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Background: Breast cancer is themost common cancer worldwide. Hypoxia and

lactate metabolism are hallmarks of cancer. This study aimed to construct a novel

hypoxia- and lactate metabolism-related gene signature to predict the survival,

immune microenvironment, and treatment response of breast cancer patients.

Methods: RNA-seq and clinical data of breast cancer from The Cancer

Genome Atlas database and Gene Expression Omnibus were downloaded.

Hypoxia- and lactate metabolism-related genes were collected from publicly

available data sources. The differentially expressed genes were identified using

the “edgeR” R package. Univariate Cox regression, random survival forest (RSF),

and stepwise multivariate Cox regression analyses were performed to

construct the hypoxia-lactate metabolism-related prognostic model

(HLMRPM). Further analyses, including functional enrichment, ESTIMATE,

CIBERSORTx, Immune Cell Abundance Identifier (ImmuCellAI), TIDE,

immunophenoscore (IPS), pRRophetic, and CellMiner, were performed to

analyze immune status and treatment responses.

Results:We identified 181 differentially expressed hypoxia-lactate metabolism-

related genes (HLMRGs), 24 of which were valuable prognostic genes. Using

RSF and stepwise multivariate Cox regression analysis, five HLMRGs were

included to establish the HLMRPM. According to the medium-risk score,

patients were divided into high- and low-risk groups. Patients in the high-risk

group had a worse prognosis than those in the low-risk group (P < 0.05). A

nomogram was further built to predict overall survival (OS). Functional
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enrichment analyses showed that the low-risk group was enriched with

immune-related pathways, such as antigen processing and presentation and

cytokine-cytokine receptor interaction, whereas the high-risk group was

enriched in mTOR and Wnt signaling pathways. CIBERSORTx and

ImmuCellAI showed that the low-risk group had abundant anti-tumor

immune cells, whereas in the high-risk group, immunosuppressive cells were

dominant. Independent immunotherapy datasets (IMvigor210 and GSE78220),

TIDE, IPS and pRRophetic analyses revealed that the low-risk group responded

better to common immunotherapy and chemotherapy drugs.

Conclusions: We constructed a novel prognostic signature combining lactate

metabolism and hypoxia to predict OS, immune status, and treatment response

of patients with breast cancer, providing a viewpoint for individualized treatment.
KEYWORDS

breast cancer, hypoxia, lactatemetabolism, immunotherapy, immunemicroenvironment
(IME), machine learning, bioinformatics
Introduction

Breast cancer (BC) is the most common cancer among

women, with an annual incidence rate of 0.5% (1). Developing

comprehensive treatment strategies has significantly improved

outcomes for patients with BC. Immune checkpoint inhibitors

(ICI) are revolutionizing cancer treatment but are relatively

restricted to the triple-negative histological subtype (2).

However, many BC patients have poor outcomes owing to

recurrence, metastasis, and chemotherapy resistance (3). It is

still challenging to develop effective biomarkers to identify

patients with BC and poor prognoses while guiding treatment.

Hypoxia is a typical tumor microenvironment (TME)

feature in nearly all solid tumors. Many features of cancer can

cause hypoxia, including uncontrolled tumor proliferation,

tumor micro-vessel abnormalities, diffusion geometry

deterioration, and tumor-associated anemia (4, 5). Extensive

reviews have shown that hypoxia can regulate tumor

proliferation, angiogenesis, aggressiveness, metastasis, and

radiotherapy resistance (6–8). Hypoxia can also influence

genetic instability, proteomic changes, genetic hypoxia-

resistance, and stem cell phenotype maintenance (9–13).

Moreover, hypoxia can profoundly impact large-scale

proteomic changes via several transcription factors, especially

hypoxia-inducible factor 1 [HIF-1] (14). A significant portion of

intratumoral lactate accumulation can also be induced by HIF-1-

mediated metabolic reprogramming (15).

Lactate is the product of anaerobic glycolysis. It is closely

related to the development, maintenance, progression, TME,

metastasis, and treatment resistance of cancers (16–18). Lactate

accumulation in intratumoral tissue is primarily a consequence
02
of HIF-1-mediated metabolic reprogramming; however, several

HIF-1-independent mechanisms also produce lactate, such as

MYC activation (19). Alterations in lactate metabolism are

associated with cell invasion, migration, angiogenesis, drug

resistance, and immune escape. In gastric cancer, abnormal

lactate metabolism can lead to acquired resistance via the NF-

kB pathway (20). In BC, lactate generated by tumor cells induces

programmed death-ligand 1 (PD-L1) in tumor cells, causing

tumor-specific antigens to evade immune cells, thereby

promoting growth (21). Enhanced lactate exposure can affect

the phenotype of MCF7 cells and promote tamoxifen resistance

(22). Furthermore, high lactate levels could increase cancer

stemness and lead to worse clinical outcomes in patients with

BC (23).

As the main features of TME, both hypoxia and lactate can

regulate the anti-tumor immune response. Hypoxia attenuates

anti-tumor immunity by increasing the pro-tumorigenic M2

phenotype, intratumoral accumulation of immunosuppressive

regulatory T cells, and stimulation of adenosine receptors (12,

24, 25). Lactate inhibits CD8+ and CD4+ effector T cell function

but increases T helper 1 cell differentiation and interferon-g
(IFNg) production (26–30). Hypoxia can also upregulate PD-L1

by binding HIF-1 to the hypoxia response element in the PD-L1

proximal promoter (31, 32). Recent research reported that

lactate could regulate programmed cell death protein 1 (PD-1)

specifically in effector regulatory T (eTreg) cells, thereby leading

to treatment failure of ICIs; suppression of lactate metabolism in

Treg cells enhances sensitivity to ICIs in resistant tumors (33).

