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Abstract

Purpose of Review Long-term culture of adult progenitor

cells in 3D is a recently emerging technology that inhabits

the space between 2D cell lines and organ slice culture.

Recent Findings Adaptations to defined media components

in the wake of advances in ES and iPS cell culture has led

to the identification of conditions that maintained intestinal

cell progenitors in culture. These conditions retain cellular

heterogeneity of the normal or tumour tissue, and the

cultures have been shown to be genetically stable, such that

substantial biobanks are being created from patient derived

material. This coupled with advances in analytical tools has

generated a field, characterized by the term ‘‘organoid

culture’’, that has huge potential for advancing drug dis-

covery, regenerative medicine, and furthering the under-

standing of fundamental intestinal biology.

Summary In this review, we describe the approaches

available for the long-term culture of intestinal cells from

normal and diseased tissue, the current challenges, and how

the technology is likely to develop further.

Keywords Intestinal � Organoid culture � Intestinal cell

progenitors � Cancer stem cell � Disease models �
Colorectal cancer

Introduction

In 2007, after decades of research, the intestinal cell pro-

genitors (ICPs) that are responsible for regenerating the

surface of the normal intestine every 2–7 days were iden-

tified and shown to reside within crypt bases of the

intestinal epithelium [1]. Up to this point, a variety of

approaches had been used in an attempt to grow this tissue

in vitro, including 2D immortalized cell lines often derived

from either benign or malignant tumours, short-lived pri-

mary tissue isolates, as animal xenografts, and tissue pie-

ces/slices. Each system not only had strengths but also

shortcomings such as limited population doublings (pri-

mary isolates), ethical concerns (xenografts), or short-term

viability (tissue slices). Following the identification of the

ICPs, there was a period that saw major advances in the

understanding of basic stem cell biology and refinements of

progenitor cell culture. In 2007, it was demonstrated that

3D spheroids derived from CD133? intestinal cancer stem

cells (CSCs) could be maintained by utilizing culture

medium refinements from neurosphere culture methods [2].

This formed part of a progression of developments, mainly

pioneered by researchers then based within the laboratory

of Hans Clevers, that in 2009 led to the identification of

Lgr5 as an ICP marker and publication of a 3D culture

technique which allowed single murine intestinal stem cells

to be grown into organoids that contained protruding crypt

structures with all the cell lineages that comprise the small

intestinal crypt in vivo [3, 4, 5•]. These cultures were

grown in a mesenchyme-free environment comprised
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Matrigel (a reconstituted basement membrane gel [6]) in a

medium with three organoid supporting supplements: epi-

dermal growth factor (EGF); Noggin, which is a BMP

signalling inhibitor that maintains an undifferentiated state;

and R-Spondin, a modulator of the Wnt pathway and potent

stimulator of adult stem cell proliferation [7]. The gener-

ation of mice harbouring an Lgr5 driven GFP reporter [8]

has enabled work that further characterized the crypt niche

[9] along with identifying other ICP markers, notably Bmi1

[10], and indeed proved crucial to the identification of

R-Spondin as a key modulator of Wnt signalling. It was

later observed that cultures of mouse colonic epithelium

required the addition of Wnt3A to enable their indefinite

expansion, suggesting that the organoid Wnt ligand pro-

duction is insufficient to maintain colonic stem cells [11].

This work was then successfully translated into patient-

derived ICP containing organoids utilizing similar media,

although human intestinal and colonic organoids required

both p38 and TGF-b inhibition (to suppress differentia-

tion), with human colon culture additionally requiring

Wnt3A, Prostaglandin E2 (that promoted organoid integrity

through blocking anoikis and promoting proliferation), and

Nicotinamide (a vitamin shown to inhibit differentiation)

[11, 12].

This review discusses the progress made over the last

3 years in using organoid culture of tissue-derived ICPs.

