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As a highly social species, inclusion in social networks and the presence of strong social

bonds are critical to our health and well-being. Indeed, impaired social functioning is a

component of numerous neuropsychiatric disorders including depression, anxiety, and

substance use disorder. During the current COVID-19 pandemic, our social networks

are at risk of fracture and many are vulnerable to the negative consequences of social

isolation. Importantly, infection itself leads to changes in social behavior as a component

of “sickness behavior.” Furthermore, as in the case of COVID-19, males and females often

differ in their immunological response to infection, and, therefore, in their susceptibility to

negative outcomes. In this review, we discuss the many ways in which infection changes

social behavior—sometimes to the benefit of the host, and in some instances for the sake

of the pathogen—in species ranging from eusocial insects to humans. We also explore

the neuroimmune mechanisms by which these changes in social behavior occur. Finally,

we touch upon the ways in which the social environment (group living, social isolation,

etc.) shapes the immune system and its ability to respond to challenge. Throughout we

emphasize how males and females differ in their response to immune activation, both

behaviorally and physiologically.
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INTRODUCTION

During this historic moment, humanity is faced with a global pandemic of the novel coronavirus
SARS-CoV-2 which causes COVID-19. As a result, we must grapple not only with an enormous
infectious challenge, but also with social distancing, isolation, and the fragmentation of social
networks. This increased social distance is necessary to prevent viral transmission, but long-term
social separation is likely to adversely impact mental health outcomes far into the future. As
a highly social species, inclusion in social networks and the presence of strong social bonds is
critical to our health and well-being (1–3). Early studies suggest that loneliness and psychological
distress have increased significantly during the COVID-19 pandemic as compared to before it
began (4, 5) and that this loneliness and perceived social isolation are predictive of increased
anxiety, depression, and suicidal thoughts (5, 6). Devastatingly, the populations that appear to
be most vulnerable to COVID-19 are also those that bear the greatest burden of psychosocial
stress. Specifically, COVID-19 infection and COVID-19-related deaths are highest in minority
and low socioeconomic status (SES) populations both in the United States and worldwide (7–
10). Importantly, social isolation and social stress—at either the level of the individual or the
social group—have been shown to negatively impact immune function, while positive social
relationships and higher status within social hierarchies enhance many aspects of immune defense
and thus may protect against infection, across a wide array of infectious disease (11, 12).
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Across the evolutionary continuum, as more complex social
structures have evolved, so too has the risk of pathogen exposure.
Therefore, immune responses to infection and social systems
are inextricably linked. In the context of COVID-19, as well
as other infectious diseases, it is critical that we understand
the complex interplay between the immune system and the
social brain.

Numerous studies from countries including China, Italy, and
the United States have found that there is a sex difference in
COVID-19 disease prognosis and mortality, with men being
more vulnerable than women (13–19). Immune responses
to infection, including COVID-19, differ between men and
women. For instance, men appear to have higher circulating
cytokines such as Interleukin (IL)-8 and IL-18 following COVID-
19 infection, while women mount a greater T lymphocyte
response (20). These findings are in line with a large body of
previous literature demonstrating sex differences in the immune
response to a variety of infectious agents, with women typically
displaying lower susceptibility to infection, but higher rates of
autoimmune diseases [for review see (21, 22)]. In addition,
men may be more likely than women to be adversely impacted
by social isolation and stress as a result of the pandemic.
For example, in a study of 4,000 elderly men and women,
loneliness was predictive of mortality at a 10-year follow up
in men, but not women (23). Similarly, in a meta-analysis
of published studies, Roelfs et al. (24) found that mortality
risk is higher under conditions of underemployment and this
effect is 37% higher in men than in women (24). In non-
human animals, sex differences in social behavior abound,
and males and females often differ in their response and
susceptibility to social stress. These findings highlight the need
to better understand the ways in which sex differences in
social behavior and susceptibility to social stress may contribute
to sex-specific vulnerability and resilience in the face of
infectious agents.

In this review, we will reflect on the bi-directional relationship
between social behavior and the immune system, with an
emphasis on how it differs between the sexes. First, we will
review the acute effects of infection, either bacterial or viral,
on social behavior in both humans and other animal species
and how these behavioral effects differ between males and
females. We will also discuss the neuroimmune mechanisms
that have been posited to underlie these behavioral changes.
While many studies demonstrate that maternal infection (or
immune activation more broadly) during pregnancy and
early life infection can impact social behavior later in life,
here we will focus largely on acute adult infection for the
sake of scope. Next, we will explore the ways in which
the social environment (group living, social isolation, social
status, etc.) and perceptions of social connectedness shape
the immune system and its ability to respond to challenge
in males and females across species. Finally, we will touch
on the mechanisms by which this social context is encoded
in immune function. Together, we hope to highlight that
group living and pathogen defense go hand-in-hand, and that
neither can be completely understood without consideration of
the other Figure 1.

