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Abstract

Protected areas (PAs) are a cornerstone of global efforts to shield wildlife from anthropogenic impacts, yet their
effectiveness at protecting wide-ranging species prone to human conflict – notably mammalian carnivores – is increasingly
in question. An understanding of carnivore responses to human-induced and natural changes in and around PAs is critical
not only to the conservation of threatened carnivore populations, but also to the effective protection of ecosystems in
which they play key functional roles. However, an important challenge to assessing carnivore communities is the often
infrequent and imperfect nature of survey detections. We applied a novel hierarchical multi-species occupancy model that
accounted for detectability and spatial autocorrelation to data from 224 camera trap stations (sampled between
October 2006 and January 2009) in order to test hypotheses about extrinsic influences on carnivore community dynamics
in a West African protected area (Mole National Park, Ghana). We developed spatially explicit indices of illegal hunting
activity, law enforcement patrol effort, prey biomass, and habitat productivity across the park, and used a Bayesian model
selection framework to identify predictors of site occurrence for individual species and the entire carnivore community.
Contrary to our expectation, hunting pressure and edge proximity did not have consistent, negative effects on occurrence
across the nine carnivore species detected. Occurrence patterns for most species were positively associated with small prey
biomass, and several species had either positive or negative associations with riverine forest (but not with other habitat
descriptors). Influences of sampling design on carnivore detectability were also identified and addressed within our
modeling framework (e.g., road and observer effects), and the multi-species approach facilitated inference on even the
rarest carnivore species in the park. Our study provides insight for the conservation of these regionally significant carnivore
populations, and our approach is broadly applicable to the robust assessment of communities of rare and elusive species
subject to environmental change.
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Introduction

Protected areas are a cornerstone of global conservation efforts

to shield wildlife from anthropogenic impacts such as excessive

hunting and habitat loss [1,2]. The number and extent of

protected areas (hereafter PAs or parks) have grown exponentially

over recent decades, yet their ecological effectiveness is increas-

ingly in question since many are small and isolated, lack adequate

capacity for law enforcement, and are beset by illegal hunting and

resource collection [3–6]. Moreover, rapid human population

growth around PAs and the attractiveness of a park’s otherwise

scarce resources may result in elevated impacts at PA edges and

cause increased isolation and edge effects [7,8]. Such detrimental

effects may be particularly severe for large, wide-ranging species

prone to conflict with humans, most notably mammalian

carnivores [9–11]. Effective PA networks are presumed to be

key to the long-term viability of many carnivore species [12,13], so

an understanding of carnivore responses to human-induced and

natural changes in and around PAs is critical not only to the

conservation of threatened carnivore populations, but also to the

protection of ecosystems in which they play important functional

roles [14,15].

Anthropogenic activities can impact carnivore populations

directly and indirectly. Direct persecution is often a major threat

to both large- and smaller-bodied carnivores as they may be

hunted as trophies [16], for traditional uses like bushmeat [17,18],

and in retaliation for real or perceived threats to livestock or

human life [19,20]. Furthermore, many carnivore species are wary

by nature and avoid areas of elevated human activity, such that

even non-lethal activities (e.g. pastoralism, tourism) can influence

their occurrence and viability [21,22]. Besides these direct

anthropogenic influences, hunting of prey populations can be an

important indirect human impact on carnivore viability, given that

the availability of suitable prey is a key determinant of carnivore
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occurrence and abundance [23–25]. Finally, habitat destruction

can influence carnivores both directly and indirectly and is

predicted to affect some species more than others (e.g., [26]).

Effects of habitat change on carnivores may be mediated through

the response of their prey, or other factors such as associated

changes in disease dynamics [27].

Management efforts attempt to address the threats faced by

carnivores in and around PAs through more effective enforcement

of anti-poaching laws [28,29], creation of partially protected buffer

zones or corridors [11,30,31], restoration of habitat and prey (i.e.,

increasing predator carrying capacity; [25]), resolution of human-

carnivore conflict [32–35], and metapopulation management to

minimize loss of genetic diversity [31,36]. However, in practice,

these interventions are exceedingly difficult to implement for

political, economic and social reasons. Given limited resources, PA

managers must identify approaches that will provide the greatest

conservation return on their investment, but designing and

implementing these optimal strategies requires an understanding

of carnivore responses to specific stressors. Furthermore, manage-

ment actions targeted to address responses of entire carnivore

communities may be more ecologically- and cost-effective than

single-species approaches [37–41], which have typically focused

only on larger-bodied carnivores.

A significant challenge to assessing carnivore communities and

their responses to anthropogenic impact is the often infrequent

and imperfect nature of survey detections [42]. Accurate modeling

of species’ distributions and habitat suitability typically requires a

large number of observations and implicitly assumes that species

are absent from surveyed locations where they are not detected

[43]. However, the rare and elusive nature of many carnivore

species frequently translates into small sample sizes and low

detection probabilities, and hence biased population estimates

[44]. Fortunately, recent advances in survey and statistical

techniques can be applied to address this challenge. Camera

trapping has proven an effective technique for detecting cryptic

carnivores [45,46], particularly for mark-recapture estimation of

abundance for individually identifiable species [47,48]. The nature

of camera-trap surveys – with camera stations sampling contin-

uously over time at specific sites – is well-suited to an occupancy

modeling analytical framework that explicitly accounts for

imperfect detection [41,49]. The use of occupancy as a surrogate

for abundance has been widely adopted [50] and is appropriate for

widespread, low-density carnivore populations [51]. Furthermore,

recently developed hierarchical multi-species occupancy models

capitalize on the information content of multiple detection

histories to improve inference for rare species and generate insight

on aggregated responses of wildlife communities [52,53]. Hierar-

chical models also provide a flexible modeling framework capable

of addressing other important assumptions, including spatial

independence among sampling sites [54,55]. Models explicitly

accounting for spatial autocorrelation are increasingly being

applied to the estimation of animal occurrence patterns [56–58],

and have in many cases been shown to improve inference [59,60].

In this study, we developed a Bayesian hierarchical multi-species

occupancy model accounting for spatial autocorrelation to assess

patterns of carnivore occurrence in relation to key landscape

features in Mole National Park, Ghana (hereafter MNP). MNP is

among the largest protected areas in West Africa and, as with most

of this region, its carnivore populations are poorly studied yet

subjected to considerable pressure from the region’s high human

densities and widespread hunting for bushmeat [61,62]. Illegal

hunting is a central management concern in MNP, and previous

work indicates that the park’s carnivore community has been

heavily impacted, with evidence of human-caused mortality and

the decline and likely extirpation of several species [18].

Nevertheless, the direct and indirect effects of hunting on MNP’s

carnivore populations are unknown. We used law enforcement

patrol records to develop a spatially explicit index of hunting

pressure and test the hypothesis that hunting is a major

determinant of carnivore occurrence patterns in MNP. Using a

Bayesian model selection framework, we further tested the

importance of other anthropogenic and natural factors on

carnivore occurrence, including prey availability, habitat type,

and law enforcement protection. Our approach not only informs

the conservation of MNP’s regionally important carnivore

populations, but is also broadly applicable to the robust assessment

of rare and elusive species subject to environmental change.