Related developments in which intestinal cultures are

generated by the directed differentiation of embryonic or

induced pluripotent stem cells are described and reviewed

elsewhere [13–16]. Within this review, we will introduce

the areas in which long-term tissue-derived ICP cultures

are finding utility; (1) their application in studying disease

processes (particularly CSC biology), (2) the prospective

clinical applications of long-term ICP culture models, (3)

the ongoing cell culture refinements and elaborations of

ex vivo ICP models, and (4) an overview of the analytical

technologies around the use of ICP organoids that will lead

to the proliferation of ICP organoid platforms.

Study of ICPs in Disease

ICP-generated 3D organoids retain in vivo cell-to-cell

contacts, mass transport properties, mechanical properties,

and metabolic profiles, whilst incorporating many cell

types, modelling cell proliferation/differentiation, com-

bined with long-term genomic stability [17•] and gene

expression patterns. Thus, the organoids maintain their

integrity, unlike classical 2D cell culture with its inherent

loss of heterogeneity and the genomic rearrangements

associated with the culture ‘crisis’/cellular senescence

events that occur during cellular adaption. This mainte-

nance of cell identity and genetic integrity within ICP

containing organoid cultures makes them the current gold

standard tool for interrogating basic and diseased intestinal

biology ex vivo and the protocols for isolation of human

intestinal progenitor cells from resected surgical samples

and biopsies are now well established [18, 19]. Indeed the

derivation of ICP organoid cultures from normal tissue and

tumour material is carried out in such a way that cells are

never grown directly upon culture plastic, as opposed to

spheroid or tumoursphere culture models that are generated

from established 2D cell lines. These organoid cultures

have been particularly used in the study of colorectal

cancer (CRC), and are being applied to translational set-

tings such as regenerative medicine, diagnostic tests, and

disease modelling [20–24].

CRC Modelling Using Ex Vivo ICP Culture

Ex vivo ICP culture has been highly relevant in CRC,

where the ISC has been identified as the cell of origin [25].

Previously, cancer research has relied heavily on the use of

genetically modified mouse models (GEMMs) to explore

the genes and pathways associated with the disease.

However, these models predominantly develop tumours in

the small intestine and not the large intestine, the reverse of

the human situation. Indeed, for the time being ex vivo

ICP-based culture systems do not yet fully recapitulate

in vivo 3D architecture, nor the contributions of the stroma,

endothelial cells, oxygen tension, blood supply, immune

system, or innervations that are afforded by CRC GEMMs.

Further, the herbivorous mouse small intestine microbiome

bears little resemblance to the omnivorous human large

intestine microbiome and does not model the significant

role that the environment plays in CRC risk. Despite these

current drawbacks, the potential major benefit of long-term

ICP culture will be the reduction in the current reliance on

GEMMs and a shift towards using human and mouse

organoid cultures and systems that will increasingly reflect

the in vivo CRC environment. Indeed, establishing reliable

sources of this material is now crucial for researchers to

understand normal and malignant ICPs. The following

section will summarize the recent developments in using

diseased ICP cells that have either come from patients,

GEMMs, or that have been ‘engineered’/gene edited from

one of the first two sources.

Patient-Derived ICPs

There are a number of paths to modelling CRC based upon

the culture of ICPs, perhaps the most direct involving the

collection of patient tumour material and the preparation of

stable long-term cultures. This has led to the development

of CRC organoid collections (or biobanks) which have the

aim of representing the diversity of CRC disease, infection,
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and drug responses that exists within the patient population

[17•, 26, 27]. An issue with such an approach is the need to

develop a biobank that truly reflects the main disease

subtypes. There are currently four clinical subtypes of CRC

that have been recently assigned by the CRC Subtyping

Consortium, they are microsatellite instability immune

(CMS1; characterized by hyper-mutated, microsatellite

unstable and strong immune activation), canonical (CMS2;

epithelial, with marked Wnt and Myc signalling activa-

tion), metabolic (CMS3; epithelial and evident metabolic

dysregulation), and mesenchymal (CMS4; prominent TGF-

b activation, stromal invasion, and angiogenesis) [28]. The

interpretation of drug response studies is notably more

complex in the CMS1 subtype because whilst the genetic

changes will classify the cultures the impact of immune

cell components is missing from the assay readouts [17•].

