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Abstract: Achieving accurate channel estimation and adaptive communications with moving transceivers
is challenging due to rapid changes in the underwater acoustic channels. We achieve an accurate chan-
nel estimation of fast time-varying underwater acoustic channels by using the superimposed training
scheme with a powerful channel estimation algorithm and turbo equalization, where the training
sequence and the symbol sequence are linearly superimposed. To realize this, we develop a ‘global’
channel estimation algorithm based on Gaussian likelihood, where the channel correlation between
(among) the segments is fully exploited by using the product of the Gaussian probability-density
functions of the segments, thereby realizing an ideal channel estimation of each segment. Moreover,
the Gaussian-likelihood-based channel estimation is embedded in turbo equalization, where the
information exchange between the equalizer and the decoder is carried out in an iterative manner to
achieve an accurate channel estimation of each segment. In addition, an adaptive communication
algorithm based on constellation aggregation is proposed to resist the severe fast time-varying multi-
path interference and environmental noise, where the encoding rate is automatically determined for
reliable underwater acoustic communications according to the constellation aggregation degree of
equalization results. Field experiments with moving transceivers (the communication distance was
approximately 5.5 km) were carried out in the Yellow Sea in 2021, and the experimental results verify
the effectiveness of the two proposed algorithms.

Keywords: time-varying underwater acoustic channels; superimposed training; Gaussian likelihood;
constellation aggregation; turbo equalization

1. Introduction

Underwater acoustic communication technology can be widely applied in many
fields, such as marine pollution monitoring, underwater rescue, underwater autonomous
underwater vehicle (AUV) positioning and navigation. However, underwater acoustic
channels are characterized by a time-varying multipath. In particular, when there is relative
motion between the transceivers, the channel will change rapidly, resulting in fast time-
varying multi-path interference, which distorts the received signal waveform and leads
to a reduction in or even failure of the decoding performance of the underwater acoustic
communication system [1–3].

To solve the issues of time-varying underwater acoustic channels and environmental
noise, an adaptive communication scheme was proposed, where the transmitter automat-
ically selected an appropriate modulation according to the instantaneous channel state
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information (CSI) and signal noise ratio (SNR). The adaptive communication scheme can
be mainly divided into two categories, including feedback adaptive communications and
direct adaptive communications, as shown in Figure 1a,b, respectively. For feedback adap-
tive communications, as shown in Figure 1a, User A sends a test signal to User B. User
B estimates CSI and SNR based on the test signal, and then feeds them back to User A.
User A selects a modulation according to the feedback CSI and SNR, and then transmits
the data information to User B by using the selected modulation [4,5]. For direct adaptive
communications in Figure 1b, User A initially selects a modulation, such as the direct
sequence spread spectrum (DSSS), then transmits the data information to User B by using
DSSS. User B identifies the modulation (i.e., identifies DSSS), demodulates and decodes,
and estimates CSI and SNR, such as a simple channel and SNR = 20 dB. According to the
estimated CSI and SNR, User B selects a new modulation, such as orthogonal frequency
division multiplexing (OFDM), and then feeds data information back to User A by using
OFDM. Similarly, User A identifies, demodulates and decodes, and estimates CSI and
SNR. Then, according to the estimated CSI and SNR, User A selects an original or new
modulation, and then transmits the data information to User B by using the selected mod-
ulation [6,7]. The biggest difference in the two adaptive communications is that there is
no need to send a test signal for the second scheme. Therefore, for a specified amount
of data information, the second scheme saves communication time, thereby reducing or
even avoiding time-variation of the channel during communications. Therefore, the second
scheme is more suitable for fast time-varying channels incurred by underwater acoustic
communications with moving transceivers than the first scheme.

(a) (b)

 

User A

Adaptive modulation

CSI / SINR

User B

CSI / SINR

Adaptive modulation
Transmit information

Transmit information

User A

CSI / SINR

Transmit information

Test signal
User B

Figure 1. (a) Feedback adaptive communications; (b) direct adaptive communications.

For adaptive communications, there are mainly four selected modulations and de-
modulations: multiple frequency shift keying (MFSK), spread spectrum, orthogonal fre-
quency division multiplexing (OFDM) and single carrier. The transmission rate of MFSK is
low; spread spectrum technology always uses high-order spread spectrum code, which
has a low communication efficiency [8]; OFDM has a poor anti-frequency-offset perfor-
mance [9–16]. Therefore, with a high transmission rate and good anti-frequency-offset
characteristics [17–19], the single carrier technology is adopted in this paper. It can be used
with a variety of encoding rates to realize adaptive underwater acoustic communications
with moving transceivers.

