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Social information influences decision-making through an integration of information derived from individual experience with that derived from observing
the actions of others. This raises the question as to which extent one should utilize social information. One strategy is to make use of uncertainty
estimates, leading to a copy-when-uncertain strategy that weights information from individual and social sources based on their respective reliabilities.
Here, we investigate this integration process by extending models of Bayes optimal integration of sensory information to a social decision context. We
then use a key parameter of our behavioral model in conjunction with functional magnetic resonance imaging to identify the neural substrate that is
specifically linked to the fidelity of this integration process. We show that individuals behave near Bayes optimal when integrating two distinct sources
of social information but systematically deviate from Bayes optimal choice when integrating individual with social information. This systematic behav-
ioral deviation from optimality is linked to activity of left inferior frontal gyrus. Thus, an ability to optimally exploit social information depends on
processes that overcome an egocentric bias, and this regulatory role involves the left inferior prefrontal cortex. The findings provide a mechanistic
explanation for observations wherein individuals neglect the benefits from exploiting social information.
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INTRODUCTION

Our decisions benefit from a constant stream of social information

that includes the vicarious observation of the actions and outcomes

of actions of others (Rendell et al., 2011). This type of influence pro-

vides a rich underpinning to much of human culture (Dean et al.,

2012). Under a broad range of conditions, copying the actions of

others results in the adoption of advantageous behavioral traits

(Rendell et al., 2010). When observed actions, and their outcomes,

are closely conjoined these stimulus response contingencies seem to

be associatively learned using the very same prediction errors that

underpin associative learning for non-social stimuli (Behrens et al.,

2008; Burke et al., 2010; Heyes, 2012).

The influence of social information is often biased (Mesoudi et al.,

2006) and modulated by context and individual predisposition (Alevy

et al., 2007; Efferson et al., 2008; Toelch et al., 2009). This raises a

fundamental question as to how individuals weight social and individ-

ual information in a decision-making context. One proposal is that a

copy-when-uncertain strategy can account for situations wherein indi-

vidually acquired information is imprecise. An unbiased account of

this strategy suggests that each information source is weighted by its

corresponding reliability with distinct information sources subse-

quently combined in a Bayes optimal (BO) manner. This type of in-

tegration process is evident in multi modal cue integration (Ernst and

Banks, 2002; Alais and Burr, 2004; Knill and Pouget, 2004), as well as

in joint decision making where participants appear to use a confidence

metric to arrive at a BO response in perceptual tasks (Bahrami et al.,

2010) cf. (Koriat, 2012).

When individuals have to integrate social and individual informa-

tion, however, there appears to be a strong preference for individual

information (Eriksson and Strimling, 2009; Morgan et al. 2012; Heyes,

2012) even when social information use is advantageous. Here, we

propose that individuals over discount social information proportional

to the reliability of their own information to account for the uncer-

tainty inherent in social information (Rieucau and Giraldeau, 2011).

We provide an experimental test for such a modified copy-when-un-

certain strategy. The experimental manipulation of individual uncer-

tainty estimates and with that the hypothesized differential use of social

information opens up the possibility to index a neural basis for reg-

ulating the interplay of individual and social information. For this, we

use functional magnetic resonance imaging (fMRI) in conjunction

with behavioral modeling of player choices where the focus is on in-

dividual differences in social information use. In brief, our task

required players to solve a perceptual task where they had to guess

the location of a briefly flashed stimulus (Figure 1). In the first phase,

players could assess their own accuracy as well as the accuracy of two

players, one with high and one with low accuracy, through feedback as

to the correct location (after they made a choice). In a second phase,

conducted in an fMRI scanner, participants received information (in-

dividual and/or social) generated in the first phase and made a second

guess on the position of the stimulus but now without receiving feed-

back on its actual true position. We modeled players’ choices using BO

cue integration models. Parameters derived from these models were

then used as regressors in a model-based fMRI analysis to identify

brain areas critically linked to this modulation of choice.

MATERIALS AND METHODS

Participants

Twenty-nine participants (19–42 years, 17 females) were recruited via

posters and paid E25 each for participation. All were right-handed and

had normal or corrected-to-normal vision in the scanner. Participants

reported no previous history of neurological or psychiatric illness.