Such collections require not only enough patients per

subtype to power future analysis, but also culture condi-

tions that address concerns regarding any selective bias

favouring one CRC subtype over another. The key

advantages of patient-derived ICP cultures are the capture

of genetic combinations that are known drivers of human

disease, the maintenance of disease associated epigenetic

history, and the ability to recapitulate the histology of

primary disease.

GEMM-Derived ICPs

The second major source of malignant ICP cultures is from

genetically characterized GEMMs. Despite the drawbacks

previously mentioned, they are still invaluable tools for

research and can be combined with organoid culture to

great effect. This was epitomized by the work from the

group of Doug Winton, who used ICPs from GEMMs to

generate organoids that could contain a singly mutated ICP

to understand the altered crypt dynamics and clonal

advantage induced by the most common genetic alterations

pervading CRC biology (Apc loss, Kras activation, and P53

mutation) [29]. Indeed over the past 3 years, GEMMs and

organoids have been used to investigate the myriad of ISC-

and CRC-associated genes and their relevant pathways to

identify which are driving the tumour and which are pas-

sengers, e.g. Troy [30], Brg1 [31], Cdx2 [32], Kcnq [33],

Prox1 [34], Fzd7 [35], Yap [36]. As well as the continuing

exploration of intestinal biology, the GEMM-derived

organoids are also being deployed as platforms to screen

how normal gut and primary tumours with defined muta-

tions respond to potential cancer therapeutics and deter-

mine the mechanisms of action. For example, Lorenzi

et al. have used this approach to demonstrate that the

resistance of FBXW7-mutated CRC cells to certain types of

chemotherapy (e.g. Fluorouracil (5-FU)) is due to an

inhibition of terminal differentiation indicating the that

they could be overcome by using differentiating therapies

[37]. ICP culture has been used to investigate the p300-

CREB-MYB protein interactions and its role in Oxaliplatin

resistance [38]. It has been demonstrated that the changes

in gene expression pattern in a malignant intestinal stem

cell are also closely tied to radiation resistance; Ladang

et al. identified that the expression of Elp3 plays a key role

in the radio-resistance of the Lgr5?Dclk1? malignant ISC

due to its promotion of Sox9 translation [39]. There are of

course limitations to GEMM work that are driving the

development of the human CRC models described above,

such as the costs associated with their creation, their

maintenance, and their inability to accurately reflect the

biology of the human large intestine, particularly as the

majority of GEMM studies on intestinal tumourigenesis

have performed in the mouse small intestine. A key

advantage going forwards will be the ability to reduce the

cost of GEMM studies through combining defined genetic

backgrounds with the ability to establish them as long-term

organoid cultures and in doing so obtain much more data

per animal.

Genome Editing of ICPs

A third approach capable of utilizing both of the above

CRC culture derivations is through the exploitation of

current DNA manipulation technologies to manipulate

normal mouse and human ICPs into cancer ICPs that reflect

human CRC. Using shRNA to target APC, P53, and PTEN,

Onuma et al. have used lentiviral vectors in normal ICPs

that has enabled them to generate recapitulated intestinal

tumour organoids without generating gene-modified mice

[40]. Similarly, Wang et al. [41] using adenovirus vectors

and Ju et al. using food derived exosome delivery of

nanoparticles [42] have provided proof of principle studies

to demonstrate these techniques as effective gene delivery

vehicles for genetic manipulation in 3D organoid cultures.