HOW DOES INFECTION CHANGE SOCIAL
BEHAVIOR?

Early observations of the behavior of sick animals and humans
noted a constellation of behavioral changes that have been
termed “sickness behavior.” These behaviors include lethargy,
anorexia, and social withdrawal and are not simply negative
effects of the pathogen, but critical adaptive responses on the
part of the host aimed at recuperating and reducing the spread
of infection to other individuals (25, 26). Sickness behavior
comes at a cost; lethargy, anorexia, and social withdrawal
weaken the individual, increase risk of predation, and limit
social opportunities such as in the context of mate selection
and parental care (27, 28). Therefore, the display of sickness
behavior represents an inherent trade off. Several theories as to
the utility of sickness behavior have been proposed. Lethargy
likely conserves energy in order to mount and maintain a fever
response [critical to fighting off invading pathogens; (25)], while
the entire suite of behaviors serves to protect the individuals’
kin by reducing physical contacts, decreasing environmental
contamination, and signaling illness to other individuals (27).
Indeed, several studies have shown that individuals of many
species are capable of recognizing, and avoiding interaction with,
sick conspecifics (29–32).

In Humans
In humans, recent studies have provided a nuanced view of the
ways in which infection and inflammation alter social behavior
[for comprehensive review see (33)]. Much of this work has
been conducted in laboratory settings using an experimental
challenge with the bacterial mimetic Lipopolysaccharide (LPS).
Participants treated in the lab with LPS report increased feelings
of social disconnection, loneliness, and social sensitivity as
compared to control-treated participants (34–36). These findings
are aligned with the idea that individuals withdraw from social
contact when ill. However, in some instances, it might be adaptive
to approach others during sickness so that they can provide care
and support. Inagaki et al. (37) found that participants reported
an increased desire to be with close others (spouses or family
members) following LPS administration. Similarly, positive social
feedback from an unfamiliar peer appears to be more rewarding
following LPS as compared to control treatment (38). Eisenberger
et al. (33) posits that heightened sensitivity to social information
(either positive or negative) following infection may underlie
these findings and be adaptive because it facilitates the rapid
identification of, and discrimination between individuals who
may or may not provide aid during the recuperative process.

Sex Differences in Humans
Are there sex differences in social withdrawal in humans?
Few studies have directly compared social outcomes in both
males and females following immune challenge in humans (39).
However, Moieni et al. (35) found that females reported higher
social disconnectedness scores than males following an LPS
challenge. In contrast to females, however, males reported lower
subjective social status following LPS administration than at
baseline (40). (32) observed that while both men and women
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FIGURE 1 | The bi-directional relationship between infection and social behavior. Infection (either viral or bacterial) induces social withdrawal and decreases social

network size, across species. Infection also increases sensitivity to social information and increases social interactions with familiar peers and family members.

Together, these changes in social behavior aim to reduce disease transmission while promoting individual recovery. Social context can also impact immune function.

Social isolation, social stress, or low position within a social hierarchy all lead to immune dysfunction—often shifting immune responses toward pro-inflammatory

rather than anti-viral strategies. Conversely, strong social bonds and high social status are associated with a shift in immune responses toward anti-viral strategies and

higher oxytocin release, which may act as an anti-inflammatory mediator. Created with BioRender.com.

complain about symptoms with similar frequency following LPS
challenge, men were more likely to emit vocalizations, such
as sighs and deep breaths, that might still signal illness to
others, than women (32). These findings provide evidence in
humans that males and females may manifest changes in social
behavior differently during an acute immune challenge. It is
important to note, however, that many factors - including those
that are often gendered - can influence the display of sickness
behavior in humans. Highlighting this, in a separate study,
(41) found that how sick participants anticipated becoming
predicted how sick they actually became (41). Similarly, in a
retrospective self-reported study of sickness behavior, familism,
or the valuation of family above the individual, was associated
with stronger sickness behavior in men than in women
(42). Thus, sociocultural influences may make it difficult to
determine biological sex differences in the sickness response
in humans.

