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Abstract: The existing lens correction methods deal with the distortion correction by one or more
specific image distortion models. However, distortion determination may fail when an unsuitable
model is used. So, methods based on the distortion model would have some drawbacks. A model-
free lens distortion correction based on the phase analysis of fringe-patterns is proposed in this paper.
Firstly, the mathematical relationship of the distortion displacement and the modulated phase of
the sinusoidal fringe-pattern are established in theory. By the phase demodulation analysis of the
fringe-pattern, the distortion displacement map can be determined point by point for the whole
distorted image. So, the image correction is achieved according to the distortion displacement map
by a model-free approach. Furthermore, the distortion center, which is important in obtaining an
optimal result, is measured by the instantaneous frequency distribution according to the character of
distortion automatically. Numerical simulation and experiments performed by a wide-angle lens are
carried out to validate the method.

Keywords: distortion measurement; optical distortion; camera calibration; fringe analysis

1. Introduction

Camera lenses suffer from optical aberration; thus, the nonlinear distortion would
be introduced into the captured image, especially for the lens with large field of view
(FOV). Therefore, distortion correction is a significant problem in the analysis of digital im-
ages. The accurate distortion correction of lens is especially crucial for any computer vision
task [1–4] that involves quantitative measurements in the geometric position determination,
dimensional measurement, image recognition, and so on. Existing methods for distor-
tion correction can be divided into two main categories: traditional vision measurement
methods and learning-based methods.

For the traditional vision measurement methods, it falls into the following main
types. One relies on a known measuring pattern [5–7], including straight lines, vanishing
points, and a planar pattern. It estimates the parameters of the un-distortion function by a
known pattern to achieve correction. It is simple and effective, but the distortion center
in nonlinear optimization would lead to instabilities [8]. The second is the multiple view
correction method [9–11], which utilizes the correspondences between points in different
images to measure lens distortion parameters. It achieves auto-correction without any
special pattern but requires a set of images captured from different views. The third is
the plumb-line method [12–15], which makes the distortion parameter estimation by some
distorted circular arcs. Accurate circular arcs detection is a very important aspect for the
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robustness and flexibility of this kind of method. Human supervision and some robust
algorithms for circular arcs detection are developed. All the above-mentioned methods rely
on some specific distortion models, such as the commonly used even-order polynomial
model [16] proposed by Brown, division model [17] proposed by Fitzgibbon, and fisheye
lens model [18]. The whole image achieves distortion correction by employing several
characteristic points or lines for the analysis to find out the distortion parameters. It would
have poor generalization abilities to other distortion models. Furthermore, it should be
noted that all these distortion models achieve ideal circular symmetry.

For the learning-based methods, it can be divided into two kinds. The first one is
the parameter-based method [19–21], which estimates the distortion parameters by using
convolutional neural networks (CNNs) in terms of the single parameter division model
or fisheye lens model. It would provide more accurate distortion parameters estimation.
However, the networks are still trained by a synthesized distorted image dataset derived
from some specific distortion models, which causes inferior results for other types of
distortion models. Recently, some distortion correction methods demanding no specific
distortion models by deep learning have been proposed. Liao et al. [22] introduced model-
free distortion rectification by introducing a distortion distribution map. Li et al. [23]
proposed bind geometric distortion correction by using the displacement field between
distorted images and corrected images. For these methods, there are different types of
distortion models involved into the synthesized distorted image dataset for training, and
the distortion distribution map or displacement field are obtained according to these
distortion models. It means that the distortion correction is still built on some distortion
models, and the employed distortion models are circular symmetry. However, none of
the existing mathematical distortion models can work well for all the real lenses with
fabrication artifacts.

In addition, there are some model-free distortion correction methods. Munji [24]
and Tecklenburg et al. [25] proposed a correction model based on finite elements. The
remaining errors in the sensor space can be corrected by interpolation with the finite
element. However, the interpolation effect will be reduced when the measured image
points are not enough. Grompone von Gioi et al. [26] designed a model-free distortion
correction method. It involves great computation and is time consuming, because the
optimization algorithm and loop validation are used for high precision.

Fringe-pattern phase analysis [27–29], due to its advantage of highly automated full-
field analysis, is widely used in various optical measurement technologies, such as interfer-
ometry, digital holography, moire fringe measurement, and so on. It is also used for lens
distortion determination. Bräuer-Burchardt et al. [30] achieved lens distortion correction by
Phasogrammetry. The experiment system and image processing are a bit complicated be-
cause both the projector lens distortion and camera lens distortion are involved. Li et al. [31]
eliminated the projector lens distortion by employing the Levenberg–Marquardt algorithm
for improving the measurement accuracy of fringe projection profilometry, where the
lens distortion is described by a polynomial distortion model. We employed the phase
analysis of one-dimensional measuring fringe-pattern and polynomial fitting for simple
lens distortion elimination by assuming that the distortion is ideal circular symmetry [32].