However, future work is likely to use genome editing

technology to a greater extent. The groups of Toshiro Sato

and Hans Clevers have pioneered the use of CRISPR-Cas9

in ICP culture to demonstrate that common CRC mutations

(often termed as ‘driver mutations’) confer niche-inde-

pendent stem cell maintenance but not to metastatic pro-

gression, with data indicating that additional molecular

lesions are also necessary for invasive tumour behaviour

[43•]. A key feature of these techniques is the ability to

modify genes in a stepwise fashion enabling the immediate

analysis of the effect each gene has on an ICP [40, 44]. ICP

culture has demonstrated that oncogenic alterations acti-

vating the MAPK and Wnt/b-catenin pathways must be

consecutively and coordinately selected to assure stem cell

maintenance during colon cancer initiation and progression

[45]. Germann et al. [46] used organoids generated from
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Apcmin/? mice noting an aberrant cyst-like sphere mor-

phology induced by a constitutively activated Wnt pathway

that was responsible for increasing both self-renewal and

growth while reducing differentiation. This observation

combined with deletion studies elegantly described the

engagement of the Wnt, Notch, and Myb transcriptional

pathways in intestinal tumourigenesis and further high-

lighted the Wnt pathway as a therapeutic target in CRC. It

seems likely that these last techniques will slowly lead us

away from our current reliance on GEMMs.

Clinical Applications of Long-Term ICP Culture
Models

This section summarizes in turn, personalized medicine,

drug discovery, and regenerative medicine, the three main

areas of clinical application for long-term ICP cultures.

Personalised Medicine

One of the greatest potential benefits of ICP cultures is to

deliver a personalized medicine paradigm, where much

like a biomedical service such as microbiology or virobi-

ology a small sample is supplied and then cultured for rapid

analysis. Where cultures act as ‘avatars’ of patients in the

dish, an emerging application recently summarized by [47]

allows clinical feedback of sample response to available

therapeutics (Fig. 1). Ideally, these samples could also seed

the biobanks described in the previous section, increasing

the potential to break the existing 2D cell line paradigm

that is prevalent in commercial drug/toxicity testing [48].

Drug Discovery

Diverse collections of patient samples reflecting population

disease profiles may power future drug discovery pro-

grammes, wherein organoids representative of specific

disease subtypes would be tested against panels of com-

pounds in drug titration assays in order to determine their

potential efficacy. Key to shifting the current 2D culture

led paradigm will be the generation of defined batches of

organoids through scalable processes for commercial drug

discovery programmes. Already the use of ICP culture is

currently expanding knowledge of the role of individual

genes in response to injury [49], and chemical-induced

injury, e.g. ID1 [50].

Regenerative Medicine

Increasing our understanding of the influence of diet on the

ISC using ex vivo culture is identifying the mechanisms for

understanding the cause of disease resistance and

simultaneously opening up potential avenues to be

exploited for regenerative medicine. Potentially, the rela-

tionship between a high fat diet (which has been shown to

increase the self-renewal potential of intestinal organoids),

and susceptibility to CRC could be exploited to aid

regeneration following intestinal injury [51]. Further, it has

recently been demonstrated that transplantation of ICP

organoids can potentially be used to increase the absorptive

area in patients with short bowel syndrome [52] or alter-

natively tissue reconstruction, i.e. bowel reconstruction

after disease, could be achieved using de-cellularized

scaffolds for growing functional epithelium. The tools of

organoid culture have also been explored in single-gene

hereditary defects affecting the intestine, notably in studies

of the cystic fibrosis transmembrane conductor receptor

where organoids derived from the ISCs of cystic fibrosis

patients have facilitated functional studies, drug develop-

ment, personalized medicine, and gene repair approaches

to treating the disease [53–55]. Gene manipulation in vivo

and ex vivo has led to the conversion of ICPs into insulin

producing ‘‘neo b-cell islets’’, providing a potentially

abundant and accessible source of functional insulin pro-

ducing cells [56].

However, for organoids to achieve their clinical poten-

tial, biobanks of intestinal disease (i.e. CRC) would ideally

(1) contain the tumour, blood (germline DNA), and early

passage organoid set for DNA/expression analysis, which

would allow the checking for a faithful recapitulation of the

tumour by the organoid culture, alongside the identification

of mutations from polymorphisms, (2) the ability to sup-

ply/maintain organoids in sufficient quantities and under

standardized conditions to facilitate drug titration assays,

which will require the development of bioreactors capable

of standardizing growth and assay material, and (3) a

sample collection reflecting a broad genetic diversity

enabling toxicity studies where the range of likely toxic

responses can be monitored.