In Animal Models
Social withdrawal following an LPS challenge has also been
observed in a wide array of non-human animal species Box 1.
Vocalizations are used by many species to communicate across
social networks and to find and engage with potential mates.
Such social contacts are reduced following LPS administration
in passerine bird species (54, 55), vampire bats (56), and
field crickets (57), among others. Wild barn mice decrease
their social contacts and limit the size of their social network
following an LPS challenge (58). Similarly, LPS administration to
dominant mice promotes hierarchy destabilization in laboratory
settings (59). Several studies have found decreases in direct

social interaction between novel conspecifics following LPS
administration in adult male rats and mice (60–63). Yet,
consistent with studies in humans, many instances have been
found in which animals prefer or increase social contact
following immune challenge—particularly with familiar peers.
In rhesus macaques, LPS administration increases time spent
engaging in affiliative behavior in both males and females
and this effect persists for 24 h after the stimulation (64).
Similarly, LPS administration increases social interaction and
huddling in male and female rats (65) and enhances partner
preference in female prairie voles (66). In vampire bats, LPS
administration decreases social grooming between conspecifics,
but this effect is minimal for maternal grooming of infants
(56). Together, these findings indicate that changes in social
behavior following infection are highly context- and social
partner- specific. This specificity is likely related to the
inherent trade-offs in sickness behavior discussed above. For
instance, individuals may limit social interactions with novel
individuals in order to reduce disease spread, but maintain,
or even enhance interactions with familiar conspecifics to
promote self/kin survival. Aspects of the social context,
such as whether or not an individual is currently rearing
offspring, may shift the risk vs. benefit of suppressing or
engaging in sickness behavior, thereby altering the degree
to which changes in social behavior are displayed following
infection (67).

Notably, while the effects of the viral mimetic
Polyinosinic:polycytidylic acid (Poly I:C) on social behavior
have been extensively characterized during the perinatal period
(68–70), much less is known as to how it effects social behavior
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BOX 1 | The relationship between infection and social communities.

In addition to changes in social behavior at the level of the individual,

infection, or the risk thereof, often changes social behavior at the community

level. These “social immune responses” are especially common in animal

species that live in large, complex social groups where risk of infection and

transmission is high, such as eusocial insect species (43, 44). They consist

of behaviors aimed at reducing exposure to pathogens in the environment

and limiting the establishment and transmission of pathogens once the

community has been infected (45). For example, honeybees respond to

invasion of the hive by the heat-sensitive fungus Ascosphaera Apis which

causes “chalkbrood disease” by generating a behavioral fever (rise in hive

temperature) which is protective against infection (46). Several insect species,

including honeybees and wood ants, secrete antimicrobial molecules or

collect antimicrobial resins from the environment which they incorporate into

the building of their nests (47, 48). Furthermore, infected individuals are often

either forcibly or voluntarily excluded from the colonies to limit pathogen

transmission. Indeed, in the ant species Temnothorax unifasciatus, worker

ants leave the nest to die in isolation following infection, presumably to limit

risk to kin (49). Finally, social grooming is used in insect species including

ants, earwigs, and honeybees to transfer antimicrobial or immune mediators

between individuals and between parents and offspring (50–52). In a wide-

scale study of 11 distinct insect lineages (some eusocial and some non-

eusocial), Lopez-Uriba et al. (53) used phylogenetic mixed linear models to

test whether colony size predicted cellular immune response. They found that

cellular immune responses were lower in larger colonies (53). This finding may

suggest that behavioral adaptation, rather than increased cellular immunity,

is the most critical defense against the increased risk of infection that comes

with community living in such insect species.

acutely in adulthood. Several studies have shown that Poly I:C
increases sickness behavior in adult mice and rats, but none
of these studies assessed social interaction (71–73). Further
characterizations of the effects of viral challenges on acute
sickness responses in adults would add greatly to this body
of literature.

Sex Differences in Animal Models
Despite this abundance of studies, there is a paucity of direct
comparisons of social responses to acute immune challenge
between adult males and females. One study in adult rats
found that LPS administration decreased social interaction but
increased huddling with familiar cage mates in both males and
females, but with stronger effects observed in females (65). In
line with this finding, sexual behavior and sexual receptivity are
inhibited following LPS injection in female, but not male rats
(74). It has been posited that such sickness-induced decreases in
sexual behavior may serve to reduce conception and pregnancy
while females are ill (75). In contrast, recent studies suggest
that males exhibit more sickness behavior than females following
adult administration of LPS, the viral mimetic Poly I:C, or
influenza viral infection, but these studies did not include the
assessment of social behavior [(76, 77), Sharma et al., 2019]. This,
along with sex differences in the neural mechanisms underlying
changes in social behavior following infection, remains an
important area for future research.

WHAT ARE THE NEUROIMMUNE
MECHANISMS MEDIATING THE
RELATIONSHIP BETWEEN SOCIAL
BEHAVIOR AND THE IMMUNE SYSTEM?

