylation mediated by oncoprotein kinases such
as Src [88, 89, 91]. The tumour PKM2 dimer exhibits inhibited
PKM2 enzyme activity, shunting glycolytic intermediaries towards
anabolic processes to support rapid cell proliferation by a process
that can be induced by Src phosphorylation of PKM2 [92, 93].

Lactate dehydrogenase
Lactate dehydrogenase (LDH) catalyses both the reduction of
pyruvate into lactate (LDH isoform A, LDHA), and the oxidation of
lactate into pyruvate (LDH isoform B, LDHB). LDH, as well as
enolase (discussed below) and phosphoglycerate mutase (PMu),
was identified as a v-Src substrate in the early 1980s [94, 95]. These
authors established that LDH was phosphorylated at Tyr238 by Src
(RSV infection) in chick embryo cells (a common system at the
time), although its functional impact remains to be explored. In
addition, a 2017 report found that Src – as well as HER2 –
phosphorylated LDHA at Tyr10 inducing a more active tetramer
conformation that provided anti-anoikis (a form of anchorage-
dependent cell death) and pro-invasive and metastatic advan-
tages to breast cancer cells [96].

Other glycolytic enzymes
Two other glycolytic enzymes have been found to be Src
substrates, namely glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and enolase. Although Src can phosphorylate GAPDH at
Tyr41 [97], the outcome of this modification has been linked to
vesicle trafficking [98] and the DNA damage response [99], not
(yet) to glycolysis. As for enolase, in the early 1980s two different
groups reported enolase phosphorylation by v-Src [94, 95, 100]
and the mild enzyme kinetic effects ensuing this modification
[100]. In spite of the prominent role of enolase in glycolysis and in
several other cellular processes (such as tissue remodelling [101]),
most of the literature linking Src and enolase refers to the use of
the latter as a substrate in Src kinase activity assays [102]. Given
the relevance of both GAPDH [103] and enolase activity in cancer
[104], we are left to wait and wonder about whether and how Src
phosphorylation might influence their role in cancer biology, as it
has been clearly established for other glycolytic enzymes.

SRC AND FYN MODULATE THE PENTOSE PHOSPHATE
PATHWAY
An alternative fate for G6P is the pentose phosphate pathway
(PPP). This route metabolises G6P in two stages: first, an oxidative
phase which produces nicotinamide adenine dinucleotide phos-
phate (NADPH), and second, a non-oxidative phase that yields
carbohydrates. Therefore, the PPP produces NADPH, an intracel-
lular antioxidant necessary for reductive biosynthesis, ribose-5-
phosphate, for nucleic acid synthesis, and erythrose 4-phosphate,
for aromatic amino acid synthesis.
Several studies have shown a link between Src or Fyn activity and

the regulation of PPP in contexts other than cancer [105–108]. In
endothelial cells, an initial report proposed that G6PD phosphor-
ylation by Src at residues Tyr428 and Tyr507 might modulate
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G6PD activity [107]. In cancer cells, the group of Li et al., who
discovered the direct regulation of HK and PFKFB3 by Src, found
that Src phosphorylation of G6PD at Tyr112 induces kinetic changes
that increase G6PD catalytic activity and PPP flux [109]. As a result,
mice injected with mutant Tyr112Phe-G6PD colorectal cancer cells
developed significantly smaller tumours than their G6PD wild-type
counterpart. Importantly, in clinical colorectal samples, Src and
G6PD abundance and activity (probed by phosphorylation levels)
were found to correlate [109]. In glioma cells, upon EGFR activation,
Fyn is activated causing the phosphorylation of G6PD at Tyr481,
leading to enhanced PPP activity, tumour growth and radiation
resistance. Indeed, in human glioblastoma patients, the phosphor-
ylation of 6-phosphogluconate dehydrogenase, another PPP
enzyme frequently upregulated in cancer cells, at Tyr481 by Fyn
is associated with increased Fyn expression and with reduced
survival and worse prognosis [110]. Overall, these studies indicate
that at least Src and Fyn can phosphorylate PPP enzymes at
different tyrosine residues subsequently increasing PPP activity
(Fig. 3), which fuels DNA replication and cell death resistance
contributing to tumour malignancy.

