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Abstract: To be detectable in space via radio astronomy, molecules should have a permanent dipole
moment. This is the plausible reason why HCnH chains are underproportionally represented in the
interstellar medium in comparison with the isoelectronically equivalent HCnN chain family, which is
the most numerous homologous series astronomically observed so far. In this communication, we
present results of quantum chemical calculations for the HCnH family at several levels of theory:
density functional theory (DFT/B3LYP), coupled-cluster expansions (ROCCSD(T)), and G4 composite
model. Contradicting previous studies, we report here that linear HCnH– anion chains with sizes of
astrochemical interest are unstable (i.e., not all calculated frequencies are real). Nonlinear cis and
trans HCnH– anion chains turn out to be stable both against molecular vibrations (i.e., all vibrational
frequencies are real) and against electron detachment (i.e., positive electroaffinity). The fact that the
cis anion conformers possess permanent dipole is the main encouraging message that this study is
aiming at conveying to the astrochemical community, as this makes them observable by means of
radio astronomy.

Keywords: astrochemistry; astrophysics; interstellar medium; carbon chains; polyynes; anions;
quantum chemistry; radio astronomy; rovibrational spectroscopy; cis and trans isomers

1. Introduction

Although only representing a small fraction of the extraterrestrial matter, astronomical
molecules are very interesting for space sciences because they provide valuable information
on the physical and chemical conditions as well as the time evolution of the environments
where they are detected. Searching for and confirming the presence of new molecular
species plays a role of paramount importance in deepening understanding of astrochemical
evolution in the interstellar and circumstellar medium [1].

According to the 2018 census [2], 204 molecules were astronomically detected. Out of
them, carbon-based chains represent an important class. With seven members astronomi-
cally observed (HCN [3], HC2N [4], HC3N [5], HC4N [6], HC5N [7], HC7N [8], HC9N [9]),
the HCnN chains form the most numerous homologous series detected so far. This is in con-
trast to the case of the isoelectronically equivalent HCnH chains [10–16], out of which only
three members (n = 2, 4, 6) were astronomically detected: acetylene H – C ––– C – H [17,18],
diacetylene H – C ––– C – C ––– C – H [19], and triacetylene H – C ––– C – C ––– C – C ––– C – H [19].

However, based on chemical intuition and substantiated below (see discussion related
to Figure 1), it would be completely implausible to claim that members of the HCnN family
are more numerous in nonterrestrial environments than members of the HCnH family.
Rather, this underproportional representation of the HCnH chains found so far in space
relative to the HCnN chains should be related to the complete different difficulty facing
HCnH detection versus HCnN detection in space.

Possessing permanent dipole, linear HCnN chains can be detected by radio astronomy,
which is par excellence the method to observe extraterrestrial molecules that marked the
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boom in reporting new molecules in space since the early 1960s [2]. According to existing
studies—comprising not only neutral HCnH0 [10,20] but also cation HCnH+ [21,22] and
anion HCnH– species [23–25]—HCnH chains are linear. If they are linear (more precisely,
centrosymmetric), they have zero dipole moments. Such chains cannot be detected via
radio astronomy.

Still, are all HCnH– chains with molecular sizes of astrochemical interest really linear
and centrosymmetric? This was the fundamental question that triggered the investigation
whose results will be presented below, and emphasizing anions is part of our recent [26–30]
and ongoing effort to understand their role in astrochemistry, which is claimed to even
compete with that of the parent neutrals [29,31–33].

The prediction of nonlinear HCnH– anion chains stable against both molecular vibra-
tions (i.e., computed vibrational frequencies are all real) and (excepting n = 4) electron
detachment (i.e., positive electroaffinity EA > 0) and possessing permanent dipole mo-
ments (µ 6= 0) is the main finding reported here. This is the encouraging new message that
we aim at conveying to the astrochemical community. To better emphasize it, a series of
technical details will be skipped here and deferred to a longer write-up that follows.