In this paper, a model-free lens distortion correction based on the phase analysis of a
fringe-pattern is proposed. Unlike the method in [32], the proposed method does not rely
on circular symmetry assumption. In order to avoid using the distortion model and circular
symmetry assumption, the proposed method uses two sets of directional orthogonal
fringe patterns to obtain the distortion displacement of all points in the distorted image.
Moreover, considering that the distortion center may be displaced from the image center
by many factors, such as an offset of the lens center from the sensor center of the camera,
a slight tilt of the sensor plane with respect to the lens, a misalignment of the individual
components of a compound lens, and so on, the distortion center should be measured
in accordance with specific conditions instead of being assumed as the image center
directly. For the proposed method, the distortion center is measured by the instantaneous
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frequency distribution according to the character of distortion automatically. The theoretical
description of distortion measurement based on the phase analysis of the sinusoidal fringe-
pattern is introduced. The numerical simulation results and experimental results show the
validity and advantages of the proposed method.

2. Principle of Model-Free Lens Distortion Correction Method
2.1. Lens Distortion

A simple grid chart of the negative (barrel) distortion, as shown in Figure 1, is em-
ployed to present the theoretical description of lens distortion simply and clearly. The
blue lines and the red lines are corresponding to the lines before and after distortion,
respectively. It is easy to find that the undistorted point P comes to the distorted point
Q after distortion. According to the geometry shown in Figure 1, PQ is the distortion
displacement ∆r according to the distorted point Q with ∆r > 0 for the barrel distortion
and ∆r < 0 for the pincushion distortion. So, the point Q(xQ, yQ) should be corrected to
the point P(xP, yP), which satisfies:

|∆r| =
√

∆x2 + ∆y2 (1)

with ∆x = xP − xQ and ∆y = yP − yQ. For image distortion correction, the most important
thing is to decide the distortion displacement ∆r, i.e., ∆x and ∆y, at each point. Symbols
denotation is given in nomenclature, as shown in Table 1.
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Figure 1. Distortion schematic diagram for the negative (barrel) distortion, where the blue and red
lines are corresponding to the fringe-pattern stripes before and after distortion, respectively.

Table 1. Nomenclature.

Term Description

Iu
x ; Iu

y undistorted longitudinal and transverse fringe-patterns
Id
x ; Id

y distorted longitudinal and transverse fringe-patterns
Id
x,n; Id

y,n distorted longitudinal and transverse fringe-patterns with phase shift
ϕx; ϕy phase of distorted longitudinal and transverse fringe-patterns

φx, ∆ϕx;
φy, ∆ϕy

modulated phase of distorted longitudinal and transverse fringe-patterns

φxo; φyo initial phase of distorted longitudinal and transverse fringe-patterns
fx; fy instantaneous frequency of distorted longitudinal and transverse fringe-patterns

fxo; fyo fundamental frequency of distorted longitudinal and transverse fringe-patterns
∆x; ∆y distortion displacement of points on distorted fringe-pattern

∆x′; ∆y′ distortion displacement of points on corrected fringe-pattern

(xm,n
d , ym,n

d ) point on distorted image corresponding to point on corrected image with (m, n)
being integer
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2.2. Phase Analysis of Fringe-Pattern Measuring Template

Two sets of sinusoidal fringe-patterns parallel to the y-axis and x-axis of the display
coordinate system, i.e., the longitudinal and transverse fringe-patterns, are employed as
measuring templates for phase demodulation analysis to obtain the distortion displacement
∆x and ∆y, respectively. Figure 2 shows the sinusoidal fringe-patterns before and after
barrel distortion, respectively. The undistorted longitudinal and transverse fringe-patterns
are expressed as: {

Iu
x (x, y) = A + B cos[2π fxox + φxo]

Iu
y (x, y) = A + B cos[2π fyoy + φyo]

. (2)
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The corresponding distorted fringe-patterns are:{
Id
x (x, y) = A + B cos[2π fxox + φx(x, y) + φxo]

Id
y (x, y) = A + B cos[2π fyoy + φy(x, y) + φyo]

(3)

where A is the background intensity; B/A is the visibility of the fringe-pattern; fxo and
fyo are the fundamental spatial frequency of the longitudinal and transverse sinusoidal
fringe-pattern, respectively; φx(x, y) and φy(x, y) are the modulated phase caused by the
lens distortion; φxo and φyo are the initial phase. By the analysis of the fringe-patterns, the
modulated phase can be obtained point by point, so the distortion displacement ∆x and
∆y at each point is decided.