Advances in Ex Vivo ICP Culture

Increasingly, the literature demonstrates a proliferation of

the use of, and the number of, applications of ICP models

(Table 1). Indeed, there have been some attempts to define

and standardize conditions through publications of detailed

protocols [57], and commercial production of specific

media. Further streamlining of key components of the

culture platform will be required to generate fully defined

and reproducible growth conditions, a key example is the

3D support/extracellular matrix. The most commonly used

support matrix, Matrigel, is a biological derived product

that has a protein matrix composition of laminin, entactin,

collagen, and heparan sulphate proteoglycans with batch

212 Curr Pathobiol Rep (2016) 4:209–219

123



variations compounded by varying concentrations of

growth factors, such as bFGF, EGF, IGF-1, PDGF, NGF,

and TGF-b [58]. Despite the work of some groups to date a

defined hydrogel suitable for long-term ICP culture has not

been reported, matrix biologists from the field of directed

stem cell differentiation are now engaging with organoid

culture [59].

Aside from standardization of existing models, ongoing

elaborations of ICP niche culture are being pursued in

efforts to draw models still closer to recapitulating the

organ in a dish (Table 1). There are a growing number of

co-culturing methods to elaborate organoids with other cell

types from the intestinal niche: (1) nerve and fibroblast

cells replacing the need for exogenous Wnt signalling [60],

myofibroblasts [61–63], gut nerve cells [64], (2) microor-

ganisms of the gut microbiome modulating nutrient avail-

ability [65, 66], and (3) the use of microfluidics to explore

niche dynamics [67, 68] (Table 1). Many of the above uses

of these cultures are also discussed by Fatehullah et al.

[69]. Again, the key is to refine culture techniques that

accurately replicate the in vivo environment whilst

addressing the challenge of establishing reproducible

Fig. 1 Schema showing the

scope of tissue-derived ICP

culture. a Intestinal cell

progenitor culture, the origin of

different organoids (normal and

disease). b A collection of

techniques and technologies that

need to be in place in order to

fully exploit the potential of ICP

long-term cultures, for example

the need for rapid genotyping to

ensure the integrity of cultures

from passage to passage. c The

main applications and areas of

ongoing research for potential

deployment long-term ICP

cultures in biomedical and

clinical settings
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systems suitable for their application in drug discovery

programmes.

Analysis of ICP Organoids

The use of ICP culture and technology to alter gene

behaviour can elicit a myriad of cellular biology; thus,

there is a requirement for techniques that can be used to

analyse and quantify relevant parameters within complex

3D cellular environments [19]. This section sets out the

cell culture analysis tools that can be used with 3D orga-

noid cultures to quantify the complexity of organoid sys-

tems that display a wider range of biology compared with

‘classical’ 2D culture models. In some cases, tools have

been modified to better work in 3D culture conditions.

3D Organoid Visualization

A change from 2D to 3D biology represents a sizable image

analysis challenge. Standard light microscopy image anal-

ysis (often achieved using whole well or plate scanning

imaging apparatus) is limited to 2D images, offering rela-

tively few extra parameters (i.e. organoid diameter, organoid

area, and number of organoids), although they do facilitate

non-destructive serial measurements. In order to exploit the

readouts of commonly used immunohistochemistry and

immunofluorescence methods (for example live/dead cell

detection, cell polarity, cell lineages, and organoid archi-

tecture), microscopic imaging platforms, such as wide field

and confocal high content microscopes, are being used to

analyse organoid cultures in 3D. Software analysis pipelines

that are capable of analysing hundreds of 3D morphometric

parameters and readouts can be used to identify subtle bio-

logical effects of media conditions and drug treatments [70].