The process by which changes in social behavior are induced
following infection requires highly coordinated and brain-region
specific neuroimmune interactions [see review by (39)]. Bacterial
and viral infections activate the innate and adaptive immune
systems in the periphery. A large body of work shows that toll-
like receptor activation in innate immune cells triggers the release
of pro-inflammatory cytokines such as IL-1β, IL-6, and tumor
necrosis factor (TNF) α which then act in social neural circuits
to shift behavior (78–80). Below, we review the brain regions
and neuroimmune mechanisms which have been shown to be
most critical.

The Prefrontal Cortex, Amygdala, and
Mesolimbic Reward System as Key Neural
Substrates for Immune-Driven Changes in
Social Behavior
The amygdala, prefrontal cortex (PFC), and mesolimbic reward
system stand out as neural structures that have been implicated
in both the human and animal literature as important neural
mediators of infection-induced changes in social behavior. All
are core nodes of the “social decision-making network” which
regulates social behavior across vertebrate animals (81). Each
likely plays a unique role within these networks. As a “salience
detector,” the amygdala is critical to the identification and
decoding of social stimuli (82). This information is relayed to
the PFC, which is critical to social decision-making (83–85), as
well as (both directly and indirectly) to the mesolimbic system
[consisting largely of projections from the ventral tegmental area
(VTA) to the nucleus accumbens (NAc)] to drive behavior—
either approach or avoidance (86–88).

Findings in humans suggest that changes in amygdala activity
may serve to increase sensitivity to potential social threats
when sick. In a randomized controlled trial, LPS administration
increased amygdala activation in response to threatening
faces as compared to placebo control and this increase was
associated with increased feelings of social disconnection (89).
Multiple studies have found increased activity of the subgenual
anterior cingulate cortex (sACC; a sub-region of the PFC)
following immune activation. Specifically, administration of
the typhoid vaccine increased activity of the sACC during an
emotional face processing task in male participants and increased
circulating levels of pro-inflammatory cytokines such as IL-
6 (78). Furthermore, the functional connectivity of the sACC
with the amygdala, nucleus accumbens, and other regions of
the PFC was reduced by this exposure and this effect was
mediated by peripheral IL-6 levels (78). Finally, ventral striatum
activity is increased in response to images of support figures,
but not strangers, following LPS administration in human study
participants and this increase is correlated with circulating levels
of IL-6 in circulation (37). Together, these studies provide
evidence from human studies that the amygdala, PFC, and NAc
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may be key brain regions in which cytokines act to alter social
behavior following infection.

Findings in the animal literature also support the importance
of these brain regions as sites of neuroimmune mediation of
social behavior. In adult male mice and rats, LPS administration
increases the expression of c-Fos (a marker of neural activity)
in the amygdala, as well as IL-1β and IL-6 mRNA in the
amygdala (90–92). Interestingly, healthy male rats avoid social
interaction with conspecifics that have received an LPS challenge,
and this effect is dependent on vasopressin signaling in the
medial amygdala (93), lending further support for the role of the
amygdala in social information processing following infection.
LPS administration also increases mRNA for IL-1β, TNFα, and
IL-6 in the PFC of adult male rodents (94). As will be discussed
in more detail below, microglia, the resident immune cells of
the brain are key responders to peripheral cytokines following
infection (95). Peripheral LPS administration alters microglial
morphology in the PFC (often used as an indicator of function),
increasing microglial soma size and decreased process length
(96, 97).

Several studies suggest that dopamine signaling in the
mesolimbic system may be particularly important for linking
infection and social behavior [for complete review see (87)].
Immune challenge has been shown to impact dopaminergic
signaling in the context of reward and motivation, albeit not
in the social domain (98–100). Activation of VTA projections
to the NAc facilitates social interaction (101) and activation
of dopamine D1 receptors in the NAc increases social play
behavior (102). Work from our laboratory recently showed that
in healthy male (but not female) rats, microglial, complement-
dependent phagocytosis of D1 receptors in the NAc is required
for the normal developmental decline of social play behavior
between adolescence and adulthood (103). Intriguingly, Ben-
Shaanan et al. (104) found that chemogenetic activation of
dopaminergic projections from the VTA to the NAc increased
social interactions with familiar cage mates and improved
the innate immune response to E. coli infection—decreasing
bacterial load (104). This finding is in line with those from human
studies suggesting that activation of the ventral striatum (of
which the NAc is a component) may increase social interactions
with familiar peers, and thus, buffer against infection. Of note,
however, some findings are counter to this hypothesis, suggesting
that dopamine may increase neurotoxicity following infection
(87, 105).