2.2.1. Phase of Distorted Fringe-Pattens

The phase-shifting method [33], providing high precision point-to-point phase re-
trieval from fringe-patterns due to its best spatial localization merit, is employed for phase
demodulation. The intensity distributions of the longitudinal and transverse sinusoidal
fringe-patterns after distortion are: Id

x,n(x, y) = A + B cos
[

ϕx(x, y) + 2π(n−1)
N

]
Id
y,n(x, y) = A + B cos

[
ϕy(x, y) + 2π(n−1)

N

] (4)

where ϕx(x, y) = 2π fxox + φx(x, y) + φxo and ϕy(x, y) = 2π fyoy + φy(x, y) + φyo are the
phase of longitudinal and transverse fringe-pattern, respectively; n = 1, 2, · · · , N and
N = 4. By employing the four-step phase-shifting method, the wrapped phase distribution
can be acquired from the distorted fringe-patterns as:

ϕx(x, y) = arctan
[

Id
x,4(x,y)−Id

x,2(x,y)

Id
x,1(x,y)−Id

x,3(x,y)

]
ϕy(x, y) = arctan

[
Id
y,4(x,y)−Id

y,2(x,y)

Id
y,1(x,y)−Id

y,3(x,y)

] . (5)
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The calculated phase is wrapped in [−π, π] by arctangent calculation. So, the unwrap-
ping algorithm [34] is performed, and the continuous phase distribution of the distorted
fringe-pattern is obtained. More number of phase shifts would reduce the distortion of the
cosine signal and improve the precision of phase demodulation.

2.2.2. Modulated Phase Calculation by Distortion Center Detection

The modulated phases φx(x, y) and φy(x, y), which contain the distortion information,
are calculated by subtracting the phase (2π fxox + φx0) and (2π fyoy + φy0) from ϕx(x, y)
and ϕy(x, y), respectively. So, in order to obtain the modulated phase, the fundamental
spatial frequency fxo and fyo should be detected. According to the distortion character,
there is no distortion at the distortion center. Therefore, the fundamental spatial frequency
of the fringe-pattern is detected at the position of the distortion center. It should be noticed
that the distortion center may be significantly displaced from the center of the image
by many factors. For the proposed method, the distortion center can be measured by
the instantaneous frequency distribution automatically. It is at the position where the
minimum instantaneous frequency appears for the barrel distortion and the maximum
instantaneous frequency appears for the pincushion distortion. So, we perform the partial
derivative operation along the x and y direction of the phase ϕx(x, y) and ϕy(x, y) to get
the instantaneous frequency fx and fy respectively as:{

fx(x, y) = 1
2π

d
dx ϕx(x, y)

fy(x, y) = 1
2π

d
dy ϕy(x, y)

. (6)

By judging the variation trend of instantaneous frequency, the type of distortion could
be determined. When the instantaneous frequency increases along the radial direction from
the distortion center, it is the barrel distortion. Otherwise, it is the pincushion distortion.
Then, by detecting the position of the minimum fx and fy along the x and y direction for the
barrel distortion, or the position of the maximum fx and fy for the pincushion distortion, the
distortion center can be decided as (x0, y0). So, the corresponding fundamental frequencies
are determined at (x0, y0) as:

fxo =
1

2π
∂ϕx(x,y)

∂x

∣∣∣ x = x0
y = y0

fyo =
1

2π
∂ϕy(x,y)

∂y

∣∣∣ x = x0
y = y0

. (7)

According to fxo and fyo, the phase distribution 2π fxox and 2π fyoy can be calculated,
and the modulated phase can be rewritten as ∆ϕx(x, y) and ∆ϕy(x, y):{

∆ϕx(x, y) = ϕx(x, y)− [2π fxo(x− x0) + ϕx(x0, y0)]
∆ϕy(x, y) = ϕy(x, y)− [2π fyo(x− x0) + ϕy(x0, y0)]

(8)

where ϕx(x0, y0) and ϕy(x0, y0) are the phase of the longitudinal and transverse sinusoidal
fringe-patterns at the distortion center.