These workflows are being designed to be compatible with

the medium- to high-throughput drug screening demands of

the pharmaceutical industry, and have led the development

of morphometric analysis tools able to handle and interpret

the volume of image stacks generated. The power and con-

tinued evolution of these screening platforms will be needed

if 3D ICP-containing tumour models are to replace 2D cell

lines in the preclinical drug discovery process. Image anal-

ysis of organoids may also be aided by the development of

label-free imaging approaches such as coherence anti-

Stokes–Raman spectroscopy (CARS) since cell type iden-

tification within complex 3D cellular environments cur-

rently requires organoid fixation and permeabilization

[71, 72]. With the enhanced microscopy platforms, such as

CARS, it will very likely be the timely analysis and inter-

pretation of massive volumes of data created that represent

the rate-limiting step to their application in drug screening

and discovery programmes.T
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Single Cell Analysis

The ability to isolate and examine single cells within an

organoid is an important feature of ICP culture. As the next-

generation single-cell gene profiling becomes increasingly

available in research labs, further progress will be made in

understanding intestinal biology and disease. Existing next-

generation sequencing technology has already been adapted

and exploited to identify new intestinal cell types within

organoids based on single cell messenger RNA sequencing

[73]. This will allow lineage tracing experiments and a

greater understanding of the dynamics of normal and dis-

eased cells within the crypts. Although the readouts are still

relatively limited, standard biochemical assays (live/dead

ATP assays) have also been adapted for use in 3D culture,

and other bioassay techniques are also coming on line.

Techniques such as those reported by Fan et al. [74] wherein

they adapted existing tools to create a platform capable of

tracking dynamic energy metabolism in organoids and

demonstrated a Warburg-like metabolic profile associated

with colon tumourigenesis.

For the current rate of progress in the use of organoids to

be maintained, it will be important that the development of

technology, for obtaining and interpreting the vast quanti-

ties of information that can be gained from long-term ICP

cultures, does not lag far behind.

Bringing Ex Vivo Closer to In Vivo: The Next
Challenge

The complexity of the intestinal niche necessitates further

elaboration of culture model systems that will likely

include gut microbiota and diet research. Current models

do not include stroma, elements of the immune system, a

disease-specific ECM, or gut bacteria (the latter applica-

ble to drug development for infection models). The ability

of ICPs to faithfully maintain physiological relevance

over time is vitally important for their use as research

tools. However, replicating the environment in the human

large intestine is crucial to our understanding how CRC

develops. Culture conditions that manipulate the sig-

nalling pathways essential for ISC function are continu-

ally being identified and refined to better replicate and

understand the ISC niche [75, 76]. Recent research has

taken a reductionist approach to begin understanding the

enormous complexity of this system. Reports investigat-

ing the role of single components of the diet [51],

microbiome [26, 77–81], metabolome [66], immune sys-

tem [81], and stroma [63, 82] on ICP using ex vivo

culture are starting to emerge. These have demonstrated

an increased understanding of how the environment elicits

cellular and epigenetic alterations [83, 84] that are

relevant to human health and intestinal diseases. Beyaz

et al., using an ex vivo model, recapitulated ex vivo the

environment associated with a high fat diet and estab-

lished a PPARd-dependent link to an increase in stemness

within the intestinal niche that predisposes to CRC.

Although these reductionist approaches are yielding

greater insight into ICP, ultimately there will need to be

greater efforts made to bring ex vivo culture techniques

closer to the in vivo environment. The challenge for the

future is to develop the tools for ICP culture to the point

where human intestine can be recapitulated in the labo-

ratory, such as elaborate co-culturing systems involving

microfluidic linked culture vessels mimicking multi-

compartment and even multi-tissue interactions. This

would enable the exploration of the interactions between

the full range of factors (diet, microbiome, metabolome,

stroma, and immune system) that impact on the ISC and

the roles they play in promoting, preventing, initiating,

and driving intestinal diseases.
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