Channel estimation is one of the key factors to realize reliable adaptive communica-
tions. At present, there are mainly three kinds of underwater acoustic channel estimation
algorithms, such as channel estimation algorithms based on reference signal, blind estima-
tion algorithms and semi-blind estimation algorithms [20–28]. Among the three kinds of
algorithms, the channel estimation capability and channel tracking capability based on the
reference signal are the strongest. Much research on them has been conducted by some
teams, such as the team of the University of Connecticut, the team of the Massachusetts
Institute of Technology, the team of Institute of Acoustics, Chinese Academy of Sciences,
and the team of Harbin Engineering University. So far, all of the above channel estimation
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algorithms based on reference signals have adopted the traditional time-multiplexing train-
ing sequence scheme. In order to further improve the tracking capability of time-varying
channels, the joint team of Qingdao University of Technology, the University of Wollongong
and the University of Western Australia [29] proposed a superimposed training scheme
for underwater acoustic communications, where the training sequence and the symbol se-
quence are linearly superimposed in order to make the channel information of the training
sequence and the symbol sequence completely consistent.

Same as literatures [29,30], the superimposed training (ST) scheme and the segment
strategy are used in this paper to enhance the estimation and tracking capability of fast
time-varying channels. To realize the full potential of the ST scheme and the segment
strategy, a channel estimation algorithm based on Gaussian likelihood (GL) is proposed.
The product of the Gaussian probability-density functions of the segments is still the
Gaussian probability-density function, which can be parameterized by the mean and the
variance, where the mean is the channel estimate and the variance is the deviation of
the channel estimate. The variance of the Gaussian probability-density function after the
product is less than the variance of the Gaussian probability-density function of each
segment, which means that the estimated channel for the segment after the product is more
accurate than the estimated channel for the segment itself. This is equivalent to estimating
the channel information of the segment by using the ‘whole’ data block [29,30], thereby
leading to the ideal channel estimation of the segment.

It is important to note that the proposed GL algorithm can achieve the same channel
estimation and tracking performance as literatures [29,30] in a ‘novel’ Gaussian product
way, because it can be seen as a message-passing method in the Gaussian scenario [29,30].
The message-passing thought was first proposed in literature [30] to improve the channel
estimation capability; then, it was applied in underwater acoustic communications with
a communication distance of approximately 1 km [29]. Different from literatures [29,30],
in this paper, the same thought as message passing [29,30] is realized in a ‘novel’ Gaussian
product way; in particular, the proposed algorithm is applied in actual underwater acoustic
communication machines, and the effective communication distance is extended from 1 km
to 5.5 km.

In addition, an adaptive communication algorithm based on constellation aggregation
(CA) is proposed. The encoding rate (such as rate-1/2, rate-1/4, rate-1/8, or rate-1/16) is
automatically selected based on the aggregation degree of the constellation points after
linear minimum mean square error (LMMSE) equalization. The working principles of the
proposed direct adaptive communications and the traditional direct adaptive communica-
tions are different. The traditional direct adaptive communications select the modulation
based on CSI and SNR. However, the proposed direct adaptive communications select the
encoding rate based on the constellation aggregation. The proposed algorithm based on
the constellation aggregation is more accurate in making a selection than the traditional
algorithm based on CSI and SNR. In order to fully realize the potential of the GL algorithm
and the CA algorithm, the single-carrier communication system and turbo equalization are
adopted. The channel estimator (GL), constellation aggregation decision maker (CA), equal-
izer and decoder are combined together, and they are performed jointly in an iterative
manner (turbo equalization) to realize an accurate estimation of fast time-varying channels
and reliable communications by using the information exchange between the equalizer
and the decoder (turbo equalization). Field experiments with moving transceivers (the
communication distance was approximately 5.5 km) were carried out in the Yellow Sea in
2021 to verify the effectiveness of the proposed algorithms. The major contributions of this
paper are summarized as follows:

(1) A channel estimation algorithm, named GL, is proposed, realizing the same perfor-
mance as the bidirectional channel estimation algorithm [29,30] in a novel product
way of probability-density functions;

(2) An adaptive communication algorithm based on constellation aggregation is proposed
to improve the applicability of the system for different environments;
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(3) GL-based channel estimation, LMMSE equalization and decoding are iteratively
performed (turbo equalization), leading to a significant performance improvement of
the whole system;

(4) The proposed algorithms are applied in actual underwater acoustic communication
machines to verify their effectiveness.