2.2.3. Relationship of Modulated Phase and Distortion Displacement

The distortion displacement ∆x(x, y) and ∆y(x, y) are obtained by the modulated
phase as:  ∆x(x, y) = ∆ϕx(x,y)

2π fxo

∆y(x, y) = ∆ϕy(x,y)
2π fyo

. (9)

Therefore, the measurement of the distortion displacement is transferred into the
calculation of the modulated phase by the fringe-pattern analysis. In a word, the distortion
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displacement ∆x(x, y) and ∆y(x, y) can be measured point by point according to the phase
demodulation analysis of the distorted sinusoidal fringe-patterns.

2.2.4. Distortion Correction

The inverse mapping method with the bilinear interpolation is employed for the
image distortion correction. It should be noticed that the distortion displacement obtained
by Equation (9) corresponds to the points on the distorted fringe-pattern. So, we recalculate
the distortion displacement ∆′x and ∆′y, which correspond to the points on the corrected
fringe-pattern. Firstly, we establish the discrete numerical correspondences of the new
distortion displacement ∆′x and ∆′y with the points (x + ∆x, y + ∆y) on the corrected
fringe-pattern. It should be noticed that the calculated coordinate value of the points
(x + ∆x, y + ∆y) on the corrected fringe-pattern may not be integer. So, we calculate the
distortion displacement ∆′x(m, n) and ∆′y(m, n) by performing the bicubic interpolation
algorithm, where (m, n) is the integer coordinate value of the corrected point. Therefore,
the distribution of the distortion displacement corresponding to the points on the corrected
fringe-pattern is decided, and the image distortion correction can be achieved by adopting
the inverse mapping method directly by:{

xm,n
d = m− ∆′x(m, n)

ym,n
d = n− ∆′y(m, n)

(10)

where (xm,n
d , ym,n

d ) is the corresponding distorted point. Finally, the bilinear interpolation
algorithm is employed for the image interpolation not only because of the simple and
convenient calculation process but also due to its ability of overcoming the problem of
gray-scale discontinuity.

3. Numerical Simulation

Numerical simulation is performed to verify the validity of the method we introduced.
Firstly, two sets of longitudinal and transverse sinusoidal fringe-patterns of 512× 512 pixels
with a phase shift of 0, π/2, π, 3π/2 are employed as measuring patterns. The spatial
period of the undistorted fringe-pattern is 16 pixels. Then, the single parameter division
model [17] with distortion parameter λ = −1 × 10−6, given by Equation (11), is employed
to generate the barrel distorted fringe-patterns.

ru =
rd

1 + λrd
2 (11)

where ru and rd are the Euclidean distance of the distorted and undistorted point to the
distortion center, respectively. Moreover, the distortion center is shifted away from the
image center (256, 256) to (273, 289). Figure 3 shows the corresponding distorted fringe-
patterns, respectively. It should be noticed that the proposed method is model-free. The
single parameter division model employed here, which can be replaced by any other
distortion model, is just to generate a simulated distorted image.

The analysis process and the corresponding results can be described as follows.
Step 1: Employ the four-step phase-shifting method for the phase demodulation

and perform the unwrapping algorithm to obtain the phase distribution of the distorted
longitudinal and transverse fringe-patterns. Figure 4a,b are the corresponding wrapped
phase.

Step 2: Calculate the instantaneous frequency fx and fy. It is determined as barrel
distortion because the instantaneous frequency increases along the radial direction from
the distortion center. By detecting the minimum fx along the x direction, we can find that
the distortion center is at the 273th column. Similarly, by detecting the minimum fy along
the y direction, we can find that the distortion center is at the 289th row. So, the distortion
center is at (273, 289). Figure 5a,b fx and fy, where the red dotted lines are at the 289th
row and 273th column, respectively. Figure 5c,d are the corresponding distribution of fx
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at the 289th row and fy at the 273th column, respectively. The fundamental frequency
is fxo = fyo = 0.0625 and the phase ϕx(x0, y0) and ϕy(x0, y0) at the distortion center are
obtained.
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Step3: Modulated phase calculation. According to Equation (8), the modulated
phase ∆ϕx(x, y) and ∆ϕy(x, y) are obtained as shown in Figure 6a,b. So, the distortion
displacement ∆x(x, y) and ∆y(x, y) are obtained point by point according to Equation (9),
as shown in Figure 6c,d. The distortion displacement ∆r can be obtained by Equation (1),
and the maximum error of ∆r is 0.24 pixels. In order to further validate the proposed
method, distortion parameter estimation according to the single parameter division model
is performed. The estimated distortion parameter is λ = −0.9920 × 10−6 with the relative
error of 0.8%.
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Step4: Distortion displacement map calculation. We establish the discrete numer-
ical correspondences of the new distortion displacement ∆′x and ∆′y with the points
(x + ∆x, y + ∆y) on the corrected fringe-pattern. Table 2 shows some of the distortion
displacement of the points on the distorted fringe-pattern and the corresponding points on
the corrected fringe-pattern. We find that the calculated coordinates of the points on the
corrected fringe-pattern (x + ∆x, y + ∆y) are not integers. So, we calculate the distortion
displacement ∆′x(m, n) and ∆′y(m, n) by performing the bicubic interpolation algorithm,
where (m, n) is the integer coordinate value of the corrected point.