Methods

Ethics statement
We thank the Wildlife Division of the Forestry Commission of

Ghana for their permission to conduct this work in Mole National

Park (Research project permit code 01/09/2006).

Study area
MNP is the largest of Ghana’s protected areas and covers

approximately 4600 km2 of woodland savanna habitat in the

country’s Northern Region (,09o119–10o06 N and 01o229–02o

169 W). Elevation ranges from 120–490 m and open savanna

woodland is the dominant habitat type, with tree cover averaging

about 30% and grasses reaching 2–3 m in height during the April-

to-October wet season [63]. Mean annual rainfall is approximately

1100 mm and most of the park’s rivers are seasonal, draining into

the White Volta River.

Camera trap survey
We conducted a camera trap survey between October 2006 and

January 2009 to estimate carnivore occurrence patterns in MNP

(see also [18,64]). For this study, we used data from 224 camera

stations deployed along gradients of proximity to park boundary,

potential prey abundance, and availability of water and associated

riparian forest habitat (Fig. 1). Our survey design was constrained

by access limitations (particularly in northern portions of the park)

and the number of available cameras, but we covered represen-

tative gradients using systematic sampling within 31 camera arrays

targeting different portions of the park and different seasons

(mean = 7.2 stations per array). Within an array, stations were

spaced at about 1-km intervals near specific features expected to

maximize carnivore capture probability, such as dirt roads, wildlife

trails, waterholes, and salt licks (with a mix of stations on and off

roads – see below). Most stations consisted of a single passive infra-

red DeerCam DC-300 film camera trap unit (Non Typical, Park

Falls, WI, USA) set on a tree at a height of about 40 cm, facing

perpendicular to the expected direction of animal travel and

approximately 3 m from the anticipated site of capture. Sampling

effort at a station was calculated as the number of days for which a

camera was set (or until the last photo was taken if the roll was fully

exposed before collection) and total effort across the 224 stations

was 4,867 trap-days (mean = 21.7, SD = 13.0, range = 3–93).

Effort was concentrated in the central and southeastern portions

of the park (Fig. 1) and during dry season months when access was

greatest (,70% of trap-days between October and April).

Detection or non-detection of carnivore species was recorded at

each station for each trap day, yielding a response variable

representing an uncorrected or ‘‘naı̈ve’’ estimate of carnivore

occurrence across the sampling sites [50].

Carnivore Responses to Hunting, Habitat and Prey
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Figure 1. Camera-trap locations (n = 224) and indices of patrol effort, hunting activity, habitat, and prey biomass in Mole National
Park, Ghana. (A) Index of law enforcement patrol effort (i.e., ‘‘protection’’) calculated as the density of patrol pathways covered between Oct. 2006
and May 2008 (also showing the location of villages within 10 km of the park boundary); (B) NDVI, the normalized difference vegetation index (from
MODIS/Terra sensor) summed over the study period (i.e., integrated NDVI, Oct. 2006 – Jan. 2009); (C) Index of illegal hunting activity detected by law
enforcement patrols (observations per unit patrol effort); (D) Patrol-based, multi-season index of biomass for prey species weighing less than 18 kg
(standardized by patrol effort). No data were obtained in the white areas within the park boundary.
doi:10.1371/journal.pone.0038007.g001
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Hypothesized predictors of carnivore occurrence
We hypothesized that spatial patterns of carnivore occurrence

in MNP would be influenced by variation in hunting pressure and

human disturbance, anti-poaching patrol effort, prey biomass and

habitat type (Table 1). To test our hypotheses, we created spatially

explicit indices representing each of these factors and extracted

values for each sampling location (i.e., camera station) from the

camera trap survey. Our intent was to examine general,

management-relevant indices of expected importance across the

carnivore community, given the lack of previous study and

detailed species-specific knowledge for MNP. Analyses were

conducted using ArcMap 9.3.1 (ESRI, CA, USA) and density

surfaces (described below) were created using a kernel density

estimator in the Spatial Analyst ArcMap extension (with a 2 km

search radius and output resolution of 5006500 m).

(i) Hunting pressure and human disturbance. Carnivore

species are often killed in Ghana and elsewhere as a perceived

threat to livestock and human life or for traditional purposes [18].

We therefore hypothesized that carnivores would be less likely to

occur in portions of MNP experiencing heavy hunting pressure.

We used spatially explicit observations of illegal hunting activity in

the park made during law enforcement patrols [65] to construct an

index of hunting pressure (there is no legal hunting within MNP).

Evidence of illegal hunting – ranging from direct sightings and

arrests to indirect signs such as hunting camps, traps or hunter

footprints – were recorded by teams of 3–6 staff during frequent

foot patrols across much of the park (Fig. 1; [64]), with specific

locations determined using handheld GPS units. We used data

from nearly 1,400 patrols conducted between October 2006 and

May 2008 and comprising 688 observations of illegal hunting to

create a density surface of hunting activity across the park. We

then divided this by a similar density surface describing patrol

effort (see below) to derive a spatial index of relative hunting

pressure across the park (equivalent to a catch-per-unit-effort or

CPUE index; cf. [65]). As an alternative measure of human

disturbance in MNP, we calculated the Euclidean distance from

each sampling location to the nearest boundary of the park. This

simple index represents potential edge effect and is often used as a

proxy for hunting pressure (and was highly correlated with

distance to the nearest village, Pearson r = 0.91; Fig. 1).

(ii) Law enforcement protection. Law enforcement (‘‘anti-

poaching’’) patrols are intended to deter illegal hunting activity

and thereby provide protection to park wildlife [29,65]. We

hypothesized that carnivores would be more likely to occur in

areas within MNP that were more effectively protected by a

greater level of patrol effort. We anticipated that this effect might

be distinct from that associated with the amount of hunting activity

detected per unit patrol effort (above), given that hunters could

have been avoiding more heavily patrolled areas and that patrol

routes were influenced by many factors (e.g., access, wildlife

abundance, management zones). Patrol teams recorded their

locations with handheld GPS units at regular intervals along patrol

routes, and we used pathways (i.e., joined locations) from the

,1,400 patrols to construct a density surface of patrol effort across

the park (Fig. 1).

(iii) Prey. The availability of suitable prey species is a key

determinant of the distribution and abundance of carnivore

populations (e.g., [23]). Prey availability may represent a natural

influence on carnivores but could also reflect an indirect

anthropogenic effect if prey are depleted by exploitation [25].

We used two data sources to create indices characterizing longer-

and shorter-term spatial patterns of prey biomass in MNP. First,

we used spatially referenced sightings of potential mammalian prey

species recorded during the October 2006–May 2008 law en-

forcement patrols to create a kernel density surface representing

the longer-term (i.e., multi-season) distribution of prey biomass.

This dataset included approximately 8,600 sightings of nearly

58,000 individuals of 14 ungulate or primate species (median body

mass = 30.5 kg, range = 3.7–592.7 kg; Table S1; see also [64]).