The remainder of the paper is organized as follows. The system structure is pro-
vided in Section 2. Then, a channel estimation algorithm based on Gaussian likelihood
and an adaptive communication algorithm based on constellation aggregation are shown
in Section 3. Simulations, experiments and the conclusion are presented in Sections 4–6,
respectively. Throughout the paper, superscripts [·]Tr and [·]H represent transpose and
conjugate transpose, respectively.

2. System Structure

The system structure of underwater acoustic communications is shown in Figure 2.
At the transmitter, the information bit sequence is encoded, interleaved and mapped
by using quadrature phase shift keying (QPSK) to symbols. The training sequence and
the symbol sequence are linearly superimposed, the resultant sequence is partitioned
into multiple segments and then each segment is appended a cyclic prefix (CP) to avoid
inter-segment interference and to facilitate low-complexity equalization. The in-phase
quadrature (IQ) modulation is used for each CP plus segment. Hyperbolic frequency
modulation (HFM) signals with negative and positive modulation rates are used as the
head and the tail of the signal frame, respectively. Then, the resultant signals are transmitted
by a transducer.

(a)

(b)
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IQ Demodulation,

CP Removal
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Decoding 
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GL Channel 
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Figure 2. System structure. (a) Transmitter; (b) receiver.

The HFM signals are used to estimate and eliminate the average frequency offset
and to synchronize the received signals [31]. Then, the transmitted signals are extracted,
band-pass filtering and IQ demodulation are carried out and CPs are removed. With the
resultant signals, we estimate initial channels ĥnF of all segments based on the GL algorithm
and noise powers p̂n, and obtain a ‘clean’ signal zn after training elimination for data
equalization. Then, LMMSE equalization, CA decision and decoding are carried out based
on ĥnF, p̂n and zn, as shown in Figure 3. They, on both sides of equalization, represent the
same things. Please note that, on the right side, they represent the initial values, and, on the
left side, they represent the iterative values. The iterative process proceeds until a pre-set
number of iterations is reached, and difficult decisions are made on each information bit in
the last iteration.
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Figure 3. Turbo equalization.

An illustration of the CA decision is shown in Figure 4. We can ensure the return
encoding rate by comparing the pre-set values ξin and ξex. When the constellation ag-
gregation degree ξm < ξin, the return encoding rate is increased. When the constellation
aggregation degree ξm > ξex, the return encoding rate is reduced. When the constellation
aggregation degree ξin ≤ ξm ≤ ξex, the return encoding rate is kept the same.

0

in

ex

1 1
,  

2 2

Imag

Real

CA 

decision

Figure 4. Constellation aggregation decision.

The turbo equalization is shown in Figure 3. Based on ĥnF, p̂n and zn, the LMMSE
equalization and decoding for each segment are carried out, where the LMMSE equaliza-
tion can be efficiently implemented with fast Fourier transform (FFT), where the initial a
priori logarithm likelihood ratios (LLRs) of the interleaved encoded bits are set to zeros,
i.e., La = 0. The soft detection outputs for multiple segments are collected to make up
extrinsic LLRs Le, and then deinterleaving and decoding are carried out. The output of
the decoder is used by the equalizer and the channel estimator, so there are two branches
from the decoder. Both branches use the latest decoding results, i.e., the LLRs of encoded
bits of the decoder, and they are updated in each iteration. In the first branch, the LLRs
of encoded bits are interleaved and input to the equalizer. In the second branch, difficult
decisions on the encoded bits are executed, followed by interleaving and QPSK mapping
to obtain the (estimated) symbol sequence. They, together with the training sequence, are
used for accurate channel (re)estimation. After that, based on La from the first branch and
ĥnF, p̂n and zn from the second branch, LMMSE equalization is performed to obtain Le,
which is input into the decoder for the next round of iteration (turbo equalization).
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3. Accurate Channel Estimation and Adaptive Communications

A block of an information bit sequence denoted by b =
[
b1, · · · , bLb

]Tr is encoded

and interleaved, yielding an interleaved coded bit sequence denoted by c =
[
c1, · · · , cLi

]Tr ,

where ci =
[
c1

i , c2
i
]Tr . Then, c ismappedintoasymbolsequencedenotedby fL f =

[
f1, · · · , fL f

]Tr
,

where each fi corresponds to a ci. Denote the periodic training sequence as

tL f =
[
t1, · · · , tL f

]Tr
with a period of T, where tk = ej π

T (k−1)2
, k = 1, · · · , T [32].