SRC WITHIN THE MITOCHONDRIA
In the early 2000s, accruing evidence prompted the notion that
mitochondrial function was regulated by protein phosphorylation,
as it was being found for other organelles. Soon, attention was
directed towards tyrosine phosphorylation specifically, and Abl and

Src were the first tyrosine kinases demonstrated to exhibit
mitochondrial localisation and activity [111–113], despite lacking
canonical mitochondrial targeting sequences. Physiological regula-
tors of Src were also promptly detected in mitochondria, including
CSK [112], SHP-2 [114, 115] and PTP1B [115, 116], and even a new
activator of Src was discovered, PTPD1 [117] (Fig. 4). Reported Src
substrates in the mitochondria include, most notably, several
complexes of the electron transport chain (ETC) [118], such as
complexes I, III, IV and V [113, 115, 119–121]. Importantly, pyruvate
dehydrogenase (PDH) was also described as a Src substrate [122]
(Fig. 4). PDH is part of the pyruvate dehydrogenase complex, which
converts pyruvate to acetyl-CoA in the mitochondria and therefore
is the first step in the mitochondrial metabolism of glucose. PDH
activity can be regulated through serine phosphorylation by
pyruvate dehydrogenase kinases and, as reported, through tyrosine
phosphorylation by Src [122]. More recently, a proximity-dependent
biotin-tagging system was used to study the endogenous
interactome of mitochondrial Src (mtSrc) [123]. This has led to the
identification of over 50 mtSrc-interacting candidate proteins
involved in different aspects of mitochondrial biology.
Initially, studies showed that an increase in mtSrc activity can

lead to an increase in complex I, III and IV activity along with a
decrease in complex V activity [115], and, accordingly, that a
reduction in mtSrc activity can lead to a reduction in mitochon-
drial respiration through a decrease in complex I activity
[119, 120]. Interestingly, later reports showed opposite effects of
Src and mtSrc activity in mitochondrial respiration. When Src was

Fig. 4 Overview of mitochondria-related proteins and pathways regulated by Src. AMitochondrial Src (mtSrc) and Src-regulators present in
mitochondria are shown in purple solid ovals. B Main mitochondrial metabolic pathways that can be regulated by Src. Blue solid ovals
represent Src targets. C Other mitochondrial processes and pathways regulated by Src. References relating to Src regulation of each protein or
pathway are indicated next to it. The tyrosine residues phosphorylated by Src are indicated together with the corresponding reference. PDH:
pyruvate dehydrogenase; TCA: tricarboxylic acid; ETC: electron transport chain, OXPHOS: oxidative phosphorylation.
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overexpressed – in a cell-wide manner – in mouse embryonic
fibroblasts (MEFs), increased phosphorylated Src levels and
decreased levels of ETC complexes I and IV were found compared
to wild-type MEFs, with unchanged cell proliferation [124].
Conversely, when Src was silenced in wild-type MEFs, or when
Src activity was inhibited in Src overexpressing MEFs with PP2 or
siRNA, the levels of ETC complexes I and IV increased compared to
control conditions. Moreover, MEFs harbouring null mutations in
both alleles of Src, Yes and Fyn showed decreased cell
proliferation, increased ETC complex I and IV levels and increased
ETC complex I/III and IV activity [124]. In the same report,
metastatic liver cancer samples showed higher Src phosphoryla-
tion and decreased ETC complex levels (except for complex V)
when compared to healthy liver samples, and Src inhibition with
PP2 or siRNA in a liver cancer cell line led to increased ETC
complex I and IV levels [124].
In triple negative breast cancer (TNBC), Park et al., using

established cell lines as well as patient-derived xenografts, showed
that mitochondrial fatty acid oxidase (FAO) activates mtSrc, which
stimulates ETC complex activity, thereby providing ATP to
maintain the Src activating phosphorylation [125]. However, this
pro-tumoral mtSrc activity might be restricted to a ‘Goldilocks’
zone, as Djeungoue-Petga et al. reported that overexpression of
mtSrc led to decreased mitochondrial membrane potential and
respiration and cell death in several TNBC cell lines [126].
As previously mentioned, Src can regulate PDH activity, the

initial step in the mitochondrial metabolism of glucose. Indeed,
Src directly phosphorylates PDH on Tyr289 causing decreased
PDH activity and ROS production in vitro and decreasing
metastatic burden in vivo [122]. Importantly, these authors
showed that combinatorial therapy consisting of Src inhibition
and pro-oxidative agents had a synergistic anti-proliferative effect
on breast cancer cells [122].
Mitophagy, or mitochondrial autophagy, is a process by which