Immune Mediators of Social Behavior
As evidenced by the studies discussed above, increases in the
pro-inflammatory cytokines IL-1β, TNFα, and IL-6 are often
associated with changes in social behavior following immune
activation and/or with activity in social circuits in the brain
(37, 78, 90–92, 94, 106). Several studies provide a causal link
between these cytokines and social behavior. For example, in
adult male rats and mice, peripheral or central administration
of an IL-1 receptor antagonist attenuates the suppressive effects
of LPS or IL-1β on social behavior (61, 107, 108). Interestingly,
IL-1 receptor blockade also reduces the effects of TNFα on
social behavior (79, 80), suggesting synergism between these

cytokines. Finally, central administration of either LPS or IL-
1β fails to induce social withdrawal in IL-6 KO mice (63).
Cumulatively, these studies provide compelling evidence for
a causal role of these cytokines in the induction of social
withdrawal following infection.

Microglia, the resident immune cells of the brain, are
also important mediators of the relationship between infection
and social behavior. Peripheral LPS injection increases IL-
1β and TNFα mRNA in microglia (109–111). Since LPS
does not cross the blood brain barrier, it is likely that local
cytokine release by microglia at least partially mediates the
impact of immune activation on social behavior. In support,
aberrations in microglial function, including chemogenetic
manipulation and elevated protein synthesis, disrupt social
behavior, and prevent immune activation-induced changes in
social behavior (112–114).

Finally, lymphocytes have also been implicated in the neural
control of social behavior. SCID mice, which lack mature B and
T lymphocytes and are thus deficient in adaptive immunity, have
deficits in social behavior that can be restored by lymphocyte
repopulation (115). Moreover, mice deficient in interferon-γ
(produced by T cells) display social deficits (115). Interestingly,
both SCID mice and IFN-γ knock-out (KO) mice also display
hyperactivity of the PFC in response to social stimuli. This
finding is well-aligned with the human studies demonstrating
increased activity of the PFC in response to social information
following infection.

Sex Differences in the Neuroimmune
Mechanisms Mediating Social Behavior
Following Infection
The vast majority of the work detailed above was conducted only
in male animals. However, the studies that have been performed
in both sexes indicate potential avenues for further investigation.
In humans, in a double-blind, placebo controlled clinical trial
on the relationship between cytokines and social behavior, LPS
administration increased both circulating IL-6 and TNFα, as well
as depressed mood and feelings of social disconnection in male
and female participants (35). Interestingly, cytokine increases
were greater in females than in males and behavior correlated
with cytokine measures in females only (35). In female, but
not male rats, IL-1β inhibits sexual behavior (116). In mice,
Sharma et al. (73) found sex differences in cytokine mRNA
expression in the brain following LPS challenge in adulthood,
with males having more IL-1β mRNA expression and females
having higher TNFα mRNA expression; however social behavior
was not assessed.

In many of the studies discussed earlier, females exhibited
greater social behavior changes following infection than males
(40, 65, 74). One possibility is that this might reflect better
behavioral adaptation in females. In general, males tend to fair
worse in the face of infection [for review see (21, 22)], while
females tend to mount greater adaptive immune responses to
viral infection—as is the case in COVID-19 (19, 20). One obvious
mechanism by which sex-specific susceptibility/responsivity
might be generated is via sex differences in steroid hormone
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exposures. In line with this idea, both androgens and estrogens
have been shown to influence immune function (117), with broad
theories suggesting that testosterone is immunosuppressive
while estrogen enhances immune function (118, 119). It has
also been proposed that exposure to androgens, in either
males or females, may increase susceptibility and variability
in responses to challenges (120), lending itself to greater male
vulnerability. Less is known regarding the specific role of
steroid hormones in social behavior changes following infection.
However, evidence supports their possible involvement. For
example, IL-1β administration increases anxiety-like behavior in
female rats in estrus, but not those in non-estrus (121). Moreover,
IL-1β administration also increases anxiety-like behavior in
ovariectomized females treated with progesterone (121). During
healthy brain development, VanRyzin et al. (122) recently showed
that testosterone drives increased microglial phagocytosis of
newborn neurons in the male brain, contributing to the
masculinization of social play behavior (122). Further research
is needed to determine the contribution of steroid hormones
to changes in social behavior following an acute infection
in adulthood.

Microglia represent another particularly attractive candidate
to mediate sex differences in the impact of infection on
social behavior. Indeed, microglial biology is replete with sex
differences during both homeostatic and disease conditions (22,
103, 122–124). For instance, recent work from our lab using RNA
sequencing demonstrated that microglial gene expression and
morphology differs between males and females at baseline (125).
Furthermore, based on a novel “microglial developmental index”
based on gene transcription, adult female microglia appear to
be more mature than male microglia and acute LPS challenge
accelerates microglial development in males only (Hanamsagar
et al., 2018). Intriguingly, we have also recently found that
microglial pruning of dopamine D1R receptors in the NAc is
critical to the normal development of social play behavior in
males, but not females (103). It is therefore possible that sex
differences in the impact of immune stimulation on microglial
function is a route by which sickness leads to sex-specific
behavioral responses.