The role of hypoxia and lactate metabolism in diverse

cancers has been further demonstrated by genomic studies in

recent years. The effect of hypoxia on prognosis, treatment
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guidance, and immune infiltration assessment has been reported

in many tumors, such as cervical cancer, head and neck

squamous cell carcinoma, and BC (34–36). Simultaneously,

lactate metabolism was related to the outcomes and immune

microenvironment in skin cutaneous melanoma, kidney renal

clear cell carcinoma, and BC (37–39). In BC, prognostic models

have been developed solely using lactate metabolism-related

genes (LMRGs) or hypoxia-related genes [HRGs] (39–41).

However, considering the heterogeneity of BC and the

complex interactions between hypoxia and lactate metabolism,

these alone cannot fully identify the relevant characteristics of

BC. Hence, landscape assessment of the fundamental

combination of hypoxia and lactate metabolism on BC

prognosis, TME, and ICIs therapy remains necessary.

In this study, we simultaneously considered the impact of

lactate metabolism and hypoxia on BC by applying both LMRGs

and HRGs in constructing a hypoxia-lactate metabolism-related

prognostic model (HLMRPM) that could accurately predict BC

prognoses, immune status, and therapy response.
Methods

Data collection

RNA sequencing and clinical data of 1113 BC cases were

obtained from The Cancer Genome Atlas (TCGA) data portal,

along with 113 normal tissue samples (https://portal.gdc.cancer.

gov/). The University of California Santa Cruz (UCSC) Xena

provided data on genotype-tissue expression [GTEx] (https://

xenabrowser.net/datapages/), a comprehensive public resource

for studying normal tissue-specific gene expression and

regulation. We retained 1033 patients with overall survival

(OS) time longer than 30 days. The microarray dataset

GSE20685 (N = 327) was downloaded from the Gene

Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.

gov/geo/). For immunotherapy response predictions, two

immunotherapeutic cohorts were included in our study: The

IMvigor210 cohort (advanced urothelial cancer with

atezolizumab intervention) was downloaded from the website

based on the Creative Commons 3.0 license (http://research-

pub.Gene.com/imvigor210corebiologies) (42); the GSE78220

(metastatic melanoma with pembrolizumab treatment) was

downloaded from the GEO (43). The main abbreviations were

list in Table S1.

The predefined gene sets included in our research were

acquired from the Molecular Signatures Database (MSigDB;

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (44). We

used the terms “lactic” and “hypoxia” as the search keywords

in the MSigDB database. Five priority LMRG sets were

eventually determined: GOBP lactate metabolic process, HP

increased serum lactate, HP lactic acidosis, HP lactic aciduria,
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and HP severe lactic acidosis. Seven priority HRG sets were

eventually determined: hallmark hypoxia, winter hypoxia

metagene, harris hypoxia, Buffa hypoxia, Mizukami hypoxia

down, Mizukami hypoxia up, and reactome cellular response

to hypoxia. After deleting duplicates, 284 LMRGs and 493 HRGs

were identified for subsequent analysis [Table S2].
Identification of differentially expressed
genes, differentially expressed LMRGs
and differentially expressed HRGs

We analyzed differentially expressed genes (DEGs) using the

R package “edgeR” in R (| log2 fold change [FC]|>1 and P <

0.05). We then identified differentially expressed LMRGs

(DELMRGs) and HRGs (DEHRGs) by intersecting DEGs with

LMRGs and HRGs, and visualizing them using the Venn

diagram with the R package “VennDiagram”. The relationship

between DELMRGs and DEHRGs in BC was assessed using the

R package “corrr”. The protein-protein interaction (PPI)

network was constructed using the STRING database (https://

string-db.org/) and Cytoscape (v3.9.0). The web-based tool

Metascape (http://metascape.org/) could perform gene

annotation and functional enrichment analysis and be used for

annotating DELMRGs and DEHRGs.
Construction of hypoxia-lactate
metabolism-related prognostic model

Using Cox regression analysis, prognostic DEHRGs and

DELMRGs were identified (P < 0.05). We further divided the

prognostic genes into favorable genes, where high RNA expression

correlates with longer survival time, and unfavorable genes, where

high RNA expression correlates with shorter survival times. To

construct a robust HLMRPM, we used the random survival forest

(RSF) algorithm to reduce the dimensions of genes using the R

packages “randomForestSRC” and “randomSurvivalForest” (45).

RSF is a non-parametric tree-based ensemble learning method that

can automatically select and rank variables (46, 47). Genes ranked

in the top 15 lists of variable importance (VIMP) and minimal

depth were reserved as the most important prognostic hypoxia-

lactate metabolism-related genes (HLMRGs). The stepwise

multivariate Cox regression analysis constructed the HLMRPM

[risk score = (0.6139585 ×ESRP1) + (-0.3698120 ×MAFF) +

(0.1682696×SLC2A1) + (-0.2963183 × DARS2) + (0.2690044

×TH)]. Each patient had a risk score and was grouped into a

high- or low-risk group based on the medium-risk score.