defective or unwanted mitochondria are selectively targeted for
autophagy and degraded [127]. Several proteins, many of them
susceptible to regulation by phosphorylation, finely regulate
mitophagy in response to environmental as well as cell-intrinsic
cues, including FUNDC1, which does so in response to cell stress
such as hypoxia or mitochondrial depolarisation [127]. Under
unstressed physiological conditions, FUNDC1-mediated mito-
phagy is inhibited by phosphorylation at Tyr18 by Src. Under
hypoxia, FUNDC1 is dephosphorylated resulting in mitophagy
induction. However, when Src is present, FUNDC1 phosphoryla-
tion is preserved, inhibiting FUNDC1-mediated mitophagy in
response to hypoxia [128]. Nonetheless, Src does not work alone
in this duty. FUNDC1 has two phosphorylation sites, Ser13
(phosphorylated by casein kinase-2) and Tyr18 (phosphorylated
by Src), that functionally cooperate to regulate mitophagy. Indeed,
inactivation of either Src or casein kinase-2 alone is not sufficient
to activate mitophagy, while inhibition of both kinases strongly
activates FUNDC1-mediated mitophagy [129].
In brief, several reports positively correlate Src activity with

mitochondrial metabolism [115, 119, 120, 125] while others show
the opposite trend [122, 124, 126]. Interestingly, in all cases Src
activity is related with a pro-tumoral role. Several processes could
underlie these a priori contradictory reports. Beyond experimental
differences, such as different subcellular localisation of Src
overexpression, physiological explanations across cell types might
include differences in metabolic plasticity – the ability to switch
metabolic pathways in response to intrinsic or extrinsic changes to
maximise survival and proliferation – or differential expression of
other SFKs leading to compensatory activity upon Src inhibition.
Importantly, the presence and activity of different Src interacting
partners, a factor often overlooked and/or understudied, might
contribute greatly to the outcome of Src inhibition.
In the 2020 s, the group of E. Hébert-Chatelain has added

extensive and crucial information to understand the role of Src in

mitochondrial and cell metabolism using omics technologies
[123, 130]. They examined the mitochondrial phosphoproteome
and metabolome in Src+ /+ and Src−/− mice either fed ad
libitum or after fasting for 24 h. Src deletion led to impaired ETC
activity and mitochondrial metabolism in several organs, along
with accumulation of glucose and mitochondrial metabolites.
These authors also found changes in the mitochondrial phospho-
proteome and heterogenous ETC activity, oxygen consumption
and metabolite abundance depending on Src phenotype and
feeding state [130]. Another important contribution from this
group, that supports further research in this field, is the
identification of 51 candidate proteins of the mtSrc interactome
involved in the tricarboxylic acid cycle, OXPHOS, cristae biology,
fatty acid and amino acid metabolism and mitochondrial
organisation and transport [123], highlighting the role of Src
activity in the regulation of mitochondrial metabolism.

THERAPEUTIC OPPORTUNITIES OF SRC INHIBITION
Because of the prominent role of Src in cancer, several Src inhibitors
have been studied in preclinical models and some of them have
successfully reached clinical use. Among them, ATP-competitive Src
inhibitors – Dasatinib, Saracatinib or Bosutinib – are the most
extensively studied in preclinical models and clinical trials and the
use of some of them, such as Dasatinib, has been approved for
hematologic tumours (recently reviewed in [131]). These inhibitors
bind to the ATP-binding site in Src, which is highly conserved
among tyrosine kinases. The lack of kinase specificity has been
exploited to target simultaneously several oncogenic kinases, but it
has also been associated with undesired side effects. Despite the
good results in preclinical models, the results from clinical trials with
ATP-competitive Src inhibitors, such as Dasatinib, Saracatinib or
Bosutinib, alone or in combination, have been discouraging so far
[131]. Most evidence suggests that higher specificity and ability to
reach tumour cells, reduction in side effects and drug resistance
mechanisms as well as finding predictive response biomarkers is
required for successful clinical results [131].
Interestingly, new appealing strategies in the development of