Prey counts were converted to biomass estimates by multiplying

the number of individuals of a particular species counted by the

body mass of that species, using values of estimated average adult

body mass from the PanTHERIA database [66]. The prey

biomass surface was then divided by the patrol effort surface (as for

Table 1. Factors hypothesized to influence patterns of carnivore occurrence in Mole National Park (MNP), with the corresponding
index used, predicted direction of effect (i.e., negative or positive influence on occurrence, or both), source of data, and range of
values across sampled sites.

Factor Index
Predicted
effect Source Range of valuesa

Hunting pressure Relative frequency of poaching
observations

2 MNP patrol system 020.20 obs./unit patrol effort

Human disturbance Distance from park edge 2 MNP GIS data layer 0–22.4 km

Patrol protection Relative anti-poaching patrol effort + MNP patrol system 1.3–245.5 units of patrol effort

Prey biomassb Relative biomass of potential prey + MNP patrol system (multi-season) and
camera trap detections (seasonal).

0–1722.1 kg/ unit patrol effort;
0–781.4 kg/trap-day

Small prey biomassb Relative biomass of smaller prey
(, 18kg)

+ MNP patrol system (multi-season) and
camera trap detections (seasonal)

0–41.0 kg/unit patrol effort;
0–69.0 kg/trap-day

Riverine forest Distance from nearest corridor
of riverine forest

+/2 GIS data layer derived from Landsat
image (GWD 2005)

0.01–7.2 km

Vegetation productivity NDVIc +/2 MODIS/Terra (MOD13Q1, 250m,
lpdaac.usgs.gov)

1882–7720 (seasonal)d 230,608–322,
297 (integrated)d

aRange of values for sampled camera stations. Data were normalized and standardized prior to analysis.
bPrey species are listed in Table S1. Species average adult body masses were taken from Jones et al. (2009). Total prey biomass was expected to have a greater influence
on larger carnivores given the relative dominance of larger prey species. See Methods for details on the calculation of different indices from patrol and camera-trap data.
cNDVI = Normalized Difference Vegetation Index.
dSee Methods for details on the seasonal and integrated measures of NDVI.
doi:10.1371/journal.pone.0038007.t001

Carnivore Responses to Hunting, Habitat and Prey

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e38007



hunting above) to create a spatial CPUE index of prey biomass.

Since most of the carnivore species detected in MNP were of

medium or small size (i.e., ,15 kg; see Results and Table S1), we

also calculated an index of small prey biomass including only the 7

species weighing less than 18 kg. This represented a relevant break

point in the distribution of prey body masses between larger

ungulates and smaller species (Table S1), and indices calculated

using finer body mass subdivisions were correlated with the

broader indices, thus we considered it a useful compromise for

characterizing prey availability across the diverse carnivore

community (although we note that the patrol-based indices do

not include prey items suitable for small carnivores; see below).

Our second prey index was derived from the camera trap survey

and represented an estimate of prey biomass at each camera site

for the specific period over which it was sampled (i.e., short term,

seasonally specific). The number of detections of a particular prey

species at a given camera station (excluding multiple photos of

ostensibly the same individual obtained ,5 minutes apart) was

multiplied by that species’ average adult body mass (obtained from

[66] for mammals and [67] for birds) and standardized by

sampling effort into a CPUE index of kg of prey biomass per 100

camera trap days. Twenty-seven potential prey species were

detected during the camera survey, including 20 mammal and 7

bird species (median body mass = 8.0 kg, range = 0.1–592.7;

Table S1), and, as for the patrol sightings, separate biomass

indices were calculated for all prey species combined and for the

20 smaller prey species weighing less than 18 kg. Camera trap

detections included many more small prey species than patrol

observations, and thus likely translated into more relevant indices

for smaller carnivore species, although all of our prey indices omit

or underrepresent the smallest prey items (e.g., small rodents,

insects) and are therefore less directly suitable for the smallest

carnivores (e.g., mongooses, genet). In the absence of additional

data, we made the assumption that variation in biomass of the

smallest prey would be indirectly reflected in the indices of larger

prey and/or habitat (see below), but we suggest that future work

could test this assumption.

(iv) Habitat. MNP’s habitat is dominated by relatively intact

open woodland savanna and we hypothesized that habitat

heterogeneity would have a less pronounced effect on carnivore

occurrence patterns than variation in hunting pressure or prey

biomass. Nevertheless, the park experiences pronounced seasonal

variation in vegetative cover – with dense grasses growing 2–3 m

high in the wet season and frequently burned in the dry season –

and narrow bands of riverine forest represent distinctive habitat

features associated with important water sources. We therefore

calculated three habitat indices, with the first being simply the

Euclidean distance from each sampling site to the nearest band of

riverine forest (demarcated from a Landsat-derived GIS map layer

provided by park management, [63]). Our second and third

habitat indices were based on the normalized difference vegetation

index (NDVI), a measure of vegetation productivity [68,69] that

has been linked to occurrence patterns for many wildlife species

[70,71], including carnivores [37]. We used the NDVI derived

from the MODIS sensor (Global MOD13Q1 product from the

Terra satellite, 16-day composite image at 250 m resolution,

downloaded from http://lpdaac.usgs.gov) to calculate both

seasonally specific and longer-term measures of vegetation biomass

in MNP. The former captured seasonal variation and correspond-

ed to the 16-day composite NDVI value most closely matched to

the period over which a given camera station was sampled (using

the average of multiple composite values for stations sampled for

more than 16 days or over a period split across two or more

composite time frames). Our longer-term or ‘‘integrated’’ measure

represented more stable spatial variation in vegetation biomass

(i.e., different habitat types) and consisted of the sum of all 16-day

composite NDVI values at a sampling location over the entire

period of our survey (Oct. 2006 – Jan. 2009; [69]).

We did not explicitly test the effect of intraguild interactions on

carnivore occurrence patterns, though we note its potential

importance [72] and suggest it as a factor for future investigation

(e.g., [73,74]).

Covariates of carnivore detectability
Our modeling framework for estimating carnivore occurrence

patterns (described below) explicitly accounts for heterogeneity in

carnivore detection probability. In addition to species-level hetero-

geneity, we anticipated that several site-level factors may have

affected the probability of detecting a carnivore species (given its

occurrence), so we included them as covariates in our model-based

hypotheses to control for such ‘‘nuisance’’ effects on the estimation of

occurrence probability. Firstly, we hypothesized that heavy hunting

pressure and human disturbance may not only decrease the

probability of carnivore occurrence, but could also make carnivores

wary and thus more difficult to detect where they do occur. We

therefore included the indices of relative hunting pressure and

distance from park edge (see above) as covariates on detection as well

as occurrence. We further hypothesized that certain aspects of our

sampling design could have introduced spatial heterogeneity in

detectability. Many of our camera stations were set on dirt roads or

tracks (n = 90), which could have been used or avoided by certain

species more often than adjacent areas lacking such features. We

therefore tested for such an effect of roads by including a binary

covariate on detection indicating whether or not a station was set

along a park road. A small subset of camera stations (n = 17)

consisted of a paired set of two camera units rather than the typical

single unit (as part of a concurrent study on density estimation),

raising the possibility that such paired stations had higher detection

probabilities, so we included another indicator covariate distin-

guishing them from single-camera stations. While most of our

stations were set by one field team led by A.C.B. for consistency, a

portion was established by a second field team (n = 65), potentially

introducing variation in detectability due to differences in set

technique, so we included a third binary covariate indexing the set

team. Finally, to account for marked variation between wet and dry

seasons in factors that could affect camera performance at a site –

such as ambient temperature or density of background vegetation –

we included a fourth binary covariate on detection indexing the

season in which a station was sampled (‘‘dry’’ = median sampling

date within October-April, ‘‘wet’’ = median date within May–

September).