Before beginning, written instructions were given and participants
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were allowed to ask questions. Written informed consent was

obtained from all participants. The procedures and questionnaires

were approved by the Medical Ethics Review Committee of the

Charité University Hospital (protocol number EA4/042/12).

Experimental task

The task consisted of an initial training phase (20 trials) followed by

two experimental phases (120 and 240 trials) and lasted all in all ap-

proximately 2 h. The training and first phase involved guessing the

location of a stimulus that briefly flashed on the screen (Figure 1),

whereas in the second phase players had to make a second guess based

on their decisions from the first phase without seeing the stimulus

again. The second phase was conducted inside the scanner.

Participants were told via instructions that part of their remuneration

(up to E9) depended on their decisions in both phases with an

emphasis on the second phase (see Electronic Supplementary

Material (ESM)). After the experiments, all participants received a

fixed amount that amounted to almost the maximum possible.

Training phase and first experimental phase

Each trial commenced by subjects pressing a key. After 1 to 2 s,

a stimulus (filled circle) was briefly flashed (50 ms) on the outline

of a pre-drawn circle on a computer screen (Figure 1). Immediately

after stimulus presentation, distracter stimuli were displayed on

the outline of the empty circle for 3 s. During this interval, the

mouse pointer slowly moved from the center to the edge of

the screen. Players were instructed to keep the pointer in the center

of the screen or otherwise they would lose points. This manipulation

prevented players from executing a saccade to the target loca-

tion and fixate on the target location. Pilot studies showed that

this difficulty level ensured inter individual variability in player accur-

acy. Participants then had to make a guess where on the outer circle

the stimulus had appeared. Their guess was displayed as a small red

circle.

In the first experimental phase, players saw, additional to their

own choice, a green and a yellow circle representing the choices of

two other players that were recorded in a pilot. The other players were

selected from a pilot based on their accuracy with one player being

more accurate than the other. To assess their own and other

players accuracy, the subjects also saw a white circle representing

the actual position of the flashed stimulus. Social players were not

selected from the extremes of the available players from the pilot but

had distinct average accuracies with a standard deviation of 15 degrees

for one player and 7.3 degrees from the actual stimulus position

(Figure 1).

Phase 1

Phase 2

50 ms

2-3 s

~3-5 s

~2 s

Combination Condition

I:SHIGH

Observe stimulus

Distracter stimuli

Guess Location

See two other guesses
and real location

See information
from phase 1

Make a 
second guess

ITI: 4-8 s   Decision: 6 s

I:SLOW

SLOW:SHIGH

I:I

Fig. 1 In phase 1 (120 trials), players assessed their own accuracy and the accuracy of two other players in a perceptual task where they had to guess the position of a briefly (50 ms) flashed stimulus. After
observing the stimulus, several distracter stimuli appeared in quick succession in random locations along the circumference of the circle. During the whole time, players had to center their mouse pointer that
was slowly moved by the computer in one direction. After this, players had to guess the position of the previously presented briefly flashed stimulus. They also saw the decisions of the two other players as well
as the actual true position of the stimulus. In phase 2, there was no flashed target stimulus. Instead, players received information from phase 1. This was always a combination of two guesses consisting of
either individual information (red) or social information (green and yellow). This led to four conditions (60 trials each); individual information paired either with high (I:SHIGH) or low (I:SLOW) accuracy social
information, a condition with two social information pieces combined (SLOW:SHIGH) and a condition with only individual information (I:I). Based on this information, players then made a second guess (blue) as to
the position of the stimulus but in this phase received no feedback.
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Second experimental phase

This phase was conducted within the environment of an MRI scanner.

Each trial started after an inter trial interval during which only a small

cross was visible on the center of the screen. In this phase, players

viewed choices from trials from the first experimental phase in a ran-

domized order. In each trial, players received two pieces of information

to inform a second guess on where the stimulus was located but

received no feedback on the actual position of the stimulus. There

were four information pairs; their own guess paired with a guess of

either the low accuracy or high accuracy demonstrator (I:SLOW and

I:SHIGH). Players also played trials where they received information

from the two social players without having to integrate their own in-

formation (SLOW:SHIGH). They also received pairs that consisted of

their own guesses alone (I:I). This was rendered possible as we pre-

sented players with a set of 60 stimuli in the first experimental phase

that were in fact presented twice in randomized order. That is, that two

guesses for each player were available for each stimulus location.