Table 2. Some calculated distortion displacement (pixel).

distortion displacement of points
on distorted fringe-pattern

∆x(x, y) 10.92 (197,121) 11.06 (198,121) 11.20 (199,121)

∆y(x, y) 6.71 (197,121) 6.76 (198,121) 6.81 (199,121)

distortion displacement of points
on corrected fringe-pattern

∆′x(x + ∆x, y + ∆y) 10.92 (207.92,127.71) 11.06 (209.06,127.76) 11.20 (210.20,127.81)

∆′y(x + ∆x, y + ∆y) 6.71 (207.92,127.71) 6.76 (209.06,127.76) 6.81 (210.20,127.81)

distortion displacement of integer
points on corrected fringe-pattern

∆′x(m, n) 10.94 (208,128) 11.06 (209,128) 11.19 (210,128)

∆′y(m, n) 6.73 (208,128) 6.78 (209,128) 6.82 (210,128)

Step5: According to the distortion displacement map, image distortion correction can
be performed by employing the inverse mapping with the bilinear interpolation directly.

A numerical simulation of the distorted checkerboard is performed. Figure 7a shows
the distorted checkerboard image with the same distortion parameter of λ = −1 × 10−6 and
distortion center (273, 289). Figure 7b is the corrected result by the proposed method, where
the red points represent the corners. Figure 8 is the corresponding corners image, where the
red asterisks represent the corners of the distorted checkerboard image and the blue points
represent the corners of the corrected checkerboard image. The distortion displacement at
the left top point is ∆r = 27.30 pixel. The curvature radius of the red line formed by the
left points on the distorted checkerboard image is 2.2148 × 103 pixels, and that of the blue
line corresponding to the corrected checkerboard image is 1.4731 × 105 pixels. It means that
the circular arc is corrected to be straight.
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board image and the blue points representing the corners of the corrected checkerboard image. 
Figure 8. Corners image with the red asterisks representing the corners of the distorted checkerboard
image and the blue points representing the corners of the corrected checkerboard image. The
curvature radius of the red line is 2.2148 × 103 pixels, and that of the blue line is 1.4731 × 105 pixels.

4. Experiment and Results

An experimental setup shown in Figure 9 is employed to perform distortion correction
of a wide-angle lens. A flat-panel liquid crystal display (LCD) is used to display two sets of
longitudinal and transverse sinusoidal fringe-patterns with phase shift of 0, π/2, π, 3π/2.
The images of these fringe-patterns are captured by a charge-couple device (CCD) camera
with a wide-angle lens. The LCD plane can be regarded as an ideal plane, and the optical
axis of the camera is perpendicular to the LCD plane. The distorted fringe-patterns captured
by the camera are shown in Figure 10. Figure 11a,b show the intensity distributions of the
central row and column of the longitudinal and transverse fringe-patterns with a phase
shift of π/2, respectively.
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Figure 11. Intensity distribution of the distorted fringe-patters. (a) Intensity of the central row of the longitudinal fringe-
pattern with a phase shift of π/2; (b) Intensity of the central column of the transverse fringe-pattern with a phase shift
of π/2.

By performing the four-step phase-shifting analysis, the wrapped phases of the dis-
torted longitudinal and transverse fringe-patterns are obtained as shown in Figure 12a,b. It
shows that the phase of the distorted fringe-pattern can be demodulated well even when
the intensity distribution of the fringe-patterns is low within some areas. The correspond-
ing unwrapped phase can be obtained by performing the unwrapping algorithm. First, we
perform the partial derivative operation of the phase of the distorted longitudinal and trans-
verse fringe-pattern to get the instantaneous frequency fx and fy, respectively. The type
of distortion is determined as barrel distortion for the instantaneous frequency increases
along the radial direction. Then, the distortion center is decided at (1224, 1008) according
to the distribution of the instantaneous frequency fx and fy. Considering the fluctuation of
the analyzed phase caused by the noise in the experiment, we perform numerical linear
fitting to calculate the phase of the undistorted fringe-pattern by employing the central
25 points of the phase of the distorted longitudinal and transverse fringe-pattern respec-
tively, instead of performing the calculation by the instantaneous frequency and phase at
the distortion center. The points of {ϕx(x0 − 12, y0), · · · ϕx(x0, y0), · · · ϕx(x0+12, y0)} and{