Figure 1. Enthalpies of formation ∆ f H0
0 of some astronomically observed HCnN chains are larger

than enthalpies of formation of shorterHCnH chains not yet detected in space. On this basis, there is
no reason to assume that HCnH species are less numerous in space than HCnN species, although, as
visible in this figure, HCnN molecules already astronomically observed are much more numerous
than HCnH molecules.

2. Methods

All quantum chemical calculations in conjunction with this study were done using the
GAUSSIAN 16 [34] suite of programs on the bwHPC platform [35].

The enthalpies of formation ∆ f H0
0 and cis-trans splitting (see Section 3.3) were com-

puted by means of the G4 composite model [36,37]. Recall that in contrast to “simple”
models wherein the total electronic energy at frozen geometry—often obtained from opti-
mization at another/lower level of theory (e.g., DFT with smaller basis sets)—is computed
by means of a given method (e.g., CCSD(T) and larger basis sets), to achieve high (“chemi-
cal”) accuracy, “composite” models (also referred to as compound model chemistries [38])
combine several results obtained via ab initio high-level methods with smaller basis sets
with lower-level (DFT) theories using larger basis sets. Within G4, optimization and vibra-
tional frequency calculations are done at the DFT/B3LYP/GTBas3 [34] level. The pertaining
zero point energy corrected using an adequate scaling factor as well as thermal correc-
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tions to enthalpy and Gibbs free energy are added to the electronic energy estimated at
frozen geometry by combining various ab initio methods and basis sets (GAUSSIAN key-
words [34] CCSD(T), E4T, FrzG4)/GTBas1, MP4 = FrzG4/GTBas2, MP4 = FrzG4/GTBas3,
MP2 = Full/GTLargeXP, HF/GFHFB1, HF/GFHFB2) to obtain values of the total energy,
enthalpy, and Gibbs free energy. These estimates turn out to be more accurate than the
most elaborate and computationally demanding “simple” ab initio methods (including
coupled-cluster (CC) and quadratic configuration interaction (QCI) expansions with singles,
doubles and triples corrections (CCSD(T) and QCISD(T), respectively) [36,37].

The values of the adiabatic electron attachment energy EA including corrections
due to zero point energy (ZPE) adjusted by means of adequate scaling factors, as stan-
dard in compound model chemistries [34,38], were estimated as energies of reaction
HCnH0 + e– → HCnH– at zero temperature, which obviates issues related to the so-called
“ion convention” or “electron convention” for the charged species [39,40].

For consistency with previous and ongoing work on related systems [20,27,29,41–46]
and in order to handle shorter and longer molecules on the same footing, all single-point
quantum chemical calculations were carried out at the ROCCSD(T) level of theory, wherein
restricted open-shell coupled-cluster expansions include single and double excitations as
well as perturbative corrections due to triple excitations [47]. All molecular geometries
utilized in these single-point calculations were optimized by means of the three parameter
B3LYP hybrid DFT/HF exchange correlation functional [48–51] and 6-311++G(3df,3pd) ba-
sis sets [52,53]; more precisely, restricted RB3LYP for closed shell and unrestricted UB3LYP
for open shell species. See Appendix B for further details.

3. Results and Discussion
3.1. Enthalpies of Formation: HCnH versus HCnN

In vein with those noted in the Introduction, let us start by comparing the values of
the enthalpies of formation of the HCnH chains with those of the HCnN chains. Numerical
results obtained using the G4 composite model are collected in Table 1 and depicted in
Figure 1. As visible in Figure 1, by and large, neutral HCnN and HCnH chains possess
comparable enthalpies of formation ∆ f H0

0 . Importantly, some astronomically detected
members of the HCnN family have values of ∆ f H0

0 larger than values for shorter members
of the HCnH family not yet detected in space. With the grain of salt that formation
mechanisms and kinetics are more important for the interstellar synthesis than in laboratory
synthesis, the trend seen in Figure 1—corroborated with the important fact that, after all,
the HCnN synthesis requires the presence of extra nitrogen atoms—does by no means
substantiate any claim on HCnN members more numerous in space than HCnH members.
HCnH’s unfavorable balance in space should not be sought in the production mechanism
but rather in the lack of a dipole moment.