Players were informed of this manipulation.

Thus, each condition entailed 60 trials. Players had 6 s to respond.

The inter trial intervals (mean¼ 5 s; Min¼ 4 s; Max¼ 8 s) and order of

trials were determined via randomization methods outlined in

(Henson, 2007) to maximize the variance in the blood-oxygenation-

level-dependent (BOLD) signal and at the same time reduce the dur-

ation of the experiment. In this phase, players used a response box to

choose the assumed position of the stimulus moving a blue circle along

the outer larger circle by using two of the response box buttons for left

and right movement and one button to select (Figure 1). The blue

circle started randomly near one of the two circles representing

the information from phase 1 so that the movement duration was

independent of condition. We compared reaction times between

conditions using a generalized linear mixed model assuming an error

structure from the gamma distribution family. We entered the four

conditions as well as the distance the blue dot was moved in a round as

dependent factors. We modeled player identity as a random effect on

the intercept.

Image acquisition and analysis

Whole brain T2*-weighted echo-planar imaging BOLD fMRI data were

acquired with a Siemens Trio 3T (Siemens Medical Solutions,

Erlangen, Germany) magnetic resonance scanner using a 12-channel

head matrix coil, with 33 slices recorded in descending order (64� 64

voxels; resolution 3 mm� 3 mm� 3.5 mm slices), a volume repetition

time (TR) of 2000 ms, an echo time of 30 ms. The fMRI data were

preprocessed and analyzed in an event-related manner with SPM8

software (Wellcome Trust Centre for Neuroimaging, London, UK).

Preprocessing consisted of slice-time correction, spatial realignment,

co-registration to the participants’ T1 image, normalization to

Montreal Neurological Institute coordinates via the new segment pro-

cedure in SPM8, and spatial smoothing with a Gaussian kernel with a

full width at half-maximum of 8 mm. We modeled each trial with a

boxcar function at the trial onset with reaction time as length of the

boxcar. For each of the four conditions, we created one regressor that

was convolved with a canonical hemodynamic response function. To

correct for motion-related artifacts, we modeled subject-specific re-

alignment parameters as nuisance regressors. Additionally, we explored

models where the distance between the two points was modeled as

parametric modulator to detect neuronal correlates of uncertainty dif-

ferences stemming from varying distance between the two points.

These models did not yield any additional insights.

Linear contrasts of regression coefficients were computed at the in-

dividual subject level and then taken to a group-level random-effects

analysis. We applied whole-brain family-wise error (FWE) correction

for multiple comparisons on the basis of random field theory. We used

a cluster FWE-corrected threshold of P < 0.05, on the basis of a voxel-

wise threshold of P < 0.001 uncorrected. Subjects were scanned in two

sessions of 120 trials interspersed by a T1-weighted structural scan.

Behavioral model fitting

We modeled player decisions in the second phase using maximum

likelihood methods to individual player data for decisions that

involved an integration of different information (excluding the I:I

condition). Players had two different types of information available

namely (i) the distance between the two displayed choices (Dini) and

(ii) their estimate of their own accuracy (accI) and the accuracy of the

social players (accS). On the basis of this information, they made a

second choice that usually deviated by a certain degree from their

initial choice. The models differ with regard to whether and how

these two information types are taken into account when determining

the degree to which a players’ decision deviated from the initial choice

(Dfin). We chose the position of the individual information as refer-

ence to determine how far the player moved his second choice for the

I:S conditions. For the SLOW:SHIGH condition, we used the position of

the low reliability player as reference. Note here that changing the

reference does not impact on the outputs of the modeling process.

We restricted our model analysis to cases where Dini was below 30

degrees which led to an exclusion of 5.5% of the trials from the mod-

eling process. Above this threshold, it was clear to players that only one

point was reliable and that the other point had to be an erroneous

choice stemming from a lapse of concentration during the game.

Players would thus not integrate but perform a two alternative

forced choice task. The cutoff also accounts for findings from percep-

tional cue integration that show a non-linear relationship between cues

when cues are too dissimilar [see robust weak fusion (Maloney and

Landy, 1989)].