Furthermore, the prognostic prediction value of the model

was investigated in the TCGA and GSE20685 cohorts. Kaplan–

Meier survival analysis was performed using the R package

“survminer” to compare OS between the two risk groups.
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Receiver operating characteristic (ROC) curves were constructed

using the R package “timeROC” to assess prediction efficiency.

Finally, univariate and multivariate Cox regression analyses were

done to determine the independent prognostic value of

the HLMRPM.
Stratified analysis and independent
prognostic analysis

Stratified analysis was used to assess the prognostic value of

HLMRPM in different subgroups stratified by clinical features.

We assessed HLMRPM accuracy using ROC curves. We

performed univariate and multivariate Cox regression analyses

with the risk score, age, stage, and T, N, and M stages to evaluate

the independent prognostic factors for BC.
Construction of the prognostic
nomogram

To calculate the 1-, 3-, and 5-year OS probabilities, a

nomogram was constructed using independent prognostic

factors. ROC curves, C-index, and calibration curves were used

to evaluate the performance of the nomogram. We further

measured the net benefit of the nomogram and clinical

features alone with decision curve analysis (DCA).
Functional enrichment analysis

To analyze the typical functional features of the two risk

groups, we analyzed the DEGs between the two groups and

then annotated them with Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) using the R

package “ClusterProfiler” (48). Gene set enrichment analysis

(GSEA) was also used to explore variations in pathway

activities between the two risk groups (P < 0.05 and false

discovery rate (FDR) < 0.25) (49). Annotated gene sets

“c2.cp.kegg.v7.5.1. symbols.gmt” were downloaded from

MSigDB. We further used the R package “ClusterProfiler” to

visualize the results.
The correlations between the risk score
and stem cell-like features

Tumour stemness can be measured with RNA stemness

score based on mRNA expression (RNAss) and DNA stemness

score based on DNA methylation pattern (DNAss) (50).

Spearman correlation test was used to examine the association

between the risk score and RNAss.
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Assessment of the TME, immune cell
infiltration, and immunotherapy response

The immune cell abundance identifier (ImmuCellAI) can

predict the response to ICIs by assessing the abundance of

immune cells, especially different T cell subsets (51).

ImmuCellAI was used to assess the abundance of infiltrating

immune cells according to the “ssGSEA” algorithm.

Furthermore, we used the ESTIMATE algorithm with the R

package “estimate” to assess the proportions of TME

components (52), resulting in four indices: tumor purity,

immune, stromal, and ESTIMATE scores. A higher score

indicates a larger proportion of components in the TME. We

further performed the “Cibersort” algorithm to analyze the

infiltration levels of immune cell types (53).

We compared the expression of well-known immune

checkpoint genes (ICGs) between the two risk groups.

Immunophenoscore (IPS) is a machine-learning-based system

that calculates z-scores based on four immunogenicity-related

cell types (54). IPS and an online tool called TIDE were used to

predict patient response to ICIs (http://tide.dfci.harvard.edu/)

(55, 56).

The IMvigor210 and GSE78220 cohorts were further used to

validate the predictive power of the HLMRPM for ICIs response.

Patients who achieved complete remission (CR) or partial

response (PR) or stale disease (SD) were classified as

responders and compared with non-responders who showed

signs of progressive disease (PD).
Assessment of the sensitivity to
chemotherapy drugs in two risk groups

To assess the association between the risk score and drug

sensitivity, we used the R package “pRRophetic” and the

CellMiner database. The R package “pRRophetic” was used to

calculate the half-maximal inhibitory concentrations (IC50) of

common chemotherapy drugs (57, 58). Wilcoxon signed-rank

tests were used to compare IC50 values between the two risk

groups. We further predicted the potential target drugs

(approved by the FDA and those in clinical tests) that could

target the five HLMRGs in the HLMRPM using the CellMiner

database (https://discover.nci.nih.gov/cellminer) (59, 60).
Verification of five HLMRGs in databases

We verified HLMRG expression using other online public

databases. We analyzed HLMRG expression in BC tissues and

normal tissues from TCGA and GTEx. In addition, we

performed a survival analysis of five HLMRGs in the TCGA

cohort. We further assessed immunohistochemical images and
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staining intensity of HLMRGs in BC and normal tissues from

the Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/). In the HPA database, four categories of

high, medium, low, and not detected were used to evaluate

expression levels. These categories included a scoring system

based on the proportion of positive-stained cells (>75, 25–75, or

<25%) and staining intensity (strong, moderate, weak, or

negative). We further aggregated the staining intensities of the

five HLMRGs in breast cancer and normal tissues from the HPA

database. The biological functions of the five HLMRGs were

assessed using the Gene Set Cancer Analysis (GSCA) database

(http://bioinfo.life.hust.edu.cn/GSCA/#/). We also evaluated the

association of these five genes with immune cell infiltration.
Statistical analysis

Statistical analyses were performed using the R software

(version 4.0.5). The Wilcoxon signed-rank test was used to

compare the differences between the two groups. All tests were

two-sided; a p-value of less than 0.05 was considered statistically

significant; and the significance levels were set at * P ≤ 0.05, **

P ≤ 0.01, and *** P≤ 0.001.
Results

Identification of DEGs, DELMRGs, and
DEHRGs in breast cancer

There were 20948 DEGs in BC compared with normal

tissues, including 17466 upregulated and 3482 downregulated

genes. The volcano plot showed 20948 DEGs (Figure 1A). The

Venn diagram showed that there were 145 DEHRGs and 38

DELMRGs, two of the genes were shared (Figure 1B).