Prior to analysis, all continuous variables were examined for

outliers, normalized with a fourth-root transformation (except for

edge and the two NDVI variables; other variables were right-skewed

prior to transformation), and standardized to have mean zero and

unit variance (to improve convergence of model estimates and

facilitate interpretation of relative effect sizes; [75,76]). We tested

variables for collinearity using correlation coefficients (Spearman rs

for all variables and Pearson r for normalized continuous variables)

and the variance inflation factor [77,78]. All statistical tests were

performed in program R version 2.11.1 [79]. Our hypothesized

covariates of carnivore occurrence and detection probabilities were

not strongly collinear (| rs |,0.57, | r |,0.65, variance inflation

factor ,3.3; Table S2), suggesting that they represented different

attributes of the MNP environment (e.g., variation in seasonal vs.

long-term prey or vegetation biomass).

Carnivore Responses to Hunting, Habitat and Prey

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e38007



Background on modeling framework
We applied a multi-species occupancy modeling framework [54]

to carnivore detection data from our camera trap survey. This

framework represents a hierarchical formulation and extension of

the single-species occupancy modeling approach described by

MacKenzie et al. [80], and is essentially a robust adaptation of the

logistic regression model frequently applied to species ‘‘presence-

absence’’ data [43,50]. A key advantage of the occupancy

modeling approach is the explicit estimation of detection

probability, providing a means to overcome the problematic

assumption of perfect detection (i.e., species always being detected

where they occur). The general framework requires repeated

sampling of a site over a period considered closed to changes in

occupancy status, and uses this temporal replication to estimate

the probability that a species not detected at a site could have in

fact been present (i.e., false absence). We treated consecutive trap

days as repeat surveys at a given camera station and considered

the occurrence of a species at a station equivalent to its use of the

habitat at that site during the sampling period (assuming random

species movement relative to a site rather than considering sites to

be permanently ‘‘occupied’’, and accordingly that detection

probability includes availability for detection; [50]: 105). We also

treated our entire survey period as one ‘‘season’’ in that most sites

were not re-sampled across seasons, the carnivore community was

assumed to be closed (i.e., no species extinctions or colonizations),

and we did not wish to estimate site-specific probabilities of

extinction or colonization over time (cf. [81]).

The multi-species model extends the single-species approach by

capitalizing on additional information contained in multiple

species’ detection histories across a sampled community, simulta-

neously estimating occurrence and detection probabilities for all

species. It assumes that an individual species’ response comes from

a common community-level distribution of responses. Species-

specific parameters are thus treated as random effects governed by

an associated community-level ‘‘hyper-parameter’’ (i.e., the

hierarchical component). In this way, collective data on the entire

carnivore community can improve species-specific estimates of

occurrence, even for those species rarely observed and for which a

single-species approach would likely yield unreliable results [52].

This approach also facilitates robust inference on the aggregate

response of an entire community [40,53].

Model structure
Our model assumes that site-specific occurrence for species

i = 1,2, …,N at site j = 1,2,…,J, is an imperfectly observed (latent)

random variable, z(i,j), which is the outcome of a Bernouilli trial, z(i,j)

, Bern(yij), where yij is the probability that species i occurs at site j,

and z(i,j) = 1 if it does occur and zero if it does not. Our observation

data, y(i,j), representing the detection or non-detection of species i at

site j during the camera trap survey, are conditional upon the true

occurrence state, z(i,j), and are also assumed to be Bernouilli random

variables if species i is present (that is if z(i,j) = 1) and are fixed zeros if

species i is absent (i.e., if z(i,j) = 0, then y(i,j) = 0 with probability 1).

This observation model is specified as y(i,j) , Bern(pij ?z(i,j)) for kj

independent trials, where pij is the probability of detecting species i at

site j if it is present, and kj is the number of trap days for which the

camera station at site j was active. We assumed that all species

present in the MNP carnivore community were detected at least

once during the survey, and we therefore did not estimate the

probability of there being additional species that went completely

undetected. Previous work suggests a low probability of additional

carnivore species occurring in the park [18], and we focused our

attention on confirmed species toward which management attention

could be directed (cf. [40,53]).

As noted above, we hypothesized that occurrence and detection

probabilities would vary by species and be affected by anthropo-

genic and natural features of the park (as well as effects of sampling

on detection). We incorporated these effects into the model

linearly using the logit link function, with the general form of

logit(yij) = wi+aj and logit(pij) = gi+bj, where wi and gi are species-

level effects and aj and bj are site-level effects on occurrence and

detection, respectively [52,53,82]. We also modeled a correlation

(r) between occurrence and detection based on the assumption

that both are affected by species abundance, such that more

abundant species would likely be both easier to detect and more

prevalent across the landscape, and vice versa [52,54]. We further

hypothesized that, despite our attempt to achieve independence

among sampled sites (through separation in space or time), the

occurrence of a species at a site might be affected by the

occurrence of that species at neighboring sites, independently of

modeled covariates (i.e., due to unmeasured environmental

features or intrinsic processes such as animal movement behavior;

[56,59]). Preliminary analysis of our camera trap detections also

indicated the potential for some spatial autocorrelation in site

occurrences (Appendix S1). Such spatial autocorrelation could

potentially bias inference, yet common tests of autocorrelation

(e.g., spatial correlograms of model residuals) are difficult to apply

given that our response variable of interest – species occurrence at

a site – was only partially observed. We therefore extended our

model to accommodate the possibility of spatial autocorrelation

among sampling sites using an adaptation of the auto-logistic

model described by Royle and Dorazio ([54]: 314–321; cf.

[56,83]). We defined a spatial neighborhood around each

sampling site as a 5-km radius circle (i.e., an area of approximately

79 km2, assumed to encompass short-term movements of individ-

ual animals) and specified an auto-covariate, autocovj, such that

the occurrence of species i at site j could be influenced by species i’s

occurrence at all g sites within the neighborhood, with the

magnitude of influence inversely proportional to the distance

between the focal station and particular neighboring station

(further details in Appendix S1).

The most general model of occurrence for species i at site j was

therefore specified as:

logit(yij)~Qiza1ipatroljza2ihuntingjza3iNDVI1jz

a4iNDVI2jza5iedgejza6iriverjza7iprey1jz

a8ismallprey1jza9iprey2jza10ismallprey2jzdiautocovj

where Qi is a species-level effect, the coefficients a1i, a2i,…, a10i

represent effects of the associated covariates (Table 1) on species i,

and di is the effect of the autocovariate on species i. Similarly, the full

detection model was specified as:

logit(pij)~gizb1iroadjzb2ipairedjzb3iteamjz

b4ihuntingjzb5iedgejzb6iseasonj

where gi represents the species-level effect on detection and b1i,…,

b6i are effects of the respective covariates on detection (details

above).