In general, we distinguished two model families; first, models where

participants’ decisions were BO or modified BO and, second, models

where participants decided using an (unknown) heuristic. We had

already tested this set of models in a purely behavioral pilot study

with 23 participants and the same experimental setup where 18 out

of 23 participants used a (modified) BO strategy. This pilot was then

used to derive our hypotheses about the possible model space. An

additional behavioral control was conducted to ensure that results

were robust to the actual presence/absence of partners with regard to

the integration of social and individual information (see ESM).

BO models

This model family describes a BO strategy derived from work on the

integration of information in multi-modal perception tasks (Alais and

Burr, 2004). The deviation of final from initial choice is weighted (!)

by the accuracy of the available information (individual: accI, social:

accS) represented in the variance of the deviation between choice and

correct location during phase 1. All models are based on a pure BO

model where players correctly estimate the accuracy of the social in-

formation and decided in a BO manner (equation 1). Here, more

weight is given to individual information when the accuracy of the

social players is low and vice versa. For the three integration condi-

tions, ! changes based on the two information types involved

(equations 2–4)

Dfin ¼ ! � Dini ð1Þ

!I:SLOW ¼ accIð Þ= accI þ accSLOWð Þ ð2Þ

!I:SHIGH ¼ accIð Þ= accI þ accSHIGHð Þ ð3Þ
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!SLOW:SHIGH ¼ accSLOWð Þ= accSLOW þ accSHIGHð Þ ð4Þ

BO with individual and/or social error (BOmod)

We extended the BO model to allow for the possibility that players

estimated their own information and/or one of the social players sys-

tematically better or worse than the actual accuracy. This led to five

additional models where we allowed for a scaling of the accuracy of

one social player or the accuracy of an individual player or both. We

added one or two free parameters (ks, ki or both) that scaled the social

and individual accuracy (equation 1 with equation 5 through 7 for

scaling of individual and low accuracy social player). As it is possible

that players misjudged either of the social players, we calculated two

models where ks either modified the low accuracy social player or the

high accuracy player.

!I:SLOW ¼ ki � accIÞ= ki � accI þ ks � accSLOWð Þð ð5Þ

!I:SHIGH ¼ ki � accIÞ= ki � accI þ accSHIGHð Þð ð6Þ

!SLOW:SHIGH ¼ ks � accSLOWð Þ= ks � accSLOW þ accSHIGHð Þ ð7Þ

For modeling our fMRI data (discussed later), we chose the ki from

the BO model with an accuracy adjustment ks for the high accuracy

players (see ESM). That is, ks will enter in equation (6) and not into

equation (5).

Non-BO strategies

Accuracy independent deviation

Players engaging in this strategy will take the distance between the

two choices into account (Dfin), but not the different accuracies

of each player. This leads to higher deviations with higher distance

between the two choices independent of the accuracy (equation 8).

This model is equivalent to a linear regression modeling one

slope for the relationship between Dini and Dfin and omitting the

intercept.

Dfin ¼ � � Dini ð8Þ

Full model with three independent slopes

Some players reacted in all three conditions in a different manner

which made it difficult to ascertain which strategy they used. This

model captures this possibility and allows for three different slope

parameters (�) for each condition i (equation 9) again omitting an

intercept.

Dfin ¼ �i � Dini ð9Þ

Model selection was based on Bayesian information criterion (see

ESM for details). To link our modeling results to our fMRI analysis, we

entered the inverse of ki as a regressor in our 2nd level fMRI random

effects analysis. As we expected larger differences between the purely

social information (S:S) and mixed information type conditions (I:S)

for players neglecting social information, this transformation ensured

that high values entered in our random effects analysis were associated

with players who underexploited social information. We had no spe-

cific a priori hypothesis about the effect of ks and decided against an

exploratory analysis of correlated brain activations with different levels

of ks.

RESULTS

Players exploited information provided in phase 2 to increase their

accuracy (variance of deviation from the correct location) compared

with phase 1 [phase 1: median�median adjusted deviation

(MAD)¼ 80.56� 50.52; phase 2: median�MAD¼ 53.81� 23.18;

Wilcoxon-signed rank test: V¼ 407, n¼ 29, P < 0.001]. Reaction

times between conditions were significantly lower in the I:I condition,

but only by 0.5 s (Figure 2a). For each individual player, we derived the

BO response from their own accuracy during phase 1 and the social

players’ accuracy scores (equation 1). We then fitted separate linear

regression to each integration conditions (i.e. I:SLOW, I:SHIGH,

SLOW:SHIGH; equal to equation 9) with the difference between the

two stimuli on the circle as independent and the distance between

choice and reference stimulus after the decision as dependent variables.