The training sequence and the symbol sequence are linearly superimposed with a power
ratio r, yielding the transmitted signal s with length L f , where L f is an integer multiple
of T.

Divide s into Ny segments, i.e., s =
[
s1, · · · , sNy

]Tr
, and the length of each segment

is Ls, where L f = Ny × Ls. Taking sn as an example, the corresponding symbol sequence
is fn, and the corresponding training sequence is tLs . CP is added to each segment, yielding
the channel circulant matrix denoted by Hn. Denote the white Gaussian noise as w.

Denote a segment of the received signal after CP removal as yn, and its length is an
integer multiple of T, i.e., Ls = pT. Then, we can represent yn as yn =

[
y1T , · · · , ypT

]Tr .
The received signal yn can be written as

yn = Hnsn + w = Hn(rtLs + fn) + w

= Hnfn + rHntLs + w
. (1)

Define Lc as the channel order, where T ≥ Lc; then, the Toeplitz matrix formed by the
training sequence can be represented as

A =


t1 tT · · · tT−Lc+2
t2 t1 · · · tT−Lc+3
...

...
. . .

...
tT tT−1 · · · tT−Lc+1


T×Lc

. (2)

From Appendix A, based on the least squares (LS) algorithm, the channel estimate of
a segment can be computed as

ĥn =

[(
AHA

)−1
AH

(
1
p

p

∑
i = 1

yiT

)]
Lc×1

. (3)

3.1. Accurate Channel Estimation Based on Gaussian Likelihood

Channel estimates of two consecutive segments can be expressed as two independent
and identically distributed probability-density functions in the Gaussian scenario. Denote
two independent and identically distributed probability-density functions as pn−1(x) and
pn(x). Denote µĥn−1

and σ2
ĥn−1

as the mean value and variance of the channel estimate

ĥn−1 of the (n-1)-th segment, respectively, and denote µĥn
and σ2

ĥn
as the mean value and

variance of the channel estimate ĥn of the n-th segment, respectively. Then, we can obtain
pn−1(x) = 1√

2πσ
ĥn−1

e
−

(
x−µĥn−1

)2

2σ2
ĥn−1

pn(x) = 1√
2πσ

ĥn

e
−
(

x−µĥn

)2

2σ2
ĥn

. (4)

Denote ĥnF as the channel estimate after information fusion of the channel estimate
ĥn−1 of the (n-1)-th segment and the channel estimate ĥn of the n-th segment. Denote µĥnF
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and σ2
ĥnF

as the mean value and variance of the channel estimate ĥnF after information
fusion, respectively. Then, the product of the two probability-density functions can be
expressed as

pn−1(x)pn(x) =
1

2πσ
ĥn

σ
ĥn−1

e

−


(

x−µ
ĥn

)2

2σ2
ĥn

+

(
x−µ

ĥn−1

)2

2σ2
ĥn−1



=


1√

2π(σ2
ĥn

+ σ2
ĥn−1

)
e

−

(
µ

ĥn
−µ

ĥn−1

)2

2

(
σ2

ĥn
+σ2

ĥn−1

)


1√
2πσ2

ĥnF

e
−

(
x−µĥnF

)2

2σ2
ĥnF

=CA
1√

2πσ2
ĥnF

e
−

(
x−µĥnF

)2

2σ2
ĥnF ,

(5)

where

µĥnF
=

µĥn
σ2

ĥn−1
+ µĥn−1

σ2
ĥn

σ2
ĥn

+ σ2
ĥn−1

, (6)

and

σ2
ĥnF

=
σ2

ĥn
σ2

ĥn−1

σ2
ĥn

+ σ2
ĥn−1

. (7)

It is important to note that
σ2

ĥnF
−σ2

ĥn−1
=

σ2
ĥn

σ2
ĥn−1

σ2
ĥn

+σ2
ĥn−1

−σ2
ĥn−1

=
−σ4

ĥn−1
σ2

ĥn
+σ2

ĥn−1

< 0

σ2
ĥnF
−σ2

ĥn
=

σ2
ĥn

σ2
ĥn−1

σ2
ĥn

+σ2
ĥn−1

−σ2
ĥn

=
−σ4

ĥn
σ2

ĥn
+σ2

ĥn−1

< 0
, (8)

which means that the variance σ2
ĥnF

after the product becomes smaller than σ2
ĥn−1

and σ2
ĥn

,

i.e., the fused channel estimate ĥnF becomes more accurate, which is more close to the real
channel than ĥn−1 and ĥn. CA is the scale factor of the Gaussian distribution, and it is not
a variable, which can be normalized. Therefore, we can obtain the Gaussian distribution
pnF(x) after the product, i.e.,

pn−1(x)pn(x) = pnF(x) ∼ N
(

µĥnF
, σ2

ĥnF

)
, (9)

where N() represents Gaussian distribution. From (7), we can acquire

1
σ2

ĥnF

=
σ2

ĥn
+ σ2

ĥn−1

σ2
ĥn

σ2
ĥn−1

=
1

σ2
ĥn−1

+
1

σ2
ĥn

. (10)