Figure 1C showed a strong positive correlation between

DEHRGs and DELMRGs in BC. The PPI network revealed

intrinsic correlations between the DEHRGs and DELMRGs

(Figure 1D). Functional enrichment analyses in the Metascape

database revealed that DEHRGs and DELMRGs were closely

associated with hypoxia and metabolic processes (Figures 1E–

G). The workflow of this study is illustrated in Figure 2.
Construction of the HLMRPM and
assessment of its predictive ability

To identify DEHRGs and DELMRGs with prognostic value,

we performed a univariate Cox regression analysis and obtained

33 DEGs with significant effects on patient prognosis, including 7

DELMRGs and 26 DEHRGs (Figure 3A). Seventeen unfavorable

DEGs with HR > 1 in breast cancer and seven favorable DEGs
Frontiers in Immunology 05
with HR < 1 in breast cancer were used for further analysis

(Figure 3B). Finally, 15 genes (ACOT7, B4GALNT2, CDKN1C,

DARS2, ESRP1, IRS2, MAFF, MRPL13, SEC61G, SHCBP1,

SLC2A1, TFRC, TH, TIMM17A, and VIM) were retained and

ranked in the top 15 by the minimal depth and VIMP (Figure 3C).

Using multivariate Cox regression, the five genes comprise the

HLMRPM: risk score = (0.6139585 × ESRP1) + (-0.3698120 ×

MAFF) + (0.1682696 × SLC2A1) + (-0.2963183 × DARS2) +

(0.2690044 ×TH) (Figure 3D and Table S3). Patients were then

categorized into high- and low-risk groups based on their median

risk scores. The high-risk patients suffered from poor outcomes

(Figure 3E). The area under curves (AUCs) of HLMRPM in

predicting the 1-, 3-, and 5-year OS were 0.785, 0.671, and 0.638 in

the TCGA cohort (Figure 3F). The risk score, clinical events, and

five HLMRG expressions between the two risk groups were

illustrated in Figure 3G.

In the GSE20685 cohort, the high-risk patients suffered poor

outcomes (Figure 3H). The 1-, 3-, and 5-year AUCs were 0.583,

0.627, and 0.669, respectively (Figure 3I). The risk score, clinical

events, and five HLMRG expressions between the two risk

groups were similar to the TCGA cohort (Figure 3J).
Stratified analysis and independent
prognostic analysis

To further verify the ability of HLMRPM to accurately and

independently predict the outcome of patients with BC, we

performed stratification analysis, Cox regression analysis, and

ROC curves. We assigned patients to different subgroups

according to age (>60 vs. ≤60 years), ER stage (negative vs.

positive), HER2 stage (negative vs. positive), PR stage (negative

vs. positive), stages (stage1-2vs. stage3-4), American Joint

Committee on Cancer (AJCC) T stage (T1-2 vs. T3-4), AJCC

N stage (N0-1 vs. T2-3), and AJCC M stage (M0 vs. M1). We

then conducted Kaplan–Meier survival analysis. We found that

high-risk patients consistently showed significantly worse

outcomes in many subgroups, including age ≤60 years, ER-

positive, PR-positive, HER2-negative, stage1-2, stage3-4, T1-2,

T3-4, N0-1, N2-3, and M0 stages (Figures 4A–P). These results

demonstrated the universal applicability of the HLMRPM.

Furthermore, we performed univariate and multivariate Cox

regression analyses on risk score, age, stage, T, N, and M stage in

the TCGA cohort. Based on univariate Cox regression analysis,

the hazard ratio (HR) and 95% confidence interval (CI) of the

risk score, age, stage, T, N, and M stage were 1.679 (1.399–

2.015), 1.029 (1.013–1.046), 1.029 (1.013–1.046), 1.819 (1.394-

2.373), 1.753 (1.409–2.180), and 3.644 (1.759–7.552),

respectively (P < 0.05) (Figure 5A). After multivariate Cox

regression analysis, the HR and 95% CI of the risk score, age

and N stage were 1.659 (1.378–1.998), 1.031 (1.014–1.049), and

1.570 (1.075–2.292) (P < 0.05), respectively (Figure 5B).
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Establishment of a predictive nomogram

Clinical nomograms are widely used in predicting patient

survival by computing set points based on nomogram scores.

A nomogram was constructed based on independent

prognostic markers (risk score, age, and N stage) to

quantitatively predict the 1-, 3-, and 5-year OS rates in

patients with BC (Figure 5C). The C-index of the nomogram

is 0.794. The calibration curves for the nomogram showed an

ideal prediction accuracy (Figure 5D). The AUC values of the

nomogram were 0.896, 0.788, and 0.725 at 1, 3, and 5-year,

respectively (Figure 5E). The DCA curve was used to render

clinical validity to the nomograms (61). Figure 5F

demonstrated that the nomogram could provide many

short- and long-term net clinical benefits. Figure 5G

demonstrated that the nomogram could bring more net

clinical benefits than clinical characteristics alone. Taken

together, the nomogram based on HLMRPM could predict
Frontiers in Immunology 06
both short- and long-term OS in patients with BC, which

could assist in clinical management.
Functional enrichment analyses of the
two risk groups

To clarify the biological function characteristics of the two

risk groups, we conducted GO, KEGG, and GSEA analyses.