Table 1. Enthalpies of formation of the HCnH and HCnN chain families computed using the G4
composite model. All values are in kJ/mol.

Number of Carbon Atoms HCnH HCnN

1 128.668 389.195
2 479.383 228.807
3 370.720 544.779
4 659.255 457.818
5 597.481 729.829
6 863.361 679.914
7 822.640 938.613
8 1080.580 905.162
9 1043.330 1153.130
10 1298.220 1124.610
11 1266.560 1375.680
12 1525.320 1347.420
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3.2. Stable HCnH– Anion Chains with Astrochemically Interesting Sizes Are Nonlinear

Insight gained in conjunction with our recent investigations of astrochemically relevant
carbon chain anions [26–29] made us skeptical that shorter HCnH– anion chains possess
a stable linear geometry, as claimed earlier [23]. Our extensive attempts to optimize
HCnH– anions imposing strict linear conformation confirmed previous results reported
for sizes n ≥ 9 [24,25]; we also found that irrespective whether n is odd or even, such
sufficiently long HCnH– anions, linear and invariant under spatial inversion, are stable
against molecular vibrations, i.e., all calculated frequencies were real.

However, our calculations disagreed with previous work [23] claiming that HC4H– ,
HC6H– , and HC8H– are linear and possess a 2 Πu, 2 Πg, and 2 Πu ground state, respec-
tively. Whether even (n = 4k, n = 4k + 2) or odd (n = 2k + 1), we found that strictly
linear structures at n ≤ 8 are unstable. Optimization of these anions constrained to be
linear invariably ended with molecular conformations having exactly two imaginary fre-
quencies. These two imaginary frequencies correspond to the in-phase and out-of-phase
superposition of two vibrational modes, namely the two H – C – C bending modes of the
chain ends. In view of this state of affairs, it was not at all surprising to find out that
genuine anions’ local energy minima (i.e., all vibrational frequencies real) correspond to
cis and trans conformers wherein the two chain ends are bent, as visualized in Figure 2.
Full information on the optimized cis and trans anions is presented in Tables A2–A6 of
Appendix B.

Figure 2. In contrast to the linear conformers, which are unstable against H – C – C bending vibrations
at the two molecular ends, cis and trans HCnH– anion isomers with n ≤ 8 correspond to local
energy minima.

With regard to the specific cases considered in ref. [23], let us mention that at the
UB3LYP/6-311++G(3df,3pd) level of theory, we found that the (unstable) linear HC4H– ,
HC6H– , and HC8H– conformers lie at 520 meV, 229 meV, and 60 meV above the stable
nonlinear conformers. These values are much larger that the cis-trans energy splittings
∆cis−trans presented in Table 3.

The foregoing analysis made it clear that nonlinear cis and trans anions are “stable”
in the sense that they correspond to local energy minima. Equally important for the
anions’s “stability” is whether they are also stable against electron detachment, i.e., whether
their electroaffinity EA (difference between the total energy of the neutral and the total
energy of the anion) is positive. Inspection of Table 2 reveals that with one exception,
all computed values of EA computed by us are positive. The exception in question is
HC4H; this is not surprisingly for small closed-shell molecular species whose anions
are rarely stable. Still, given the fact that diacetylene (HC4H) was already detected in
space [19], HC4H– ’s instability against electron detachment is not so “dramatic” from
an astrochemical perspective.
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Table 2. Adiabatic electron attachment energies EA computed using the G4 composite model and via
ROCCSD(T) at the B3LYP/6-311++G(3df,3pd) minima. Values in eV. Notice that except for HC4H– ,
all the other HCnH– listed possess positive EAs and are therefore stable against electron detachment.

Molecule G4 ROCCSD(T)

HC3H 1.185 1.047
HC4H −0.355 −0.736

HC5H 1 1.531 1.420
HC6H 0.298 0.195

HC7H 2 1.935 2.029
HC8H 0.805 0.667

1 Ref. [54] reported EA = 1.51 eV at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G level of theory. 2 Ref. [55]
reported EA = 1.86 eV at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G level of theory.