Sensors 2022, 22, 2142 8 of 25

From (6) and (7), i.e., µĥnF
is divided by σ2

ĥnF
, we can obtain

µĥnF

σ2
ĥnF

=
µĥn

σ2
ĥn−1

+ µĥn−1
σ2

ĥn

σ2
ĥn−1

σ2
ĥn

=
µĥn−1

σ2
ĥn−1

+
µĥn

σ2
ĥn

, (11)

i.e.,

µĥnF
= σ2

ĥnF

µĥn−1

σ2
ĥn−1

+
µĥn

σ2
ĥn

. (12)

The message fusion Formulas (10) and (12) are equivalent to the message fusion
Formulas (18) and (19) of literature [29], i.e., the proposed GL algorithm using a ‘novel’
Gaussian product can achieve the same performance as the bidirectional channel estimation
algorithm in literature [29]. They have the same computational complexity.

The formulas of the forward passing and the backward passing are as follows [33]:{
ĥn = αpĥn−1 + np
σ2

ĥn
= α2

pσ2
ĥn−1

+βI , (13)

and {
ĥn−1 = α−1

p (ĥn + np)

σ2
ĥn−1

= α−2
p

(
σ2

ĥn
+ βI

)
,

(14)

where αp is the channel correlation coefficient of the consecutive segments, np is Gaussian
white noise (the mean is 0) and β is the noise power.

Take the n-th segment as an example to show the flow of the ‘global’ channel estima-
tion, and the flow diagram is shown in Figure 5. For forward message passing, the local
channel estimation ĥ1 of the first segment is fused with the local channel estimation ĥ2 of
the second segment to obtain a fused channel estimation ĥ2 f by using (10) and (12). Then,
the message update ĥ2a can be obtained by using (13) until the fused channel estimation
ĥn f is acquired. For backward message passing, the local channel estimation ĥNy of the
last segment is fused with the local channel estimation ĥNy−1 of the (Ny-1)-th segment
to obtain a fused channel estimation ĥ(Ny−1) f by using (10) and (12). Then, the message

update ĥ(Ny−1)b can be obtained by using (14) until the fused channel estimation ĥ(n+1)b

is acquired. Finally, ĥn f and ĥ(n+1)b can be fused to obtain a ‘global’ channel estimation
ĥnF of the n-th segment. Appending a proper number of zeros to ĥnF to form a length-Ls

vector, i.e., ĥnF =
[
ĥnF, 0

]
Ls×1

.

ˆ
nF
h

3
ĥ

1
ĥ

2
ĥ ˆ

n
h

Seg #1

n

2
ˆ
f
h
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3
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Figure 5. Accurate channel estimation of the n-th segment.
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3.2. Training Interference Elimination, Estimation of Noise Power and Turbo Equalization

We use F to denote a normalized discrete Fourier transform (DFT) matrix, i.e., the
(m, n)th element is given as L−1/2

s e−j2πmn/Ls with j =
√
−1. Take the n-th segment as an

example. The circulant matrix Hn can be diagonalized by a DFT matrix, i.e., Hn = FHDnF,
where Dn is a diagonal matrix. After the training interference elimination, the frequency-
domain received signal can be written as

zn = zn f−FĥnF. ∗ FtLs = Fyn−FĥnF. ∗ FtLs

= DnFsn +
[
Dn(rFtLs)−FĥnF. ∗ FtLs + Fwn

]
= DnFsn+w′n

. (15)

Based on the estimated channel, the diagonal elements of the diagonal matrix D̂n can
be acquired as follows:[

d̂1
n, d̂2

n, · · · , d̂Ls
n

]Tr
=
√

LsFĥnF, n = 1, . . . , Ny. (16)

As the power of the transmitted symbol sequence is set to 1, the noise power σ2
n for

the n-th segment is the difference between the power Pyn for the received segment and the
corresponding channel energy EĥnF, i.e.,