Using the R package “edgeR”, 20854 DEGs were identified

between the two risk groups, with 20218 up-regulated and 636

down-regulated genes in the high-risk group (Figure 6A). GO

analyses of the DEGs showed significant enrichment of immune-

related biological processes, including regulation of angiogenesis

(Figure 6B). Similarly, KEGG pathway analysis showed

enrichment of immune-related pathways in the low-risk

group, including the IL-17 signaling pathway and PPAR

signaling pathway. In contrast, chemical carcinogenesis and
A B

D E

F G

C

FIGURE 1

Identification of the differential expressed HRGs and LMRGs. (A) The volcano plot of the DEGs. (B) The Veen diagram of the DEGs, HRGs, and
LMRGs. (C) The relationship of the DEHRGs and DELMRGs in breast cancer. (D) The PPI network of the DEHRGs and DELMRGs in the string
database. (E–G) The function of the DEHRGs and DELMRGs in the Metascape database.
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microRNAs in cancer were activated in the high-risk group

(Figure 6C). GSEA further verified that signatures related to cell

cycle, mismatch repair, mTOR signaling, DNA replication,

oocyte meiosis, and Wnt signaling pathways were significantly

enriched in the high-risk group, indicating the proliferative

status of high-risk patients (Figure 6D). The results also

showed that immune-related pathways were enriched in the

low-risk group, such as the T/B cell receptor signaling

pathway, cytokine-cytokine receptor interaction, leukocyte

transendothelial migration, natural killer cell-mediated

cytotoxicity, and chemokine signaling pathway (Figure 6E).

These results showed the different immune activity and

proliferative status in the two risk groups, which might

account for the different survival rates.
Tumor stemness analyses

Stemness-related biomarkers in tumor cells were closely

associated with drug resistance, cancer recurrence, and

proliferation (62). We found that the risk score was positively

correlated with RNAss and DNAss, and the two stemness-related

biomarkers were higher in the high-risk group than in the low-risk

score (p < 0.001) (Figures 6F–I). These results suggested that a

high-risk score might indicate more active tumor-initiating cells.
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Different immune landscapes of two risk
groups

Functional enrichment analysis revealed different degrees of

immune function enrichment in the two risk groups. To

investigate the characteristics of the tumor immune

microenvironment (TIME) in the two risk groups, we estimated

the expression of immunomodulators (54), immune checkpoint

genes, and infiltration level of tumor-infiltrating immune cells.

We found that expression of MHC-I constituents and MHC-II

components were significantly elevated in the low-risk group

(Figure 7A), indicating enhanced antigen presentation and

processing capacity in low-risk patients. Key chemokines and

their receptors included B2M, CCL17, CCL22, CCL3, CCL4,

CCL5, CCR2, CCR4, CCR5, CXCL1, and CXCL16, CXCR3,

CXCR6, and XCL2 were also significantly upregulated in the

low-risk group (Figure 7B), suggesting that additional anti-tumor

immune cells might be recruited in low-risk patients.

Furthermore, association analyses of immune components

were performed, including ESTIMATE, Cibersortx, and

ImmucellAI. The results of the ESTIMATE algorithm showed

that the stromal, immune, and ESTIMATE scores were

significantly higher in the low-risk group than in the high-risk

group, while tumor purity was markedly increased in the high-

risk group (Figure 7C). There was also a significant positive
FIGURE 2

The flow of the study.
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correlation between risk score and stromal, immune, and

ESTIMATE scores, alongside a negative correlation with

tumor pur i ty (F igure 7D) . High tumor pur i ty i s

associated with cancer development and poor prognosis (63).

CIBERSORTx can reveal the infiltration of immune cells in the

TME. Moreover, M1 macrophages, CD8+ T cells, naïve B cells,

resting mast cells, resting dendritic cells, activated natural killer

(NK) cells, and monocytes were abundant in the low-risk group.

In contrast, M2 macrophages, M0 macrophages, and resting NK

cells were more predominant in the high-risk group (Figure 7E).

As T cells have many subsets with specific functions, we assessed

the abundance of infiltrated immune cells using the ssGSEA
Frontiers in Immunology 08
algorithm in the ImmuCellAI database (51). Several cell types,

namely CD4+, CD8+, NK, NK T (NKT), Tc, Tcm, Tfh, and

gamma delta T cells (Tgd) were markedly enriched in the low-

risk group. In contrast, many immunosuppressive cell types

were prevalent in the high-risk group, including B cells, naïve

CD8, iTregs, macrophages, monocytes, neutrophils, dendritic

cells (DC), natural regulatory T cells (nTregs), Tem, and type 1

regulatory T cells (Tr1) (Figure 7F). These results indicated that

HLMRPM could predict TIME, and high-risk patients usually

had lower immune infiltration and elevated immunosuppressive

cells. These might partly explain the significant difference in

prognosis between subgroups.
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C