Occurrence and detection processes were linked across species

through the additional hierarchical model component in which

species-level parameters were treated as random effects governed

by community-level hyper-parameters. Specifically, we assumed

that for a given effect (e.g., influence of patrol effort on

occurrence), species-level parameters were drawn from a normal
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distribution described by the community mean (m) and standard

deviation (s) hyper-parameters (e.g., a1i , N(ma1, sa1)). We only

considered additive, linear effects of covariates on occurrence and

detection since we did not have strong a priori reasons for expecting

non-linear or interactive effects and felt the additional model

complexity was unwarranted given the available sample of

observation data.

Model selection
We considered all possible combinations of covariates to be

candidate models representing competing hypotheses about

significant influences on the MNP carnivore community (or its

assessment in the case of detectability). Our a priori full model

included 10 site-level covariates and an autocovariate for

occurrence probability and 6 covariates for detection probability

(yielding a candidate set with a daunting 217 possible models).

Given that several covariates represented similar features (e.g., 4

different prey indices), we anticipated that this model was likely

overparameterized and therefore implemented a Bayesian ap-

proach to model simplification [84]. Information-theoretic ap-

proaches are commonly used to distinguish among competing

models; for instance, the Akaike Information Criterion (AIC; [85])

or analogous Bayesian Deviance Information Criterion (DIC;

[86]) balance model fit and complexity by ranking models using

deviance and a penalty term weighted by the number of

parameters. However, these criteria are not easily or reliably

calculated for complex hierarchical models with latent variables,

such as our multi-species occupancy model [87,88]. For this

reason, we used an alternative approach to model evaluation. We

assessed the strength of evidence for covariate effects at the

community-level (i.e., across all species) by estimating posterior

model probabilities for the candidate set with a mixture modeling

approach in which each covariate is multiplied by an ‘‘inclusion

parameter’’ ([54]: 72–73, [84]: section 3.2, [89,90]). The inclusion

parameters (wc, for all C covariates in the model) were latent binary

(Bernoulli) variables with uninformative prior probabilities of 0.5

(i.e., equal probability of a given covariate being included or not in

the model). Their posterior probabilities corresponded to the

estimated probability that a particular covariate was included in

the ‘‘best’’ model; that is, the degree of support for an effect of that

covariate across all carnivore species in the community. The

posterior probability of a given candidate model (i.e., combination

of covariate effects) was thus calculated as the probability that

wc = 1 for all coefficients included in that model and wc = 0 for all

coefficients not included. In other words, each of the 217 candidate

models had a corresponding unique vector of inclusion parameter

values, and posterior probabilities for each of these vectors were

calculated from their relative frequency in the posterior sample.

For occurrence and detection parameters (i.e., Qi, gi), posterior

probabilities from the mixture model represented model-averaged

estimates (i.e., averaged across the different models included in the

posterior sample). Model-averaged estimates could also be

obtained for covariate coefficients by averaging across posterior

samples where the corresponding wc = 1 ([54]: 72–73).

Anticipating that different species may not show consistent

responses, we also assessed the importance of covariates on

individual species occurrence and detection probabilities by

inspecting posterior distributions for all parameters from the full

model (i.e., with no inclusion parameters, since these were only

applied at the community-level). Species-level parameters (i.e.,

coefficients a1i, a2i, etc.) with posterior masses concentrated away

from zero were considered indicative of an effect of the

corresponding covariate on that particular species (e.g., zero not

contained within credible intervals at 95%, or less conservatively,

80% probability thresholds).

We implemented all models in program WinBUGS version

1.4.3 [91], using the package R2WinBUGS [92] to interface with

program R. Inference was made from 3,000 samples of the

posterior distribution obtained from 3 chains of 50,000 Markov

Chain Monte Carlo (MCMC) iterations after a burn-in of 50,000

and with a thin rate of 50. We used vague priors and random

initial values, although achieving acceptable convergence in the

MCMC chains required less diffuse prior specifications and other

minor adjustments (sample code in Appendix S2; see also [54,82]).

Convergence was assessed by visual assessment of MCMC chains

and using the Gelman-Rubin statistic (‘‘Rhat’’ in R2WinBUGS,

with values ,1.1 indicating convergence; [76,93]).

Results

We detected nine carnivore species during the camera trap

survey of 224 sites in MNP (Table 2). Spotted hyena (Crocuta

crocuta) was detected at the greatest proportion of sampling sites (a

‘‘naı̈ve’’ measure of occurrence without accounting for detectabil-

ity; [50]), followed by leopard (Panthera pardus) and white-tailed

mongoose (Ichneumia albicauda), whereas Gambian mongoose

(Mungos gambianus) and side-striped jackal (Canis adustus) were

detected at the fewest sites (Table 2). Model-estimated occurrence

probabilities accounting for imperfect detection were higher than

uncorrected estimates, but did not change the order of relative

abundance across species. Species’ occurrence and detection

probabilities were significantly positively correlated (posterior

mean of covariance parameter r= 0.47), suggesting both were

related to underlying patterns of species abundance. The model-

averaged community-level (i.e., across species) probabilities of site

occurrence and per-survey detection were estimated to be 0.22

(posterior SD 0.09) and 0.12 (SD 0.04), respectively (based on the

corresponding hyper-parameter posterior probabilities from the

mixture model).

Community-level covariate effects
Parameter estimates from our fully parameterized multi-species

model were generally imprecise, with most posterior probabilities

being widely distributed around their respective means and 95%

CIs broadly overlapping 0 (Table 3, Appendix S3), implying that

there was not a consistent response across the carnivore

community to most site covariates. Posterior distributions for

community-level hyper-parameters from the full model indicated

the most consistent covariate effect on carnivore occurrence was a

positive association with short-term or seasonal small prey

biomass. There was also evidence of a consistent ‘‘observer effect’’

on detection probability (i.e., the ‘‘team’’ covariate), with higher

mean community-level detectability associated with camera

stations set by the primary sampling team (Table 3, Appendix S3).

Posterior probabilities for inclusion parameters on site covari-

ates from the mixture model confirmed that small prey biomass

was an important occurrence covariate for the MNP carnivore

community (having an estimated probability of inclusion in the

best model equal to 1; Table 3). They also highlighted the

important community-level effect of proximity to riverine forest

(mean posterior probability of inclusion, Pr = 1.0; Table 3), which

was not apparent from the diffuse posterior of the full model due to

the varied direction of species responses (Table 2; Fig. 2). There

was some support for a community-wide edge effect on occurrence

(Pr = 0.73, posterior SD = 0.44; Table 3), and weak evidence for a

potential effect of patrol intensity (Pr = 0.22, SD = 0.41). Contrary

to our primary hypothesis, there was little evidence of a consistent
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effect of hunting activity on carnivore occurrence, nor was there

any indication of significant community-level effects of vegetation

biomass (as measured by NDVI), total prey biomass, or spatial

autocorrelation (Pr ,0.03; Table 3).