3.3. Relevant Properties of Cis and Trans Anions

To obtain the cis-trans energy splitting, we estimated ∆cis−trans ≡ ∆ f H0
0,cis

(
HCnH−

)
−

∆ f H0
0,trans

(
HCnH−

)
via the G4 composite model. Inspection of the values thus obtained,

which are presented in Table 3 and Figure 3, reveals that pragmatically speaking, none
of the cis-trans energy splitting significantly differs from zero; all values listed in Table 3
are definitely smaller than the “chemical accuracy” of ∼1 kcal/mol. Consequently, it is
reasonable to assume that if present, cis and trans conformers of HCnH– anion chains
coexist in extraterrestrial environments.

Figure 3. Because the cis-trans energy splitting ∆cis−trans ≡ ∆ f H0
cis
(
HCnH−

)
− ∆ f H0

trans
(
HCnH−

)
computed via G4 as enthalpy of isomerization at zero temperature is very small, cis and trans anion
conformers are expected to coexist in the interstellar medium.

Putting it better, one can rephrase as follows: cis HCnH– anion conformers can be
present in the interstellar medium even if they are slightly higher in energy than their
trans counterparts. We said “better” because from the present standpoint, cis anions have
a paramount advantage. While the (nearly) centrosymmetric trans anions have (nearly)
zero dipole moments, dipole moments of cis HCnH– anions are substantial; see Table 4
and Figure 4. Above, we wrote “nearly” because the (inherently finite) numerical accuracy
prevents us to say whether—in contrast with the well-resolved C2v symmetry of the cis
anions—the trans anions are strictly C2h symmetric or only approximately.
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Table 3. Cis-trans anion energy splitting ∆cis−trans estimated within the G4 composite model. Because
all these values are smaller than the “chemical accuracy” of ∼1 kcal/mol, one can expect that cis and
trans HCnH anions coexist in space.

Anion kcal/mol meV

HC3H– 0.505 21.9
HC4H– 0.178 7.7
HC5H– −0.260 −11.3
HC6H– 0.188 8.2
HC7H– 0.494 21.4
HC8H– −0.217 −9.4
HC9H– −0.668 29.0

Table 4. Dipole moment µ of anion’s cis isomers computed via single-point ROCCSD(T) calculations
at the geometry optimized via UB3LYP/6-311++G(3df,3pd).

Cis Anion Dipole Moment (Debye)

HC3H– 3.061
HC4H– 2.385
HC5H– 2.313
HC6H– 2.310
HC7H– 1.801 1

HC8H– 1.752
1 Ref. [55] reported µ = 1.63 D at the B3LYP/aug-cc-pVDZ//B3LYP/6-31G level of theory.

Figure 4. Cis HCnH– anions with n ≤ 8 possess reasonably large permanent dipole moments, and
this can make them observable via rovibrational spectroscopy.

We do not want to end this section before mentioning that although not very well
separated in energy, cis and trans anion isomers have properties sufficiently different from
each other enabling experiments to distinguish between them. As illustration, infrared
spectra of cis isomers are depicted along with those of trans isomers in Figure A2 of
Appendix C. To understand that choosing above infrared spectra as a specific example was
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not coincidental, let us note that the detection of HC4H in ISO observations of CRL 618 [19]
relied on laboratory information on the bending mode ν8 = 627.89423(10) cm−1 [56].

Parenthetically, the difference between the aforementioned value of ν8 with so many
digits after the comma and its counterpart at the B3LYP/6-311++G(3df,3pd) level of theory
computed by us is ν8 = 624.650 cm−1, which may give a (non-astro-)chemist who is not up
with astrophysical ways a flavor that only a perfect match between laboratory spectra and
observed lines can give a reliable astronomical identification.

4. Conclusions

Contrary to previous literature reports [23], we demonstrated that stable HCnH–

anion chains with astrochemically sizes (n ≤ 8) not too large to be accessible via chemi-
cal synthesis in extraterrestrial environments are nonlinear. They can be astronomically
observed via radio astronomy because they possess sufficiently large permanent dipoles
(cf. Table 4) and electron detachment energies (cf. Table 2).