FIGURE 3

Construction and evaluation of the HLMRPM. (A) Univariate Cox regression analysis of the DEHRGs and DELMRGs in the training cohort. (B) The
veen diagram indicated the favorable and unfavorable genes. (C) The genes were ranked by the minimal depth and VIMP. (D) The forest graph
showed the results of stepwise multivariable cox proportional hazards regression analysis. (E) The OS curve of the two risk groups in TCGA
cohort. (F) The time-dependent ROC curves of the HLMRPM in TCGA cohort. (G) The risk score, clinical event, and the model genes between
the two risk groups in TCGA cohort. (H) The OS curve of the two risk groups in GSE20685 cohort. (I) The time-dependent ROC curves of the
HLMRPM in GSE20685 cohort. (J) The risk score, clinical event, and the model genes between the two risk groups in GSE20685 cohort.
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Prediction of response to
immunotherapy in BC patients

Studies have shown that blocking immune checkpoint

pathways could be a promising way to achieve anti-cancer

immunity and high expression of ICGs related to a better

response to ICIs (64). Therefore, we assessed the expression of

44 ICGs in the two risk groups. The results showed that nearly all

ICGs were significantly higher in the low-risk group, such as

BTLA, CD28, CD40, CD27 and PDCD1 (Figure 8A). We further

evaluated the response of immunotherapy to TIDE and IPS. The

results of TIDE showed that low-risk patients respond better to
Frontiers in Immunology 09
ICIs than high-risk patients (53.3% vs. 39.1%, P < 0.001)

(Figure 8B). In addition, we found that the risk score was

lower in responders than in non-responders, indicating a

correlation between risk score and immunotherapy efficacy

(Figure 8C). The susceptibility of patients to ICIs was further

assessed using IPS. The results demonstrated that the low-risk

group had higher IPS in any CTLA4 and PD-L1 stratification

than the high-risk group, indicating that the relative

probabilities of responding to ICIs in the low-risk group were

higher than those in the high-risk group (Figures 8D–G).

To further test the capabil ity of our model on

immunotherapeutic benefit prediction, we utilized two
A B D
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FIGURE 4

Kaplan–Meier survival analysis between the two risk groups in subgroups stratified by clinical characteristics: including age [>60 years vs. ≤60
years] (A, B), ER stage [negative vs. positive] (C, D), HER2 stage [negative vs. positive] (E, F), PR stage [negative vs. positive] (G, H), stages [stage1-
2 vs. stage3-4] (I, J), AJCC T stage [T1-2 vs. T3-4] (K, L), AJCC N stage [N0-1 vs. T2-3] (M, N), and AJCC M stage [M0 vs. M1] (O, P), respectively.
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common real-world immunotherapy cohorts (anti-PD-L1 in the

IMvigor210 cohort and anti-PD-1 in the GSE78220 cohort). As

shown in Figures 8H–I, in the IMvigor210 cohort, patients with

a low-risk score showed a high proportion of response to anti-

PD-L1, although there was no statistical difference (low versus

high, 45.3 verse 42.7%, Chi-square test, p=0.737), and survival

rate showed no difference in patients with high and low-risk

groups. In the GSE78220 cohort, the frequency of CR/PR was

also higher in the low-risk group (low versus high, 71.4 versus

35.7%, Chi-square test, p = 0.13); furthermore, the survival rate

showed a significant difference in patients with high and low-risk

groups (Figures 8J–K).

As a result, the two risk groups based on HLMRPM

responded differently to immunotherapy, and patients with
Frontiers in Immunology 10
low risk might be sensitive to immunotherapy and attain more

satisfactory clinical outcomes.
HLMRPM predicts efficacy of
chemotherapy response

To further enhance the clinical value of HLMRPM for

treating BC, we predicted the efficacy of chemotherapy and

potential agents for BC patients with “pRRophetic” and

CellMiner database. We first calculated the IC50 for common

chemotherapeutic agents against BC with the “pRRophetic”

algorithm and compared the IC50 between the two risk

groups. The IC50 value was the opposite of the sensitivity of
A B

D

E F G

C

FIGURE 5

Nomogram to evaluate the OS probability of BC patients. The univariate (A) and multivariate (B) Cox regression analyses in TCGA cohort. (C)
The nomogram for predicting the 1-, 3- and 5-year OS probabilities. (D) Calibration curves of the nomogram to predict 1-, 3- and 5-year OS
probabilities. (E) ROC curves of the nomogram. (F) DCA curves of the nomogram at 1-, 3- and 5-year indicated its net clinical benefits. (G) DCA
curves of the nomogram and only clinical characteristics (combination of age and N stage).
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the drugs. We found that low-risk patients were more

sensitive to cytarabine, docetaxel, sorafenib, temozolomide,

tamoxifen, roscovitine, and sunitinib than high-risk patients.

Simultaneously, high-risk patients were more sensitive to

gefitinib, methotrexate, and TMethotrexate (P < 0.05)

(Figures 9A–J).

Moreover, 19 drugs targeting HLMRGs are available for

treating BC according to CellMiner. TH was negatively

associated with sensitivity to mithramycin, depsipeptide,

actinomycin D, dinaciclib, bortezomib, and doxorubicin.