With regard to carnivore detectability, the importance of the

‘‘team’’ covariate was strongly supported at the community-level

by the posterior inclusion probability from the mixture model

(Pr = 0.98, SD = 0.15; Table 3). A significant influence of roads

was also indicated (Pr = 0.91, SD = 0.29), and there was limited

support for an edge effect on detection probability (Pr = 0.48,

SD = 0.50). Accordingly, combinations of these occurrence and

detection covariates comprised the candidate models with the

Table 2. Carnivore species detected during the camera trap survey in Mole National Park, Ghana, and estimated mean occurrence
(y) and detection (p) probabilities and covariate effects on occurrence.

Common namea Prop. sites y (SD) p (SD) Covariate effects indicatedb

Spotted hyena 0.442 0.544 (0.050) 0.173 (0.039) small prey(+), riverine(+), edge(2), hunting(2), seasonal
NDVI(+)

Leopard 0.299 0.526 (0.077) 0.140 (0.038) small prey(+), riverine(+), patrol(2), hunting(+)

White-tailed mongoose 0.259 0.292 (0.039) 0.119 (0.031) small prey(+), riverine(2), seasonal NDVI(2), patrol(2)

Large-spotted genet 0.246 0.263 (0.037) 0.146 (0.041) small prey(+), edge(+), hunting(+), seasonal NDVI(+)

African civet 0.098 0.189 (0.062) 0.123 (0.047) small prey(+)

Caracal 0.054 0.096 (0.045) 0.100 (0.047) riverine(2), small prey(+)

Marsh mongoose 0.049 0.095 (0.053) 0.124 (0.060) small prey(+)

Gambian mongoose 0.018 0.075 (0.073) 0.094 (0.053) small prey(+)

Side-striped jackal 0.013 0.072 (0.089) 0.087 (0.054) small prey(+)

The proportion of 224 sampling sites at which carnivore species were detected reflects observation data, whereas y and p are model-averaged estimates from the
multi-species hierarchical mixture model (means and standard deviations from posterior probability distributions for species-specific parameters). Site covariates of
occurrence are shown for cases where the posterior probability distribution from the full model for the corresponding species-specific coefficient indicated a potential
effect (i.e., posterior mass not concentrated at 0; distributions are given in Appendix S3).
aScientific names in Table S1.
bDirection of effect indicated as either positive (+) or negative (2) association of species occurrence probability with the particular covariate. For the different prey
biomass covariates, only the strongest effect is indicated.
doi:10.1371/journal.pone.0038007.t002

Table 3. Posterior probability summaries of hyper-parameters for mean community-level effects of hypothesized site covariates
on carnivore occurrence (a and d coefficients) and detection (b coefficients).

Parameter (covariate) Mean SD 95% CI Inclusion probability

a1 (patrol effort) 20.19 0.29 20.77, 0.39 0.219

a2 (hunting activity) 20.04 0.32 20.76, 0.56 0.015

a3 (seasonal NDVI) 0.04 0.25 20.45, 0.51 0.028

a4 (integrated NDVI) 20.08 0.20 20.48, 0.32 0.001

a5 (edge distance) 20.03 0.32 20.67, 0.62 0.732

a6 (riverine distance) 20.003 0.34 20.69, 0.72 1.0

a7 (prey biomass, long-term) 0.13 0.29 20.47, 0.65 *

a8 (small prey biomass, long-term) 0.33 0.26 20.20, 0.81 *

a9 (prey biomass, short-term) 20.26 0.31 20.92, 0.33 0.010

a10 (small prey biomass, short-term) 1.18 0.40 0.51, 2.10 1.0

d (spatial autocovariate) 0.76 1.12 21.36, 3.28 0

b1 (road) 20.12 0.43 21.01, 0.69 0.910

b2 (paired stations) 0.10 0.27 20.43, 0.63 0.011

b3 (set team) 20.93 0.50 22.08, 20.03 0.976

b4 (hunting activity) 20.01 0.14 20.27, 0.26 0.001

b5 (edge distance) 20.16 0.29 20.79, 0.34 0.479

b6 (season) 0.22 0.32 20.42, 0.83 0.038

Posterior mean, standard deviation (SD) and 95% credible interval (CI) were estimated from the full model, while the corresponding inclusion probability from model
selection using a mixture model is also shown (representing the posterior probability of that covariate effect being included in the best model). Posterior distributions
for these hyper-parameters as well as species-level parameters are given in Appendix S3.
*The two prey indices derived from patrol data were not included in the final mixture model as they were considered redundant to (but less informative than) the
comparable short-term prey indices derived from camera trap data (based on results of the full model and a preliminary mixture model).
doi:10.1371/journal.pone.0038007.t003
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highest posterior model probabilities (Table 4). A total of 64

candidate models appeared in the posterior sample, but the four

highest-ranked models had 70% of the support, and 90% of the

posterior model probability was captured by 11 candidate models

(Table 4). The top-ranked model contained additive effects of

edge, riverine forest and small prey biomass on occurrence, and of

road and team on detection (Pr = 0.335; Table 4). Predicted

occurrence probabilities from the best model indicated significant

heterogeneity among species in the direction and magnitude of

their responses to site covariates (Fig. 2).

Species-level effects
We examined posterior probability distributions for all species-

level parameters in the full model to identify potential species-

specific effects that might be obscured at the community level.

Posterior means for the effect of seasonal small prey biomass were

positive for all 9 carnivore species, and 95% CIs overlapped 0 for

only spotted hyena and caracal (Caracal caracal; Table 2, Appen-

dix S3). There was weak species-level support for an effect of riverine

forest habitat, both in terms of attraction (higher occurrence

probabilities nearer to riverine forest for spotted hyena and leopard)

and avoidance (lower occurrence probability near riverine forest for

caracal; Fig. 2). The model indicated little evidence of an edge effect

on occurrence probability for most species, although spotted hyena

occurrence probability was marginally higher further away from the

park edge, and the opposite was true for large-spotted genet (Genetta

pardina; Fig. 2). Consistent with community-level estimates, there

was little evidence for significant species-level effects of patrol effort,

poaching activity, or vegetation biomass on carnivore occurrence,

although some potential weak effects were indicated (Table 2,

Appendix S3). In contrast, a signal of spatial autocorrelation in site

occurrence probabilities was indicated for several species (i.e.,

positive posterior estimates of the autocovariate coefficient;

Appendix S3).

In agreement with indications at the community-level, sam-

pling-related heterogeneity in detection probabilities was evident

at the species level. Posterior probabilities suggested most

carnivore species had higher detectabilities at stations set by the

primary sampling team (given occurrence), and that leopard and

white-tailed mongoose were more likely to be detected at camera

stations set on roads, whereas marsh mongoose was less likely to be

detected on roads. Hunting activity and seasonality did not appear

to affect species’ detectabilities, but there was evidence of an edge

effect, with posterior distributions for large-spotted genet, marsh

mongoose (Atilax paludinosus) and spotted hyena suggesting lower

detectability near the park edge, while those for leopard, Gambian

mongoose and caracal indicated higher edge detectability.