HOW DOES SOCIAL CONTEXT SHAPE
IMMUNE FUNCTION?

Group living inherently increases individual exposure to
pathogens and parasitism, but also provides opportunities
for the evolution of collective social responses to protect
against infection/parasitism. A large body of literature across
species suggests that social isolation and social stress may
impair immune function, while strong social bonds may buffer
against infection.

Social Isolation and Immune Function
Early research into the effects of social isolation on immune
function revealed striking decreases in pathogen resistance
in isolated animals. For example, mice that were housed in
individual cages reached 85% mortality following West Nile

Virus infection, as compared to only 50% in socially housed
mice (126). This was driven by enhanced viral proliferation
and mass loss of the spleen and thymus in isolated mice. IL-6
expression in response to either the viral mimetic Poly I:C or
LPS is increased in isolated mice as compared to those that were
socially housed (71, 127). Social isolation also increases the blood
trafficking of leukocytes and monocytes (128) and decreases anti-
inflammatory IL-10 mRNA and protein in the blood and brain
(129). Wound healing is impaired to a similar extent in male and
female mice following social isolation (130, 131), indicating some
similarity between the sexes in this outcome.

Findings in humans echo this animal work. In an extreme
example, social isolation during space flight or terrestrial
preparation for space flight, led to damped immune responses
to viral infections and reactivation of latent viral infections such
as herpesviruses (132). More frequently, isolation is assessed
based on loneliness or “perceived social isolation” in humans.
In psychiatric inpatients, reported loneliness was found to
be associated with lower immunocompetence (133). Healthy
participants (male and female) who reported greater loneliness
mounted a greater TNFα, and IL-6 response to an acute LPS
challenge than those that did not (134). Similarly, trait sensitivity
to social disconnection is associated with a greater inflammatory
response (as evidenced by TNFα and IL-6) to LPS challenge,
(35). On the other hand, in a recent study of almost 9,000
adults over the age of 50, social engagement and cohabitation
were associated with lower levels of pro-inflammatory factors
including fibrinogen, C-reactive protein, and white blood cell
count, irrespective of sex (135). Thus, whether increases or
decreases in inflammatory markers is observed likely depends
very much on the specific context and endpoint in question.
Furthermore, too little or to great an immune response can have
detrimental consequences for the ability to overcome infection.
For instance, excessive cytokine release can increase mortality
following infection by damaging host tissues, as is the case of
the “cytokine storm” observed in some patients with COVID-
19 (136).

Many of the same neural structures that mediate the effects
of infection on social behavior, also mediate the effects of social
context on immune function. PFC gene expression analyzed
postmortem indicated that loneliness in the 5 years anti-
mortem was associated with an enrichment for immune related
genes (137). Greater feelings of loneliness are associated with
greater ventral striatum activity (138) suggesting convergence of
inflammation and social isolation effects on the ventral striatum.
Blocking opioids with the opioid receptor antagonist naltrexone
increases feelings of social disconnection (138), suggesting that
opioids may play a role in these effects.

Social Stress and Immune Function
A wealth of studies has shown that social stress, in the form of
social defeat stress in rodents, low social rank within a hierarchy
in non-human primates, and low socioeconomic status in
humans, has severe negative consequences for immune function
[for excellent reviews see: (139–141)].

In brief, in male rodents, social defeat increases pro-
inflammatory cytokines including IL-6, TNFα, and IL-1β, but
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decreases the anti-inflammatory cytokine IL-10 in the brain
(94, 142–144). Social defeat also exaggerates the impact of an
immune challenge with LPS on cytokines production, microglial
activation, and monocyte infiltration to the brain (145). Of
particular relevance to the current COVID-19 pandemic, lung
inflammation is also increased in mice exposed to social stress
(146). Until recently, social defeat paradigms were used almost
exclusively in male animals, for the simple reason that it was
harder to elicit aggression in females. However, recent work
has overcome this hurdle by using DREADD technologies to
induce aggressive behavior toward females in male rodents (147).
In this study, the authors found that social defeat induced
similar increases in pro-inflammatory cytokines and monocyte
infiltration into the brain (147), albeit without direct comparison
between the sexes. Still, it represents an important step toward
the inclusion of females in studies of adult susceptibility to
social stress.