We do hope that this finding will stimulate laboratory experiments aiming at the
accurate characterization of HCnH– anions as a necessary prerequisite for the proper
assignment of extraterrestrial signals associated with rovibrational lines. Because any
calculation, even obtained with the most sophisticated quantum chemical methods, is
unable to give a rovibrational spectrum precise enough to generate a detection in space,
it can only help (though it is a lot!) with the laboratory interpretation of an experimental
spectrum, which, then, can be used for astronomical observations.

Funding: In the initial stage, this research was funded by the German Research Foundation (DFG
grant BA 1799/3-2). Computational support from the state of Baden-Württemberg through bwHPC
and the German Research Foundation through Grant No. INST 40/575-1 FUGG (bwUniCluster 2.0,
bwForCluster/MLS&WISO 2.0, and JUSTUS 2.0 cluster) is gratefully acknowledged.

Data Availability Statement: The data that support the findings of this study are available from the
author upon reasonable request.

Conflicts of Interest: No conflict of interest to declare.

Appendix A

Figure A1. Enthalpies of formation ∆ f H0
0 presented in Figure 1 are redrawn here to allow direct

comparison between the isoelectronic chains HCn+1H and HCnN.
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Table A1. Enthalpies of formation of the isoelectronic HCn+H and HCnN chain species computed
using the G4 composite model. All values are in kJ/mol.

n HCn+1H HCnN

0 128.668
1 479.383 389.195
2 370.720 228.807
3 659.255 544.779
4 597.481 457.818
5 863.361 729.829
6 822.640 679.914
7 1080.580 938.613
8 1043.330 905.162
9 1298.220 1153.130
10 1266.560 1124.610
11 1525.320 1375.680
12 1347.420

Appendix B

Except for HC4H– —which is less interesting in view of its instability against electron
detachment (EA < 0, cf. Table 2)—we report below the Cartesian coordinates of the
presently considered cis and trans anions; see Tables A2–A6.

For open shell optimization, we carried out unrestricted calculations UB3LYP because,
according to our experience [26], spin contamination has a negligible impact on the DFT
estimates. This obviates the need for restricted open shell ROB3LYP calculations. This
sharply contrasts the coupled-cluster (CC) estimates, for which we employed restricted
open shell ROCCSD(T) methods; similar to previous studies of related species [26], the
impact of spin contamination turned out again to be important, which is a fact that makes
less computationally demanding unrestricted UCCSD(T) methods inadequate.

Table A2. Cartesian coordinates in Å of the cis and trans HC3H– anion conformers optimized at the
UB3LYP/6-311++G(3df,3pd) level of theory. Subscripts “before” and “after” label the values of the
total spin before and after annihilation of the first spin contaminant.

HC3H– cis Trans〈
S2〉

before 0.7692 0.7692〈
S2〉

after 0.7502 0.7502

Atom X Y Z X Y Z

H 0.000000 0.566638 −2.029360 0.000000 −0.431664 −2.096631
C 0.000000 −0.226564 −1.293825 0.000000 0.267660 −1.271822
C 0.000000 −0.080148 −0.000000 0.000000 −0.000000 0.000000
C 0.000000 −0.226564 1.293825 0.000000 −0.267660 1.271822
H 0.000000 0.566638 2.029360 0.000000 0.431664 2.096631
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Table A3. Cartesian coordinates in Å of the cis and trans HC5H– anion conformers optimized at the
UB3LYP/6-311++G(3df,3pd) level of theory. Subscripts “before” and “after” label the values of the
total spin before and after annihilation of the first spin contaminant.

HC5H– cis Trans〈
S2〉

before 0.7791 0.7794〈
S2〉

after 0.7505 0.7505

Atom X Y Z X Y Z

H 0.000000 0.325138 −3.463683 0.000000 −0.389640 −3.424168
C 0.000000 −0.217856 −2.538309 0.000000 0.241108 −2.553977
C 0.000000 0.034756 −1.295056 0.000000 0.047397 −1.297268
C 0.000000 0.154378 0.000000 0.000000 −0.000000 −0.000000
C 0.000000 0.034756 1.295056 0.000000 −0.047397 1.297268
C 0.000000 −0.217856 2.538309 0.000000 −0.241108 2.553977
H 0.000000 0.325138 3.463683 0.000000 0.389640 3.424168

Table A4. Cartesian coordinates in Å of the cis and trans HC6H– anion conformers optimized at the
UB3LYP/6-311++G(3df,3pd) level of theory. Subscripts “before” and “after” label the values of the
total spin before and after annihilation of the first spin contaminant.