Figure 2. Model-predicted carnivore responses to the three site covariates included in the best occurrence model. Predicted marginal
probabilities of carnivore occurrence relative to variation in the index of small prey biomass, distance from riverine forest, and distance from park
edge (all values standardized). Species are: African civet (solid black), caracal (dashed red), Gambian mongoose (dotted green), large-spotted genet
(dot-dash blue), leopard (dashed light blue), marsh mongoose (dot-dash purple), side-striped jackal (solid yellow), spotted hyena (dashed grey),
white-tailed mongoose (dotted black; scientific names and details of model selection are given in the text).
doi:10.1371/journal.pone.0038007.g002

Table 4. Posterior model probabilities for the top 11 models
that had 90% of the posterior support across all candidate
models for community-level effects on carnivore occurrence
(y) and detection (p), as estimated from the mixture modeling
approach to model selection (53 additional models appeared
in the posterior sample but all with probabilities ,0.01).

Model
Posterior
probability

y(edge + river + small prey) p(road + team) 0.335

y(river + small prey) p(road + team + edge) 0.139

y(edge + river + small prey) p(road + team + edge) 0.124

y(patrol + edge + river + small prey) p(road + team + edge) 0.103

y(patrol + edge + river + small prey) p(road + team) 0.043

y(river + small prey) p(road + team) 0.040

y(edge + river + small prey) p(team) 0.032

y(patrol + river + small prey) p(road + team + edge) 0.030

y(river + small prey) p(road + edge + season) 0.022

y(patrol + edge + river + small prey) p(team) 0.018

y(edge + river + small prey) p(team + edge) 0.016

doi:10.1371/journal.pone.0038007.t004

Carnivore Responses to Hunting, Habitat and Prey

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e38007



Discussion

Factors influencing carnivore occurrence
Our results provide insight into the relative influence of

anthropogenic and natural landscape features on the dynamics of

a poorly studied carnivore community. The hierarchical multi-

species modeling approach identified patterns across the entire

community while also highlighting species-specific variation. Our

models indicated that availability of suitable prey had the most

consistent effect on the MNP carnivore community, with carnivore

species’ occurrence probabilities positively linked to the relative

biomass of smaller prey species (particularly at a seasonal scale).

While variation in vegetation biomass (as measured by NDVI) did

not appear to significantly influence carnivore occurrence, our

mixture model identified a key community-level effect of riverine

corridors, reflecting an aggregate of varied species responses to this

natural landscape feature. Contrary to expectation, heterogeneity in

carnivore occurrence patterns was not associated with measured

variation in illegal hunting activity, suggesting that hunting is not a

dominant influence on carnivore species’ use of park habitats (at least

at the spatial and temporal scales examined). Our models did point

to an effect of proximity to park edge on occurrence, implying that

human disturbance may indeed exert influence on the carnivore

community. However, this edge effect was not uniformly negative

but rather highly variable across species (Fig. 2; unrelated to body

mass or home range size), indicating that a simple model of

increasing disturbance at the park edge is not appropriate.

Heterogeneity in species’ responses to extrinsic stressors is to be

expected, and consequently some inconsistency in aggregate

responses interpreted at the community level should be anticipated

(i.e., diffuse posterior distributions for community hyper-param-

eters). Nevertheless, uncertainty in our multi-species model also

reflects the considerable amount of species-level variation in

occurrence patterns unexplained by the spatial covariates we

included (Appendix S3). Inference for rare species will always be

limited by small sample sizes, and parameters were indeed less

precisely estimated for carnivore species with few detections in our

survey (e.g., Gambian mongoose, side-striped jackal; Appen-

dix S3). All the same, the multi-species approach produced useful

estimates of occurrence and detection probabilities for these

species, and it is more powerful than single-species models that

frequently fail to yield reliable estimates for rare species ([52,94];

A.C. Burton unpublished data).

Even with the improved ability to estimate occurrence and

detection probabilities, our modeling identified few effects of

measured landscape covariates for the rarest carnivores in MNP

(although some responses were strongly indicated, such as the

negative association between caracal occurrence and proximity to

riverine forest; Fig. 2). Responses to landscape factors were more

discernible for species with a greater number of detections (e.g.

spotted hyena, large-spotted genet; Appendix S3), and these likely

had a significant influence on community-level inference. Since

little is known about carnivore ecology in MNP, or more generally

across much of West Africa [95], it is difficult to make a

comparative assessment of the patterns of occurrence indicated by

our study (particularly for smaller carnivores). Single-species

studies from other areas agree with some of our findings while

also highlighting the frequently complex relationships between

landscape heterogeneity and carnivore ecology. For example,

Marker and Dickman [96] found leopard abundance to be

correlated with prey biomass (see also [25]), while Balme et al.

[97] reported that leopards hunted preferentially in areas of

intermediate vegetation cover where prey were easier to catch but

not necessarily more abundant. Boydston et al. [98] and Kolowski

and Holekamp [99] found that spotted hyenas selected areas with

dense vegetation and near seasonal streams, but that their

association with higher prey density was influenced by the degree

of human disturbance. Negative edge effects on survival and

behavior were reported for spotted hyenas [100] and leopards

[11], although in the latter case leopards did not avoid edge areas

(consistent with our results and perhaps indicative of an

‘‘ecological trap’’, sensu [101]). There is a need to follow up on

the results of our study with more detailed investigations of

carnivore ecology in MNP (e.g., telemetry-based studies of habitat

selection, survival and reproduction).

Factors influencing carnivore detectability
Our hierarchical model also provided insight into biases

associated with the sampling process. Firstly, detection probabil-

ities per survey (i.e., per camera trap day) were estimated to be

quite low, and accordingly our ‘‘naı̈ve’’ estimates of occurrence

probability were negatively biased by an average magnitude of

126% across all 9 carnivore species (from 7% for large-spotted

genet to 434% for side-striped jackal, relative to model estimates;

Table 2). This underscores the importance of accounting for

imperfect detection in models of animal occurrence, a point which

has been made previously by many authors (e.g., [50]) and yet has

received relatively little attention in the broader literature on

species distribution modeling [102,103]. Explicit consideration of

detectability is particularly important for rare and elusive species,

such as most carnivores, and the largest estimated bias in our

sample was associated with those species having the fewest

detections (Table 2).

Our model indicated that two aspects of our sampling design

introduced significant spatial heterogeneity to the probability of

detecting a carnivore species given its occurrence. The potential

bias of sampling on roads has been noted elsewhere [104,105].

Yet, given access difficulties, we chose to set many camera stations

at or near park roads (although roads in MNP are dirt tracks with

relatively little vehicle traffic), and the explicit estimation of

detection heterogeneity allowed us to address this sampling effect

within the model. Similarly, despite our use of a standardized

protocol for setting camera traps, we detected an ‘‘observer effect’’,

where detection probabilities differed between camera stations

established by two field teams. Without an analytical method

explicitly accounting for detectability, and recording of the

relevant sampling covariate, this effect may have been erroneously

interpreted as a difference in occurrence probability. The apparent

influence of proximity to the park edge on detectability could be

related to behavioral responses of carnivores to variation in human

disturbance (e.g., increased vigilance in closer proximity to human

settlement), and, if unaccounted for, may have distorted inference

of edge effect on occurrence. Finally, our modeling results suggest

that we adequately achieved independence among camera stations

by separating them in space and time, since inclusion of the spatial

autocovariate term was not supported at the community level.