ϕy(x0, y0 − 12), · · · ϕy(x0, y0), · · · ϕy(x0, y0+12)
}

are employed for calculation. The fun-
damental frequencies are fxo = fyo = 0.0133. The modulated phase distribution ∆ϕx(x, y)
and ∆ϕy(x, y) are obtained as shown in Figure 13a,b respectively. Figure 13c,d show the
numerical distortion displacement map ∆′x(m, n) and ∆′y(m, n) of size 2496 × 2984 pixels.
Finally, by employing the inverse mapping with the bilinear interpolation, the image
distortion correction can be achieved.
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Figure 13. Modulated phase and distortion displacement map. (a) ∆ϕx(x, y) of size 2048× 2448 pixels; (b) ∆ϕy(x, y) of size
2048× 2448 pixels; (c) ∆′x(m, n) of size 2496× 2984 pixels; (d) ∆′y(m, n) of size 2496× 2984 pixels.

Figure 14 shows the experiment of checkerboard images, where Figure 14a is the
distorted image and Figure 14b is the corrected image with the red points representing
the corners by the proposed model-free method. Figure 15 is the corresponding cor-
ners image, where the red asterisks represent the corners of the distorted checkerboard
image and the blue points represent the corners of the corrected checkerboard image.
The distortion displacement at the left top point is ∆r = 198.94 pixels. The curvature
radius of the red line formed by the left points on the distorted checkerboard image is
3.2457 × 103 pixels, and that of the blue line corresponding to the corrected checkerboard
image is 6.8656 × 104 pixels. The larger the curvature radius, the closer the curve is to the
straight line, i.e., the better the correction effect.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

  
(a) (b) (c) (d) 

Figure 13. Modulated phase and distortion displacement map. (a) ( , )x x yϕΔ  of size 2 0 4 8 2 4 4 8×  pixels; (b) ( , )y x yϕΔ  of 

size 2 0 4 8 2 4 4 8×  pixels; (c) ( , )x m n′Δ  of size 2 4 9 6 2 9 8 4×  pixels; (d) ( , )y m n′Δ  of size 2 4 9 6 2 9 8 4×  pixels. 

Figure 14 shows the experiment of checkerboard images, where Figure 14a is the dis-
torted image and Figure 14b is the corrected image with the red points representing the 
corners by the proposed model-free method. Figure 15 is the corresponding corners im-
age, where the red asterisks represent the corners of the distorted checkerboard image and 
the blue points represent the corners of the corrected checkerboard image. The distortion 
displacement at the left top point is 198.94rΔ =  pixels. The curvature radius of the red 
line formed by the left points on the distorted checkerboard image is 3  3.2457   10×  pixels, 
and that of the blue line corresponding to the corrected checkerboard image is 

4  6.8656   10×  pixels. The larger the curvature radius, the closer the curve is to the straight 
line, i.e., the better the correction effect. 

   
(a) (b) (c) 

Figure 14. Experimental results of checkerboard images. (a) Distorted checkerboard image of size 2 0 4 8 2 4 4 8×  pixels; (b) 
Corrected image of size 2 4 9 6 2 9 8 4×  pixels with the red points representing the corners by the proposed model-free 
method. The pixel count of the square within the central green rectangular region is 49,033 pixels, and that of the square 
within the external blue rectangular region is 48,460 pixels. (c) Corrected image by plumb-line method. The curvature 
radius of the red line is 4  3.2821   10×  pixels. The pixel count of the square within the central green rectangular region is 
46988  pixels, and that of the square within the external blue rectangular region is 57,490 pixels. 
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Figure 14. Experimental results of checkerboard images. (a) Distorted checkerboard image of size 2048× 2448 pixels; (b)
Corrected image of size 2496× 2984 pixels with the red points representing the corners by the proposed model-free method.
The pixel count of the square within the central green rectangular region is 49,033 pixels, and that of the square within the
external blue rectangular region is 48,460 pixels. (c) Corrected image by plumb-line method. The curvature radius of the red
line is 3.2821 × 104 pixels. The pixel count of the square within the central green rectangular region is 46988 pixels, and
that of the square within the external blue rectangular region is 57,490 pixels.
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Figure 15. Corners image with the red asterisks representing the corners of the distorted checkerboard
image and the blue points representing the corners of the corrected checkerboard image correspond-
ing to those shown in Figure 14a,b. The curvature radius of the red line is 3.2457 × 103 pixels, and
that of the blue line is 6.8656 × 104 pixels.