When comparing these two measures, we found that players deviated

little from BO choice in the SLOW:SHIGH condition, whereas the ma-

jority of players underused social information in the I:S conditions

(Figure 2b). The suboptimal use of social information was correlated

with player’s own accuracy in phase 1 providing evidence that confi-

dence in individual information was indeed modulated by players’

estimation of their accuracy in phase 1 (Figure 2c).

Model results

For most players (n¼ 20), one model from the BO model set was

supported by the data over and above models based on non-

Bayesian strategies (BIC weights: BO models: mean� s.d.¼ 0.67� 0.4;

accuracy independent deviation: 0.12� 0.3; full model with three in-

dependent slopes: 0.2� 0.34). In eight cases, however, BO models were

not supported unequivocally, e.g. when players used a heuristic that

involved always placing their decisions at the midpoint between the

two circles, independent of condition. These players were excluded

from the subsequent fMRI analysis because their strategy deviated

from that of other players in a manner that precluded their contribu-

tion to addressing our main imaging questions. One additional player

was excluded because choices in the I:I condition were not consistently

placed in the middle between the two stimuli. For the other players, we

derived the estimate how strongly they modified their own accuracy of

ki from equations (5) and (6). In general, models confirmed that

players underused social information when integrating social and in-

dividual information with ki values significantly below one

(Median�MAD¼ 0.78� 0.56; Wilcoxon signed rank test; V¼ 128,

P¼ 0.041, n¼ 29). Here, low ki values denoted a bias for individual

information. As we were interested in a measurement of how strongly

players favored individual information, we used the inverse of ki (k�1
i )

as a covariate in our random effects fMRI model. This led to high

values denoting a strong neglect of social information. The appropri-

ateness of our choice of covariate is further supported by the strong

correlation between k�1
i and players’ accuracy scores in phase 1

(Kendall’s Rank correlation: T¼ 282, P¼ 0.002, �¼ 0.39, n¼ 29).

The model estimate for the bias for social information (ks) was not

significantly different from one (median�MAD¼ 1.0� 0.24;

Wilcoxon-signed rank test; V¼ 221, P¼ 0.95, n¼ 29). That is, our

model results uphold our observations that players decided near BO

in the S:S condition.

fMRI results

A comparison of activations associated with exploitation of individual

information alone (I:I) and conditions requiring integration of infor-

mation (I:S and S:S) revealed significant activation in precuneus, right

medial parietal lobe, dorsomedial prefrontal cortex, left dorsolateral

and bilateral ventrolateral prefrontal (VLPFC) regions (Table 1).

There were no significant differences above the threshold criterion in

activation between the I:S condition and the S:S condition indicating

that similar processes were involved in both conditions.

As we were primarily interested in the neural substrate moderating

the integration of individual and social information, we entered our
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estimate for how strongly individuals relied on individual information

(k�1
i ) as a covariate into the contrast S:S > I:S. Here, we found a sig-

nificant positive correlation with the level of differential activation in

the left inferior frontal gyrus (lIFG). That is, players with a relatively

lower activation in the lIFG showed less efficient integration of social

and individual information. One local maximum located to the pars

triangularis (MNI: �44 20 2; cluster size: 299; P¼ 0.033; FWE

corrected) and a second local maximum located to pars opercularis

(MNI: �52 14 14) (Figure 3). Note that this entire region showed a

partial overlap with the VLPFC, we found for the contrast between I:I

and the integration conditions (I:S and S:S).