Src inhibitors are emerging. For instance, targeting the peptide
substrate binding site instead of the ATP binding site within the
kinase domain of Src (Fig. 1). Potential advantages include higher
kinase inhibition selectivity due to the unique sequence of the
peptide substrate site, and greater binding efficacy since the
inhibitor will not need to compete with mM intracellular
concentrations of ATP [132]. Indeed, Src inhibitors KX2-391 and
KX2-361 target the peptide substrate site at nM potencies and
have selectivity among tyrosine kinases. These peptide substrate-
competitive Src inhibitors are progressing in clinical trials for
advanced malignancies refractory to conventional treatments
(KX2-361; https://clinicaltrials.gov/ct2/show/NCT02326441) and for
topical treatment against actinic keratosis (KX2-391; https://
clinicaltrials.gov/ct2/show/NCT02838628).
Drug-resistance is another obstacle for a successful clinical

outcome with Src inhibitors. In a recent study an interesting drug-
resistance mechanism developed by ATP-competitive inhibitors
has been revealed [133]. The binding of ATP-competitive
inhibitors to Src allosterically disassembles Src to the open state
with higher propensity to form a complex with Src substrates. If
inhibitor concentration is reduced or if cells acquire a drug-
resistant mutation, Src substrates will be readily phosphorylated,
activating the Src signalling pathway. Consequently, the activation
of Src and its downstream phosphorylation cascade can be
paradoxically induced by ATP-competitive inhibitors. To prevent
the relief of Src autoinhibition promoted by classical Src inhibitors,
Temps et al. have developed the Src inhibitor, eCF506, which
binds and locks the closed inactive conformation of Src [134]. This
mechanism has the advantage of inhibiting the kinase activity as
well as the protein binding to SH3 and SH2 domains in Src.
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Indeed, eCF506 decreases Src activity and the phosphorylation of
the Src-binding protein FAK, which contrasts with some studies
reporting that ATP-competitive Src inhibitors may facilitate FAK
binding to Src and the subsequent phosphorylation [133, 134].
Another approach employed to design Src inhibitors is the

recapitulation of the cellular mechanism for Src inhibition. As
described in Fig. 1, some proteins such as CBP or Cx43 recruit Src
together with its endogenous inhibitors, which causes Src
inhibition. The Cx43 mimetic peptide, TAT-Cx43266-283, acts as a
docking platform for Src, CSK and PTEN and consequently inhibits
Src activity [27]. TAT-Cx43266-283 inhibits the oncogenic activity of
Src and exerts important anti-tumoral effects in several preclinical
models of glioblastoma in vitro, ex vivo, and in vivo, including
freshly removed surgical specimens from patients [54, 135].
Tumour cell proliferation, survival, migration, invasion, metabolic
plasticity and autophagy are impaired by TAT-Cx43266-283 enhan-
cing the survival of GBM-bearing mice [55, 82, 136]. One of the
main advantages of the Src inhibitor TAT-Cx43266-283 is that its
effects are specific for the glioma stem cell subpopulation, with no
effects on healthy brain cells. The cell specificity may depend on
the levels of Src activity in each cell type, since TAT-Cx43266-283
recruits the open and active conformation of Src. Indeed, the
toxicity of TAT-Cx43266-283 for neurons and astrocytes is much
lower than that exerted by the ATP-competitive Src inhibitor
Dasatinib [82]. In addition, because TAT-Cx43266-283 promotes the
transition from the open to the closed Src conformation, both the
activity and the scaffolding properties of Src are impaired, as
judged by the reduction in Src activity and FAK phosphorylation
promoted by TAT-Cx43266-283 [135].
One important conclusion to be drawn from the studies