Firstly, we perform distortion correction by the plumb-line method with a single
parameter division model [12] for comparison. The red line shown in Figure 15 is em-
ployed for the estimation of the distortion parameter. The estimated λ is −2.1469 × 10−7.
According to Equation (11), the distortion displacement can be numerically calculated. The
corrected image is shown in Figure 14c, where the red points represent the corners. The
curvature radius of the red line is 3.2821 × 104 pixels, compared with the corresponding
curvature radius of 6.8656× 104 pixels by the proposed method. Moreover, the square
within the central region is not the same size as the square at the external region in the
corrected image as shown in Figure 14c. We select two white squares at the central and
external region to show the difference. The pixel count of the square within the central
green rectangular region is 46,988 pixels compared that of the square within the external
blue rectangular region being 57,490 pixels. By the proposed method, the pixel counts of
these two corresponding squares are 49,033 and 48,460 pixels as shown in Figure 14b. It
means that the estimated distortion lambda of the single parameter division model by this
characteristic circular arc does not fit for the whole image correction.

On the other hand, in order to make comparison with the method employing some
distortion models, we employ the method in [32] for distortion displacement detection. We
take the distortion center point as the origin of the coordinate and perform the numerical
curve fitting according to the discrete distortion displacement from the 1224th to the 2556th
point at the 1008th row by three different distortion models, which are an even-order
polynomial model with one and two distortion parameters and single parameter division
model. The even-order polynomial model [16] is described as:

ru = rd(1 + λ1rd
2 + λ2rd

4 + λ3rd
6 + · · · ). (12)

Figure 16 shows the curve fitting results, where the black line is the analyzed radial
distortion displacement, the green line is the curve fitting result of the even-order polyno-
mial model with

{
λ1 = 1.6186× 10−7}, the red line is that of the even-order polynomial

model with
{

λ1 = −2.1680× 10−8, λ2 = 2.2025× 10−13}, and the blue line is that of the
single parameter division model with

{
λ = −1.7198× 10−7}. We can find that the fitting

result by the even-order polynomial model with two distortion parameters is better.
Figure 17 shows the corresponding correction results of the checkerboard image re-

spectively, where Figure 17a,b are by the even-order polynomial model with one and two
distortion parameters, respectively, and Figure 17c is by the single parameter division
model. The curvature radius of the line formed by the left points on the corrected checker-
board image is 6.9263× 103 pixels, 2.3763× 104 pixels, and 1.1747× 104 pixels respectively
compared with the corresponding curvature radius of 6.8656× 104 pixels by the proposed
method. The pixel counts of the above-mentioned squares at the central and external
regions in the corrected image by the even-order polynomial model with two distortion
parameters are 48,094 and 48,694 pixels, as shown in Figure 17b. We can find that the curve
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fitting results rely on the distortion model greatly. Distortion determination may fail using
an unsuitable model or by estimation of too few distortion parameters. However, the more
distortion parameters there are, the more complicated the solution of the reverse process.

 

Figure 16. Radial distortion displacement and curve fitting results.
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Figure 17. Experimental results of checkerboard images. (a) Corrected image by a one-parameter even-order polynomial
model with a green line curvature radius of 6.9263× 103 pixels. (b) Corrected image by a two-parameter even-order
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(c) Corrected image by a single parameter division model with a blue line curvature radius of 1.1747× 104 pixels.

Furthermore, the indoor and outdoor scenes are also employed for the experiment
to show the practicality of the proposed method. Figures 18 and 19 show the correspond-
ing distorted and corrected image, respectively. The experimental results show that the
distorted images achieve distortion correction effectively by the proposed model-free
method.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 17 
 

 

checkerboard image is 36.9263 10×  pixels, 42.3763 10×  pixels, and 41.1747 10× pixels re-
spectively compared with the corresponding curvature radius of 46.8656 10×  pixels by 
the proposed method. The pixel counts of the above-mentioned squares at the central and 
external regions in the corrected image by the even-order polynomial model with two 
distortion parameters are 48,094 and 48,694 pixels, as shown in Figure 17b. We can find 
that the curve fitting results rely on the distortion model greatly. Distortion determination 
may fail using an unsuitable model or by estimation of too few distortion parameters. 
However, the more distortion parameters there are, the more complicated the solution of 
the reverse process. 