Nevertheless, posterior probability distributions for the autoco-

variate coefficient were suggestive of spatial autocorrelation in

occurrence probabilities for several species (Appendix S3), so its

potential importance should not be ignored in future work.

Sampling design of future carnivore surveys in MNP (and

elsewhere) will benefit from careful consideration of the detection

biases indicated by our analysis.

Study limitations
Limitations of our study that might affect the strength of

inference must be carefully considered. Due to logistical

constraints, we were unable to access many portions of the park
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or to implement a random sampling design, so our camera stations

(and resulting detections) may represent a biased sample yielding

incomplete information on carnivore occurrence patterns in

relation to park features. Nevertheless, we were able to sample

across gradients in our hypothesized factors of influence, and we

attempted to control for the effects of spatial and temporal

sampling features, such as roads and season, on detectability. We

infrequently detected several of the carnivore species in MNP, a

common challenge in surveys of rare and elusive species, and

despite advantages of the multi-species modeling approach,

stronger inference is ultimately achieved only by greater sampling

effort (including more targeted, species-specific sampling).

Our indices representing anthropogenic and natural landscape

features of hypothesized importance were generated from the best

available information, but their reliability may be diminished by

associated uncertainty. For instance, our measures of illegal

hunting activity and longer-term prey biomass are dependent on

the reliability of data generated by the patrol monitoring system,

which is subject to an unknown amount of error [64] (see also

[106]). Hunting pressure is particularly difficult to estimate given

that hunters seek to avoid detection by patrols, thus accounting for

hunter detectability is an important area for further research.

Patrol data also underestimated the occurrence and abundance of

smaller prey species ([64]; Table S1), so corresponding biomass

indices are dominated by the larger and better-detected species.

Prey indices derived from our camera-trap survey are subject to

the same sampling limitations noted above for the carnivore data,

and while the camera data included more small prey items

(Table S1), the diet range for several of the smaller carnivores is

poorly represented. Future work focusing more specifically on

these smaller carnivores and their prey is therefore recommended.

Important variation in carnivore habitat quality may not have

been adequately described by NDVI, which might be more tightly

linked to the ecological characteristics of certain herbivores

[70,71]. While such remote sensing products show great promise

for improving ecological understanding across large spatial and

temporal scales [69,107], they are not a substitute for detailed,

field-based assessments of habitat that are largely lacking for MNP.

Even an index as seemingly simple as distance to the park edge is

subject to some uncertainty associated with inconsistent boundary

demarcation [63], and its reliability as a proxy for human

disturbance is affected by spatial variation in population density

and land use around the park (A.C. Burton, unpublished data).

Nevertheless, such limitations are common to many protected

areas, particularly in developing nations like Ghana, and our study

highlights a conservation-relevant approach to characterizing a

park landscape. Future work should seek to test and improve upon

these measures of landscape heterogeneity and address other

important ecological factors (e.g., fire, [108]; competition, [109])

and modeling forms (e.g., interactive and non-linear effects; multi-

scale occupancy for mobile species, cf. [110]).

Conservation implications
MNP’s historical carnivore community has been heavily

impacted over recent decades, with the decline and potential

extirpation of several species [18]. Assessing and maintaining the

viability of persisting carnivore populations should therefore be of

significant management concern, and our study provides useful

information to that end. While illegal hunting pressure within the

park is significant, we found no evidence that it exerts a direct

influence on current spatial patterns of carnivore occurrence.

Assuming this result to be accurate (i.e., not due to mismeasure-

ment of hunting pressure), it could relate to the elusive nature of

carnivores or the lack of hunter preference for these species. While

there is evidence that many carnivore species are killed for local

consumptive uses [18], MNP enforcement teams rarely report

evidence of carnivore remains confiscated from arrested hunters

(C. Balangtaa, pers. obs.). It is possible that carnivore species

persisting in the park have proven themselves more resilient to

direct human impacts like hunting, having passed through the

‘‘extinction filter’’ that apparently claimed other species [18,111].

Assessing the indirect impacts of human activity on carnivore

populations is more difficult. For instance, the positive association

between carnivore occurrence and prey biomass is expected from

natural predator-prey dynamics, but could also be indirectly

influenced by hunting impacts on prey populations. Nevertheless,

the relative dominance of prey availability on carnivore occur-

rence suggested by our model may be an encouraging reflection of

the prominence of natural influences on the park’s carnivore

populations, and it provides a tangible target for park managers

(i.e., protection of prey populations). Similarly, the lack of a strong

or consistent edge effect on carnivore occurrence suggests that

elevated impacts around the park are not undermining its

effectiveness in protecting carnivore habitat, at least for most

populations that persist (although we note that hunting is not

limited to the park edge; Fig. 1C). Indeed, MNP appears to

effectively protect natural habitats such as the riverine forest

corridors that our modeling indicated to be of importance to

carnivore occurrence patterns.

However, in assessing the effectiveness of MNP’s protection of

carnivore populations, it is important to note the uncertainty

reflected in our results, which ultimately represent a fairly coarse

and preliminary assessment. Several species were rarely detected

in our survey, limiting inference on their dynamics and suggesting

that they could be perilously close to local extinction. Even among

the more frequently detected species, the long-term viability of

their populations has not yet been appraised. In fact, preliminary

mark-recapture estimates of population density for leopard and

spotted hyena – two of the most frequently detected species in our

survey – suggest that they persist at low abundances relative to

conspecific populations (A.C. Burton, unpublished data). A

reliable assessment of carnivore population viability in MNP,

and a better understanding of the nature of human impacts on

these populations, will require continued and detailed monitoring

of species-specific occurrences and demographic rates.

Though further work is needed, our approach provides a

valuable framework for the assessment of wildlife communities

subject to anthropogenic impact. Few studies capitalize on the

powerful information available across entire communities, despite

the fact that many surveys generate data for a range of species. In

particular, a rapidly growing number of camera-trap surveys

produce data on many species, both rare and common, which may

not be fully utilized as attention is typically focused on one or a few

target species [41,49,112]. We have shown how such camera-trap

data are well-suited to a multi-species hierarchical modeling

framework, resulting in robust estimation of occurrence and

detection probabilities across focal communities. We demonstrated

that a community-level approach can facilitate inference on

individual species while providing more comprehensive insight at a

scale relevant to ecosystem-level management. Furthermore, we

showed how data that may be readily available for many protected

areas, such as patrol-based monitoring observations and remotely

sensed vegetation indices, can be used to test hypotheses about

relative influences on protected wildlife populations. This

approach may be particularly valuable for guiding management

efforts in developing nation parks that lack established research

programs but face pressing conservation needs.
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