performed with Src inhibitors is that the inhibition of Src, even
when using the same inhibitor and resulting in a reduction in Src
activity, can impact different signalling pathways in different cell
types [137]. Because Src-mediated pathways can act both in co-
operation or crosstalk with other signalling pathways, these results
suggest that ultimately, the effects of Src inhibition will depend on
the level and activity of the repertoire of Src partners present in
each cell type. Therefore, a profound study of the effect of each
Src inhibitor on the main Src related signalling pathways – FAK,
Akt, EGFR, Erk, Stat, etc – and cellular processes – proliferation,
survival, migration, invasion, stemness and metabolism – should
be carried out in the specific tumour model. We would like to
highlight the relevance of studying the effects of Src inhibitors on
metabolism because of the relevance of metabolic plasticity for
drug resistance [138] as well as the possible side-effects due to
metabolic alterations in non-cancer cells [130]. In addition, an
intense metabolic cooperation has been described between
tumoral cells and their microenvironment: disrupting this meta-
bolic crosstalk might be critical to impair tumour growth. The
study of the effect of Src inhibitors on different metabolic
pathways in tumour cells as well as cells from the microenviron-
ment would enhance the possibilities to achieve clinical benefits
from Src inhibitors in solid tumours.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Numerous studies carried out over the last years have demon-
strated that key proteins and enzymes involved in glucose uptake,
glycolysis, PPP and mitochondrial metabolic pathways are Src
substrates (Figs. 3, 4). Consequently, the activity of Src can
modulate specific metabolic pathways required to fuel diverse
cancer cell activities. Not surprisingly, the inhibition of Src activity
affects cancer cell metabolism with a concomitant reduction in
tumour progression [55]. As a relevant proof of the link between
the effects of Src on metabolism and its oncogenic activity,
mutations of key metabolic enzymes, such as HK1, HK2, PFKFB3 or
G6PDH at specific Src-phosphorylation sites reduce Src-evoked
tumour progression [81, 87, 109]. Moreover, emerging reports are

showing that Src has roles in the metabolism of several other
biomolecules beyond glucose, including lipids [139, 140] and
amino acids [141, 142]. Together, these data clearly indicate that
the effects of Src on cell metabolism contribute to its oncogenic
effect and therefore, an integrated perspective on the role of Src
on these cellular functions should be considered.
Cancer progression implies heterogenous metabolic require-

ments to sustain diverse cellular processes, including stemness,
proliferation, migration or differentiation. As described in previous
sections, Src activity is not associated to an increase or decrease in
a specific metabolic pathway. Overall, Src activity can regulate
diverse metabolic pathways and hence we propose that this
oncoprotein is in a good position to coordinate metabolism with
each specific tumour cell process. For instance, Src activity can
regulate mitochondrial metabolism in cancer stem cells [55],
which are highly dependent on OXPHOS [143], while it activates
glucose uptake and glycolysis in proliferative cells (see ‘Src
regulates glucose uptake and glycolysis’), highlighting the
contribution of Src activity to the metabolic plasticity required
by cancer cells during tumour progression.
The increased Src enzymatic activity found in many tumours

(Fig. 2) indicates that Src should be further studied as a drug
development target, despite the lack of Src mutations or gene
amplification found in cancer. As mentioned in the previous section,
an intense study of the effects of Src inhibitors in cancer cell
metabolism as well as in the metabolism of cells from the tumour
microenvironment will help to elucidate the potential benefits, side
effects or resistance mechanisms caused by Src inhibitors in a
clinical setting. Given the demonstrated accuracy of artificial
intelligence for protein structure prediction [144] (Fig. 1), a speed
up in the development of specific Src inhibitors is expected once
this computational tool reaches the same benchmark for the
prediction of interaction affinities and the structure of small
peptides, disordered regions and specific amino acid mutations.
Although the effects of Src on metabolism were discovered many

years ago, several questions remain to be answered: How do
different signals that converge in Src activation result in changes in
distinct cellular and metabolic processes? Do different Src-binding
partners affect Src structure differentially to accommodate a
specific substrate? How is Src modulation of metabolism integrated
with that of other metabolic sensors and regulators, such as
AMPK or mTOR? This review is focused on Src, however, the effect
of other SFK members (such as Yes, Fyn or Fgr) on metabolism has
been reported, as we have discussed. Indeed, several interesting
questions are still unanswered: What is the contribution to
metabolism of each SFK member (e.g., is there functional
redundancy, as sometimes found for other SFK functions)? Is it
important to design specific inhibitors for some SFK members? The
answers to these and other questions will give a more complete
view of Src and SFK biology, which is required to develop new and
more successful therapies that target Src in cancer.
In brief, the studies summarised in this review—and many

others that we were unable to cite due to space limitations—
indicate that Src can orchestrate glucose metabolism to fuel a
great variety of signalling pathways and cellular processes,
including the adaptation of cellular metabolism required for each
cell activity during tumour progression. Hence, similarly to other
well-known signalling molecules, including AKT, AMPK, mTOR or
HIF-1α, Src might be regarded as a master regulator of glucose
metabolism and coordinator of metabolism with different cancer
cell processes.
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