   
(a) (b) (c) 

Figure 17. Experimental results of checkerboard images. (a) Corrected image by a one-parameter even-order polynomial 
model with a green line curvature radius of 36.9263 10×  pixels. (b) Corrected image by a two-parameter even-order 
polynomial model with a red line curvature radius of 42.3763 10×  pixels. The pixel count of the square within the central 
green rectangular region is 48,094 pixels, and that of the square within the external blue rectangular region is 48,694 pixels. 
(c) Corrected image by a single parameter division model with a blue line curvature radius of 41.1747 10×  pixels. 

Furthermore, the indoor and outdoor scenes are also employed for the experiment to 
show the practicality of the proposed method. Figures 18 and 19 show the corresponding 
distorted and corrected image, respectively. The experimental results show that the dis-
torted images achieve distortion correction effectively by the proposed model-free 
method. 

  
(a) (b) 

Figure 18. Experimental results of the indoor scene. (a) Distorted image of size 2048 × 2448 pixels; 
(b) Corrected image of size 2496 × 2984 pixels. 

Figure 18. Experimental results of the indoor scene. (a) Distorted image of size 2048 × 2448 pixels;
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5. Discussion

Experimental correction results of the checkerboard image by different methods are
given for the comparison with the proposed model-free correction method. The original
straight line is distorted into a circular arc with a curvature radius of 3.2457× 103 pixels,
as shown in Figure 15. By the plumb-line method with the single parameter division
model, the phase analysis method by the even-order polynomial model with one and
two distortion parameters and the single parameter division model, and the proposed
model-free method, the curvature radiuses of the corresponding corrected lines on the
corrected checkerboard images are 3.2821× 104, 6.9263× 103,2.3763× 104,1.1747× 104,
and 6.8656× 104 pixels, respectively. The circular arc is corrected to be straighter by the
proposed method. It means that the proposed method provides a superior result, and it
shows that distortion determination may fail using an unsuitable model firstly. Moreover,
from the comparison of the curvature radius of the corresponding corrected lines, it seems
that the corrected result of the plumb-line method is better than that by the phase analysis
method by the even-order polynomial model with two distortion parameters. The reason
for this is that the distortion parameter estimation by the plumb-line method is performed
by the distorted circular arc at this position. However, for the corrected checkerboard
image by the plumb-line method, the square within the central region of size 46,988 pixels
is not the same as the square at the external region of size 57,490 pixels. It means that
the estimated distortion parameter does not fit for the whole image correction. Therefore,
according to the analysis result, we should take more characteristic points and lines or
some other more complicated algorithm or distortion models into account. However, the
more distortion parameters there are, the more complicated the solution of the reverse
process. For the proposed model-free method, all points of the distorted fringe-pattern are
employed for the establishment of the distortion displacement map, which demands none
of the distortion model. So, the image achieve distortion correction point by point with a
more effective and satisfactory result.

In the experiment of distortion displacement measurement, the errors caused by the
nonideal LCD plane and imperfect perpendicular arrangement of the optical axis of camera
and the LCD plane should be considered.

6. Conclusions

In this paper, a model-free lens distortion correction method based on the distortion
displacement map by the phase analysis of fringe-patterns is proposed. For the image
distortion correction, the most important thing is to decide the distortion displacement.
So, the mathematical relationship of the distortion displacement and the modulated phase
of the fringe-pattern is established in theory firstly. Then, two sets of longitudinal and
transverse fringe-patterns are employed for phase demodulation analysis to obtain the
distortion displacement ∆x and ∆y respectively by the phase-shifting method. The distor-
tion displacement map can be determined point by point for the whole distorted image
to achieve distortion correction. It would be effective even when the circular symmetry
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condition is not satisfied. Moreover, it detects the radial distortion type and the distortion
center automatically according to the instantaneous frequency, which is important in ob-
taining optimal result. The correction results of the numerical simulation, experiments,
and comparison show the effectiveness and superiority of the proposed method.

There are some prospects of our further works. Firstly, the relationship of the mod-
ulated phase and the distortion displacement described by the proposed method would
still hold for the mix distortion with the radial and tangential type. However, if the tan-
gential distortion is severe, the distortion center would not be the corresponding position
where the minimum or maximum instantaneous frequency appears. So, how to decide the
distortion center automatically in this case should be considered. Secondly, the optimal
frequency of measuring fringe-patterns for accurate modulated phase analysis should be
considered. Thirdly, the application of the proposed method should be implemented.
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