HC6H– cis Trans〈
S2〉

before 0.7660 0.7660〈
S2〉

after 0.7502 0.7501

Atom X Y Z X Y Z

H 0.000000 0.509362 −4.068471 0.000000 −0.429635 −4.080898
C 0.000000 −0.122855 −3.197356 0.000000 0.179751 −3.193660
C 0.000000 0.007350 −1.948075 0.000000 0.017416 −1.948151
C 0.000000 −0.019817 −0.627139 0.000000 0.011855 −0.626980
C 0.000000 −0.019817 0.627139 0.000000 −0.011855 0.626980
C 0.000000 0.007350 1.948075 0.000000 −0.017416 1.948151
C 0.000000 −0.122855 3.197356 0.000000 −0.179751 3.193660
H 0.000000 0.509362 4.068471 0.000000 0.429635 4.080898

Table A5. Cartesian coordinates in Å of the cis and trans HC7H– anion conformers optimized at the
UB3LYP/6-311++G(3df,3pd) level of theory. Subscripts “before” and “after” label the values of the
total spin before and after annihilation of the first spin contaminant.

HC7H– cis Trans〈
S2〉

before 0.7870 0.7871〈
S2〉

after 0.7509 0.7509

Atom X Y Z X Y Z

H 0.431660 0.000000 −0.921860 0.000000 −0.330843 −4.787382
C −0.017204 0.000000 0.047244 0.000000 0.144397 −3.832244
C 0.160726 0.000000 1.283517 0.000000 0.020735 −2.589456
C 0.226367 0.000000 2.596912 0.000000 0.016697 −1.275568
C 0.291294 0.000000 3.870346 0.000000 −0.000000 −0.000000
C 0.367671 0.000000 5.146221 0.000000 −0.016697 1.275568
C 0.445956 0.000000 6.455698 0.000000 −0.020735 2.589456
C 0.395178 0.000000 7.708239 0.000000 −0.144397 3.832244
H 0.997605 0.000000 8.593355 0.000000 0.330843 4.787382
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Table A6. Cartesian coordinates in Å of the cis and trans HC8H– anion conformers optimized at the
UB3LYP/6-311++G(3df,3pd) level of theory. Subscripts “before” and “after” label the values of the
total spin before and after annihilation of the first spin contaminant.

HC8H– cis trans〈
S2〉

before 0.7695 0.7695〈
S2〉

after 0.7502 0.7502

Atom X Y Z X Y Z

H 0.000000 0.395448 −5.421548 −0.570041 0.000000 −0.903775
C 0.000000 −0.095135 −4.472275 0.000000 0.000000 0.000000
C 0.000000 0.012485 −3.233941 0.000000 0.000000 1.242922
C 0.000000 −0.007051 −1.908770 0.134072 0.000000 2.561466
C 0.000000 −0.010887 −0.656694 0.247551 0.000000 3.808382
C 0.000000 −0.010887 0.656694 0.364166 0.000000 5.116584
C 0.000000 −0.007051 1.908770 0.477517 0.000000 6.363543
C 0.000000 0.012485 3.233941 0.611671 0.000000 7.681980
C 0.000000 −0.095135 4.472275 0.611324 0.000000 8.925066
H 0.000000 0.395448 5.421548 1.183595 0.000000 9.827551

Appendix C

Figure A2. Differences between infrared spectra of cis and trans HCnH– anion conformers visible
here make it possible to experimentally differentiate between them. Curves obtained by using
a Lorentzian convolution of halfwidth of 5 cm−1. (a) HC3H−; (b) HC5H−; (c) HC6H−; (d) HC7H−.
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