In primates that live in hierarchically organized social groups,
several studies suggest that social status shifts immune function.
In female rhesus macaques, the effects of LPS administration
on pro-inflammatory gene expression are higher overall in
low-ranking vs high-ranking individuals. Furthermore, gene
expression patterns are shifted such that low-ranking females
up-regulated genes related to bacterial defense, while high-
ranking females upregulated more genes related to viral defense
(148, 149). The same group has also shown that in wild male
and female baboons, males up-regulate many more genes than
females in response to LPS and that some of these genes include
those that were up-regulated in low-ranking females (150). It
is important to note however, that the authors determined
that in males, immune gene transcription was a precursor to
social status, suggesting that immune function may contribute to
social rank (150). This is in line with the idea of a “conserved
transcriptional response to adversity” (CTRA) in which adversity
biases gene expression toward pro-inflammatory gene expression
and away from anti-viral and antibody production genes (151,
152). Similar CTRA gene expression shifts have also been
demonstrated in leukocytes from humans exposed to social
stress, i.e., low socioeconomic status (153, 154). In a study of
peripheral cytokine expression and cognitive function following
a flu vaccine in human (largely female) volunteers, participants
who had experienced early life social stress displayed more
strongly associated changes in IL-6 and depressed mood (155),
providing evidence in humans for long lasting effects of social
stress on immune responses.

Neuroimaging studies suggest that the PFC and amygdalamay
be critical to the effects of social stress on immune function.
Lower perceived social status is associated with an increased
pro-inflammatory response to a social evaluation stress test and
greater dmPFC activity during negative social feedback (38). In
a study of young women, this social stress task increased serum
cytokine levels, amygdala activity, and functional connectivity
between the amygdala and the dorsolateral PFC (156). Moreover,
this increased connectivity was associated with increased feelings
of social rejection (156).

Social Buffering and Immune Function
While social isolation and social stress potentiate inflammatory
responses, social bonds and supportive social networks can
also have powerful stress buffering and anti-inflammatory
functions (157, 158). In social species, strong social bonds
decrease stress and enhance immune function (159, 160). For
example, socially monogamous prairie voles exhibit stronger
immune responses than socially promiscuous meadow voles
(161). In infant Bonnet macaque monkeys exposed to maternal
separation, the presence of juvenile conspecific (friend)
prevented mitogen-induced increases in leukocyte activation
(162). Furthermore, the frequency of affiliative interactions
with this companion were positively associated with natural
cytotoxicity (162). Similarly, in a study of adults who experienced
low socioeconomic status (SES) as children, those who reported
high levels of maternal warmth exhibited lower IL-6 responses
following stimulation of peripheral blood mononuclear cells
[PBMCs; (163)]. Finally, in a study of adult men, perceived
social support at home was associated with higher levels of
natural killer (NK) cells and a higher INFγ/IL-4 cytokine
ratio (164).

As discussed earlier, activation of the mesolimbic reward
system, and dopamine signaling in particular, may represent a
potential mechanism by which positive social interactions might
boost immunocompetence (87, 104). Another potential
candidate is the oxytocin (OT) system. Oxytocin is a
highly evolutionarily-conserved neuropeptide that mediates
social behavior and is released during a variety of social
encounters (165). Of particular interest here, OT appears to
have anti-inflammatory capacities as well (166, 167). In a
randomized controlled trial in adult men, intravenous oxytocin
administration blunted LPS-induced increases in a number of
immune molecules, including TNFα (168). In singly housed
female Siberian hamsters, stress impairs wound healing, but this
effect is absent in socially housed hamsters or singly housed
hamsters treated with OT (169). Furthermore, OT receptor
antagonism delayed wound healing in socially housed hamsters
(169). In male mice, in vivo systemic treatment with LPS
increased TNFα and IL-1β in the PFC 24 h later, but this increase
was attenuated by intranasal OT administration (Yuan et al.,
2016). In vitro, OT also dampened the response of both primary
microglia and BV-2 cells to LPS treatment (Yuan et al., 2016).
Together, these studies provide evidence in both male and
female animals that OT is anti-inflammatory and, thus, of great
interest to understanding how social support systems may buffer
against immune challenge (158). Importantly, however, direct
comparisons between the sexes were not made in these studies.
Many studies have shown that OT is an important regulator
of social behavior in both males and females (170, 171). Yet,
the OT system is also replete with sex differences (172, 173).
OT and OTR expression are regulated by steroid hormones
(174–176). Therefore, it is highly likely that sex differences in
the OT system might contribute to sex differences in the degree
to which social interactions can provide buffering in the face of
immune challenge.