DISCUSSION

Our findings highlight that subjects use a copy-when-uncertain strategy,

a fundamental form of social learning in animals (Kendal et al., 2005;

(a)

(c)

(b)

Fig. 2 (a) Players reacted faster in the I:I condition. A linear mixed model with error structure based on a gamma distribution with condition and the distance players moved the circle for their second choice as
fixed effects and player identity as random effect on the intercept showed a significant difference between the I:I and other conditions (contrast I:I < I:SLow: z¼ 14.43; P < 0.001; I:I < I:SHigh: z¼ 9.87;
P < 0.001; I:I < SHigh:SLow: z¼ 10.96; P < 0.001; n¼ 29). (b) Players deviated from BO choice in the conditions that included individual information. In contrast, they responded near BO in the condition where
social information alone was presented. Deviation from BO choice was determined by DBO¼ 0.5� [(slopeREG)/(slopeBOþ slopeREG)], with slopeREG derived from a linear regression for each condition (�i from
equation 8) and slopeBO calculated from the corresponding accuracies (! from equation 1) (n¼ 29). Boxplots in (a) and (b) show median and box ranges from first to third quartile. Whiskers cover an
additional 1.5 inter quartile range each. All data points outside this range (outliers) are represented as black dots. (c) Players deviate stronger from BO choice in the I:S conditions when they had achieved high
accuracy scores in phase 1 (Correlation between deviation from BO choice in phase 2 and accuracy in phase 1 via Kendall Rank correlation: I:SHIGH: T¼ 273, P¼ 0.008, �¼ 0.34; I:SLOW: T¼ 348, P < 0.001,
�¼ 0.71, n¼ 29). Left panel depicts I:SHIGH condition, right panel I:SLOW condition. Vertical lines illustrate the accuracy of the two social players.
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Galef et al., 2008) and humans (Weizsäcker, 2010; Morgan et al. 2012)

alike. Information from social sources alone is integrated in a near BO

manner with the weight given to each source scaling with its respective

reliability. Crucially, an integration of individual information and

social information deviates systematically from Bayes optimality,

with individual information consistently weighted more heavily

across the I:S conditions. Crucially, the over-proportional weight

given to individual information scaled with the accuracy of individual

information.

We deliberately deviated in our experimental design from 2AFC

tasks like informational cascades experiments (Bikhchandani et al.,

1992) where individual skill differences are minimal or not task rele-

vant. This enabled us to model the relationship between uncertainty,

variance of player decisions, and social information use to reveal a

clear relationship between the two in individual decisions. This em-

phasis on individual non-joint decision making distinguishes our ap-

proach from those that depend on verbally expressed confidence

statements that explicitly address metacognitive abilities (Bahrami

et al., 2010). Importantly, we established that deviation from Bayes

optimality is not due to task-specific constraints because players inte-

grated in a near BO manner when presented with information from

two social players. Moreover, a control experiment that involved direct

interaction of players and actual information from these players

showed behavioral results matching the findings from the fMRI ex-

periment (see ESM). That is, subjects in the scanner reacted similarly

to situations involving direct social interaction.

At the level of brain function, we identified patterns of activation

between a control condition (I:I) and conditions requiring integration

of two information sources that are engaged in social decision-making

tasks and in the exertion of cognitive control. For example, the pre-

cuneus is implicated in self-referential processing when comparing

oneself with others (Cavanna and Trimble, 2006) or when taking a

third person perspective (Vogeley et al., 2004). The dorsomedial pre-

frontal cortex is involved in social cognition across various tasks

(Amodio and Frith, 2006) while VLPFC and DLPFC are linked to

executive control of behavior (Tanji and Hoshi, 2008). At the same

time, there is no above threshold activation in areas typically associated

with mentalizing about others, for example the right temporoparietal

junction (Van Overwalle and Baetens, 2009). This raises the question

as to whether participants would have reacted differently when con-

fronted with computer-generated information instead of real partici-

pants’ decisions. Differences in behavior and neuronal activation

between conditions with human or computer agents arise when par-

ticipants make inferences about the goals of their partner (Rilling et al.,

2004). In our experiment, participants process observational informa-

tion that was obtained inadvertently without a signaling intention of

their partner or need to infer such an intention. In such cases, there is

no activation difference between conditions with a computer or

human actor with regard to the brain regions identified in our basic

contrast (Chaminade et al., 2012). Moreover, individuals often use

strategies toward a computer controlled agent that are similar to

those in real social contexts (Nass and Moon, 2000). It is thus likely

that a computer control would not yield qualitatively different results.