MAFF was positively related to dabrafenib, PLX-4720, and

vemurafenib, but negatively related to AFP464, dexrazoxane,

and aminoflavone. ESRP1 was positively correlated with
Frontiers in Immunology 11
SR16157 and negatively correlated with staurosporine and

midostaurin. SLC2A1 was positively correlated with kahalide F

but negatively related to lapachone and tic10. The sensitivity to

vorinostat was positively correlated with DARS2 (Figure 9H;

Table S4). Based on these findings, the risk score can guide

patients in receiving more appropriate drug treatment.
Multi-omics validation of the nine
HLMRGs

To identify the role of the five HLMRGs in BC, we analyzed

their mRNA expression, protein expression, function, and
A B

D E

F G IH

C

FIGURE 6

Functional enrichment, stemness, and m6A modification-related analyses between the two risk groups. (A) The volcano plot of the DEGs
between the high-risk and low-risk groups. (B) The GO analysis of the DEGs. (C) The KEGG analysis of the DEGs. The pathways enriched in the
high-risk (D) and low-risk (E) groups according to the GSEA. (F) The relationship between risk score and RNAss. (G) Differences in RNAss
between the two risk groups. (H) The relationship between risk score and DNAss. (I) Differences in DNAss between the two risk groups.
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immunity. Figures 10A–E showed that, based on GTEx and

TCGA databases, all five HLMRGs were differentially expressed

between BC and normal samples. DARS2, ESRP1, SLC2A1, and

TH were increased in BC, whereas MAFF was increased in

normal tissues. Survival analysis indicated that high expression

of DARS2, ESRP1, SLC2A1, and TH were related to poor

prognosis, while high expression of MAFF was linked to better

prognosis (Figures 10F–J).

We further verified the expression of the five HLRPGs using

immunohistochemical images from the HPA database. We

found that protein expressions of DARS2, ESRP1, SLC2A1,
Frontiers in Immunology 12
and TH were markedly high in BC tissues, whereas protein

expression of MAFF was low in BC tissues (Figure 10K). We

further summarized the immunohistochemistry staining

characteristics of the five HLRPGs, and the results was

coincident with above (Figure S1).

We further explored the associated functions of HLMRGs.

We observed that DARS2, ESRP1, TH, and SLC2A1 might have

an activation role in the apoptosis, cell cycle, DNA damage, and

TSCmTOR signaling pathways while inhibiting the EMT,

hormones AR and ER (Figure S2). Considering that HLMRPM

was associated with TIME, we further explored the association
A B

D

E

F

C

FIGURE 7

Different immune landscapes of the two risk groups. (A) Differences in MHC molecules between the two risk groups. (B) Differences in
chemokines and receptors between the two risk groups. (C) Differences in tumor purity, immune, stromal, and estimated scores between the
two risk groups. (D) Correlation between the tumor purity, immune, stromal, and estimated scores with the risk score. (E) Differences in
infiltration fractions of 22 immune cell subsets between the two risk groups according to the CIBERSORTx. (F) Differences in infiltration fractions
of 24 immune cell subsets between the two risk groups according to the ImmuCellAI database. Statistical significance at the level of ns>0.05,
*≤0.05, **≤0.01, ***≤0.001 and ****≤0.0001.
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FIGURE 8

The assessment of immunotherapy response between the two risk groups. (A) Comparisons of the 44 ICGs in the two risk groups. (B)
Comparisons of the proportions of non-responders and responders to ICIs between the two risk groups. (C) Differences in risk score between
the responders and non-responders. (D–G) Differences in the IPS between the two risk groups stratified by CTLA4 and PD-1. (H) The proportion
of patients with response to anti-PD-1/L1 immunotherapy in patients with high or low risk score in IMvigor210 cohort. (I) Survival analyses for
patients with high or low risk score in IMvigor210 cohort. (J) The proportion of patients with response to anti-PD-1/L1 immunotherapy in
patients with high or low risk score in GSE78220 cohort. (K) Survival analyses for patients with high or low risk score in GSE78220 cohort.
Statistical significance at the level of ns>0.05, *≤0.05, **≤0.01, ***≤0.001 and ****≤0.0001.
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between HLMRGs and the level of immune cell infiltration. The

results showed that ESRP1 was most negatively correlated with

DC and CD8+ cell infiltration. Other HLMRGs were also

associated with the degree of immune cell infiltration

(Figures 10L-P). These results demonstrated that the nine

HLMRGs might have a critical role in the TIME and

oncogenesis of BC, especially ESRP1.
Discussion

Hypoxia and lactate metabolism are essential components of

TME and are closely related to the occurrence and metastasis of

cancer, drug resistance, immune infiltration, and inflammation
Frontiers in Immunology 14
(4, 5, 15–18, 27). In this study, we constructed an HMLRPM

using rigorous bioinformatics and machine learning to predict

prognosis, function, and therapy response in patients with BC.

Based on the HLMRPM-related risk score, all patients were

classified into either high- or low-risk group. Multidimensional

verification and evaluation of the model was conducted, resulting

in the model being capable of independently and stably predicting

BC prognoses. Gene enrichment analysis showed differing

immune-related pathway activities between the two groups. The

low-risk group was significantly enriched with gene sets reflecting

positive immune function, such as cytokine-cytokine receptor

interaction, T/B cell receptor signaling pathway, and chemokine

signaling pathway, revealing that increased immune activity might

be related to the better prognosis of low-risk patients.
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FIGURE 9