Frontiers in Psychiatry | www.frontiersin.org 7 February 2021 | Volume 12 | Article 633664

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Smith and Bilbo Sickness and the Social Brain

CRITICAL PERIODS AND CHRONIC
ILLNESS: THE BREAKDOWN OF ADAPTIVE
RESPONSES

Shifts in social behavior are a critical part of the adaptive
host response to infection. However, when immune challenges
occur during developmental critical periods or lead to chronic
inflammation, they can have long-lasting and maladaptive
consequences for social dysfunction—even after the acute illness
has passed (95, 177). Immune challenges during the perinatal
period disrupt adult social functioning in bothmales and females,
but these effects appear to depend on a variety of factors
including developmental timing of the challenge, drug dose, and
the nature of the challenge itself (30, 68, 69, 111, 178, 179).
For instance, maternal immune activation with influenza virus
(70) or Poly I:C during pregnancy leads to social deficits in
adult offspring in both rodents and primates (68, 70, 180–
182). Several studies have investigated the effects of Poly I:C
administration during early to mid-gestation on social behavior
in both male and female offspring and observed social deficits
only in males (180, 183). Interestingly, late gestational Poly I:C
(on the last day of pregnancy) induces social deficits in both
male and female offspring (184), which may suggest that sex-
specific vulnerability is sensitive to gestational age. Similarly,
in rodents, administration of a low dose of LPS between
postnatal days (PND) 3–5 has been shown to decrease social
behavior in both males and females in adolescence (30, 178)
and only in females in adulthood (111), while a high dose of
LPS administered at PND 9 only decreases social behavior in
adulthood in males (69). Thus, either a viral or bacterial infection
may alter social behavior inmales and females, but themagnitude
of these effects differs between the sexes and changes along
developmental trajectories.

Adolescence is a developmental phase during which social
motivation is heightened and social interactions are particularly
important for the development of appropriate adult social
behaviors. It is also a period of sensitivity to immune challenges
(185, 186). Several recent studies have taken great strides toward
characterizing sex differences in neuroimmune interactions
during adolescence as well as their implications for social
behavior (73, 76, 103, 187, 188). It appears that while males
and females respond differently to immune challenges during
adolescence, the pattern of sex differences is often specific
to a given neuroimmune endpoint. In line with this idea,
Cai et al. (76) found that females mounted greater IL-1β
and IFN-γ responses to an LPS challenge than males during
adolescence but this was the opposite during adulthood (76).
In contrast, IL-6, IL-12, and TNFα responses are similar
between males and females during both adolescence and
adulthood (76). Finally, male microglia appear to be more
amoeboid and less ramified than female microglia in the
PFC during adolescence (187). This “activated” morphology
is often used as a proxy (albeit a limited one) for microglial
functional state as it is observed following immune challenge
and correlates with pro-inflammatory cytokine expression
(125, 189, 190). Similarly, in the NAc, microglia play a

critical role in sculpting social circuits in males but not
females (103).

Sex differences in susceptibility to social isolation and
social stress are also observed during the adolescent period.
In humans, adolescent girls are more likely than adolescent
boys to be sensitive to social stress, become depressed, or
to engage in self-injurious behavior following stress in peer
and/or family relationships (191, 192). In adolescent male
mice, social isolation during adolescence leads to impaired
social recognition memory in adulthood (193). Furthermore,
chronic social stress during adolescence leads to social deficits
that are transmitted to the next generation as well (194). In
Syrian hamsters, deprivation from social play during adolescence
increased social avoidance following social defeat in both
males and females but had opposite effects in males and
females on aggressive behavior during the social defeat exposure
itself (195).

These findings highlight the long-term impact of infection
and social stress on social behavior when these challenges
occur during developmental critical periods. In these cases,
changes in social behavior shift from being acute adaptive
responses to an immediate context, but rather a developmental
organization of neuroimmune interactions and behavior that can
become maladaptive.

CONCLUSIONS: THE IMPORTANCE OF
SOCIAL CONTEXT WHEN IT COMES TO
COVID-19

In conclusion, we have highlighted the intimate relationship
between immune function and the social landscape. Infection
can shift social behavior either for the benefit of the host or
for the invading pathogen. Similarly, social context can make
individuals either more vulnerable to infection, as in the case of
social isolation or psychosocial stress, or it can provide social
buffering and promote resilience, as in the presence of strong
social bonds. As the scientific community, and the world at
large, works to promote resilience in the face of COVID-19,
social context must be a major consideration. Furthermore,
our synthesis of the literature on infection and social behavior
suggests that sex differences in this relationship in adulthood
remain vastly understudied. Overall, both males and females
respond to infection and social isolation, but the few studies
that have been conducted suggest nuanced sex differences in the
nature of these responses. Given the male bias in susceptibility
to COVID-19 and other infectious diseases, it is critical that we
understand the sex differences in neuroimmune function that
may impart vulnerability and protection to males and females,
respectively. Age at infection is also of critical importance.
Indeed, it is possible that COVID-19 infections in children
that elicit even a mild immune response could have long-
lasting impacts on social circuit development. Finally, we must
emphasize the ameliorative power of social connection and work
to better understand and promote those connections in this era
of social distancing.
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