To ascribe functional specificity to the observed brain activation

patterns, we adopted the strategy of exploiting individual differences

in player accuracy that arose out of varying systematic uncertainty

estimates between individuals. As all players integrated two social in-

formation sources in an almost BO fashion, we expected less engage-

ment of regions responsible for the integration process in the I:S

relative to the S:S condition for players who neglected social informa-

tion (high individual accuracy). This allowed us to identify lIFG as the

sole region modulated by the degree that players overvalued their own

information relative to the social information. Similar levels of activity

were seen in this region when players integrated individual and social

information in an optimal manner while for players who neglected

social information there was less engagement of this region. This sug-

gests that this region exerts a regulatory role wherein greater engage-

ment is associated with increasingly efficient integration of social and

individual information. This fits with its known involvement in pro-

cesses such as control of memory retrieval or cue conflict in working

memory (Badre and Wagner, 2007) and specifically for representing

the ambiguity of a cue (Bach et al., 2009). This region is also implicated

in response inhibition, evident for example in patients with lesions to

this regions who manifest impaired performance in go/no go tasks

Table 1 Conditions involving social information showing greater activation than the individual information alone condition (P < 0.001 on voxel level and P < 0.05 FWE error corrected on
cluster level

Cluster Peak Regions

P FWE-corr Cluster size T statistic x y z L/R

<0.0001 3159 6.68 8 �66 38 R Precuneus
6.30 2 �58 44 R Precuneus
5.73 6 �54 60 R Precuneus

0.00036 649 6.48 �38 22 22 L IFG (p. Triangularis)
5.24 �30 24 4 L Insular cortex
5.10 �34 18 8 L Insular cortex

0.01529 317 6.10 52 �62 14 R Middle temporal gyrus
0.04154 242 5.71 �46 �70 16 L Middle occipital gyrus

5.31 �40 �76 18 L Middle occipital gyrus
4.33 �34 �70 22 L Middle occipital gyrus

<0.0001 1807 5.62 10 10 52 R SMA
5.20 36 16 24 R IFG (p. Triangularis)
5.17 44 28 26 R IFG (p. Triangularis)

<0.0001 793 5.38 �32 �2 54 L Precentral gyrus
4.86 �22 0 62 L Superior frontal gyrus
4.52 �42 0 36 L Precentral gyrus

0.00064 593 5.22 30 26 2
5.10 30 40 12
5.09 32 42 20 R Middle frontal gyrus

Coordinates in MNI space. SMA, supplementary motor area.
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(Swick et al., 2008). Moreover, the IFG in conjunction with the sub-

thalamic nucleus is critical for instrumental control to overrule

Pavlovian influences (Guitart-Masip et al., 2012).

In our study, the IFG is engaged if individual information is not

overvalued relative to social information where it may exert an inhibi-

tory influence on responses based on individual information alone.

Thus, engagement of this region may allow participants to appropri-

ately exploit information from other sources so as to make an im-

proved, near optimal choice. This interpretation is consistent with

findings for a mediating role of the lIFG in control processes when

subjects need to decide between healthy and unhealthy food options

(Hare et al., 2009). One upshot is that the brain areas we highlight as

being recruited for integration of social information are in fact com-

ponents of a network that is fundamental to decision-making under

uncertainty (Platt and Huettel, 2008; Bach and Dolan, 2012).

In conclusion, we show that individuals combine distinct sources of

social information in a Bayes optimally manner, but when required to

integrate individual and social information they are biased toward a

reliance on individual information when the latter is highly accurate.

In other words in the latter context, there is a strong prior on indi-

vidual information. Theoretical work on decision-making under un-

certainty shows strong priors are to be expected when the cost for

making a mistake outweighs the benefit of improving the decision

(Trimmer et al., 2011). In our case, the benefits in refining a decision

when an individual decision is already accurate are comparably low,

such that taking social information into account carries unnecessary

risks. This accords with theoretical accounts on the evolution of social

learning where social information, even though available at no cost,

embodies a degree of hazard such as the risk of being outdated in

variable environments (Kameda and Nakanishi, 2003; Rieucau and

Giraldeau, 2011). The intriguing possibility is that humans have

evolved stronger priors for individual than social information because

a slight overestimation of individual skill and prowess is highly adap-

tive across a wide range of conditions (Johnson and Fowler, 2011).
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