The sensitivity of chemotherapeutic agents and the prediction of potential drugs. (A–J) Comparison of the IC50 values of chemotherapy and
targeted agents in the two risk groups, including cytarabine, docetaxel, sorafenib, temozolomide, tamoxifen, roscovitine, sunitinib, gefitinib,
methotrexate, and TMethotrexate. (H) Sensitivity correlation analyses of the HLMRGs and potential drugs according to the CellMiner database.
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Further analyses showed significant differences in immune

cell infiltration between the two risk groups. ESTIMATE is an

algorithm used to estimate immune cells, stromal cells, and

tumor purity (52). We found that the low-risk group had higher

stromal, immune, and ESTIMATE scores than the low-risk
Frontiers in Immunology 15
group. Previous studies have demonstrated that immune and

stromal cells are prognostic factors for tumors (65, 66). TME is

composed of tissue-resident cells, recruits tumor-infiltrating

immune cells, and plays a crucial role in tumor progression

and metastasis (67, 68). Cibersortx and ImmuCellAI were used
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FIGURE 10

Validation of five selected HLMRGs. (A–E) Comparisons of the five HLMRGs between the BC and normal tissues combined with GTEx data.
(F–J) Survival curve analysis of five HLMRGs based on TCGA. (K) Immunohistochemical staining for five HLMRGs in the normal breast tissue and
BC. (L–P) Relationship between NARS2, ESRP1, MAFF, SLC2A1, and TH levels and immune cell infiltration based on ssGSEA. Statistical
significance at the level of ***≤0.001.
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to assess the proportion of immune cells. The results showed

that the low-risk group had many anti-tumor cells, such as

CD8+, CD4+, and activated NK cells. In contrast, many

immunosuppressive cell types such as macrophages M0 and

M2 are prevalent in high-risk patients. Infiltration of immune

cells is a critical determinant of tumor prognosis and progression

(69, 70). In BC, tumor-infiltrating lymphocytes (TILs) modulate

the response to chemotherapy and improve clinical outcomes.

Macrophage infiltration can result in angiogenesis, enhanced

tumor cell mobility, and poor survival in BC (71). Tregs may

induce immune tolerance and facilitate immune escape and

tumor metastasis (72, 73). Our findings are confirmed by these

studies, namely, that the prognosis of high-risk groups with

increased immunosuppressive cell infiltration is poor.

ICIs are critical in treating multiple cancer types (74).

However, previous research has shown that only 12.6% of

cancer patients respond to ICIs (75). Developing predictive

biomarkers for ICI treatment has always been important for

screening treatment populations to achieve precise treatment.

Many predictive biomarkers of ICI therapy have been developed,

such as PD-L1 expression and CD8 infiltration (76, 77). Our

study used existing biomarkers and related databases to evaluate

the treatment response to ICIs in the two risk groups. We found

that the expression of most immune checkpoints was

significantly increased in the low-risk group, indicating that

low-risk patients could better respond to ICIs (78). Furthermore,

TIDE and IPS consistently showed that low-risk patients

responded better to immunotherapy treatment. These results

showed that low-risk patients had more anti-tumor immune

infiltrating cells and a better immunotherapy response. The

estimated results from two immunotherapy cohorts indicated

the potential association between risk score and the curative

effect of immunotherapy. This might impact the survival and

prognosis of BC patients, and the model might act as a

biomarker for ICI therapy in BC.

The essential roles of these five HLRPGs have been studied

in various cancer types, including BC. Epithelial splicing

regulatory protein 1 (ESRP1) may be a new drug resistance

biomarker and therapeutic target for patients with small cell lung

cancer [SCLC] (79). ESRP1 can increase intracellular GSH levels

and the metastatic lung potential of BC (80). ESRP1 is also

associated with epithelial-mesenchymal transition and

chemoresistance in multiple cancers (81, 82). DARS2 has been

identified as a hepatocellular carcinoma (HCC) oncogene that

promotes HCC cell cycle progression and inhibits HCC cell

apoptosis (83). In lung adenocarcinoma cells, DARS2 is involved

in proliferation, invasion, and apoptosis and shows promise as a

therapeutic target (84). MAFF could promote tumor invasion

and metastasis through IL11 and STAT3 signaling (85). SLC2A1

overexpression correlates with the suppression of CD8+ T cells

and B cells in gastric cancer (86). In LUAD and HCC, SLC2A1
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plays a significant prognostic role and is associated with tumor

immunity (87, 88). TH expression in neuroblastoma predicts

poor survival and is an independent prognostic factor (89). Our

study found that ESRP1 was the most potent biomarker among

the five HLMRGs. It is significantly upregulated in BC and is

related to epithelial-mesenchymal transition. Moreover, it was

negatively correlated with anti-tumor immune infiltration cells.

However, our study has several limitations. First, our

research is based on analyzing existing databases; therefore,

further validation of HLMRPM in a large cohort is needed.

Moreover, an in-depth characterization of the mechanisms of

the discovered HLMRGs needs to be conducted through cell and

animal experiments.
Conclusions

In summary, our study combined hypoxia-lactate

metabolism-related genes to construct a prognostic signature

for BC using machine learning and bioinformatics. The HLRPM

could identify high-risk populations, predict immune

infiltration, immunotherapy, and chemotherapy sensitivity.

Validation of HLMRGs demonstrate the potential biomarker

value of HLMRGs, which could assist in selecting the

appropriate treatment population and improving the prognosis

of patients with BC.
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SUPPLEMENTARY FIGURE 1

The immunohistochemistry staining characteristics of the five
HLRPGsfrom the HPA database.

SUPPLEMENTARY FIGURE 2

The heatmap showed the correlation between five HLMRGs

expressionsand the critical cancer signaling pathways.

SUPPLEMENTARY TABLE 2

A total of 284 lactate-related genes and 493-hypoxia related genes

usedin this study.
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