σ2
n = Pyn−EĥnF. (17)

Take the n-th segment as an example of LMMSE equalization. Following
literatures [30,33,34], the a priori mean and variance of the symbol fi (the symbol sequence
fn) are as follows:  ma

i = 1√
2

tanh
(

La
n(c1

i )
2

)
+j 1√

2
tanh

(
La

n(c2
i )

2

)
νa

i = 1−
∣∣ma

i

∣∣2 , (18)

where both the initial values of La
n
(
c1

i
)

and La
n
(
c2

i
)

(the initial a priori LLRs of the interleaved
encoded bits) are set to 0. The estimated interleaved bit sequence is converted to the symbol
sequence ma =

[
ma

1, · · · , ma
Ls

]
by using (18). The a posteriori mean and variance of the

symbol fi (the symbol sequence fn) are as follows:


ν

p
1 = ν

p
2 = · · · = ν

p
Ls

= 1
Ls

Ls
∑

k = 1

(
1
v̄ +
|d̂k

n|2
σ2

n

)−1

mp = ma + FHD̂H
n

(
σ2

n
v̄ I + D̂nD̂H

n

)−1(
zn−D̂nFma) , (19)

where v̄ = 1
Ls

∑Ls
i = 1 va

i and mp =
[
mp

1 , · · · , mp
Ls

]
. The a posteriori mean sequence mp is

the estimated symbol sequence after LMMSE equalization. It is noted that the computa-
tional complexity of the LMMSE equalizer is dominated by (19), and its computational
complexity is only in the order of log(Ls) per symbol. In addition, the extrinsic mean and
variance of the symbol fi (the symbol sequence fn) are as follows:

νe
i =

(
1

ν
p
i
− 1

νa
i

)−1

me
i = νe

i

(
mp

i
ν

p
i
− ma

i
νa

i

) . (20)

As QPSK mapping is used, the extrinsic LLRs of the interleaved encoded bits c1
i and

c2
i can be expressed as
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{
Le

n
(
c1

i
)
= 2
√

2Re
[
me

i /ve
i
]

Le
n
(
c2

i
)
= 2
√

2Im
[
me

i /ve
i
] . (21)

The estimated symbol sequence is converted to the extrinsic LLRs (i.e., the estimated
interleaved bit sequence Le

n) by using (19)–(21). The extrinsic LLRs of the segments are
denoted collectively as Le and then input into the decoder for the next round of iteration
(turbo equalization).

3.3. Adaptive Underwater Acoustic Communications Based on Constellation Aggregation

We set a certain iteration number, such as one iteration, to obtain the aggregation
degree after LMMSE equalization, i.e., (22), where f̂i is the a posteriori mean of a symbol fi,
and its real part and imaginary part are denoted by f̂ Re

i and f̂ Im
i , respectively.

ξi =
∥∥∥( f̂ Re

i , f̂ Im
i

)
− 1/

√
2{(1, − 1), (1, 1), (−1, − 1), (−1, 1)}

∥∥∥
=
∥∥∥[abs

(
f̂ Re
i

)
+ j× abs

(
f̂ Im
i

)]
−
(

1/
√

2 + j× 1/
√

2
)∥∥∥

=

√[
abs
(

f̂ Re
i

)
− 1/

√
2
]2

+
[

abs
(

f̂ Im
i

)
− 1/

√
2
]2

. (22)

We compute the mean of all ξi for a frame of information bits, i.e., ξm = 1
L f

L f

∑
i = 1

ξi.

Denote ξin and ξex as the inner boundary and the outer boundary, respectively. As shown in
Figure 4, when ξm < ξin, the encoding rate will be increased automatically; when ξm > ξex,
the encoding rate will be reduced automatically; when ξin ≤ ξm ≤ ξex, the encoding rate
will be kept.

4. Simulation Results

The simulation parameters are shown in Table 1. Rate-1/2, rate-1/4, rate-1/8 and rate-
1/16 convolutional codes and QPSK mapping are used. A variety of power ratios of the
training sequence and the symbol sequence, such as 0.15:1, 0.2:1, 0.25:1 and 0.3:1, are
used. The standard block with 1024 symbols is divided into a number of segments with
a variety of lengths, including 128 symbols, 256 symbols, 512 symbols and 1024 symbols.
The corresponding cases are denoted by S128, S256, S512 and W1024, respectively, where
the prefix W means that the standard block is treated as a segment. W1024 is used as the
benchmark turbo system. S128, S256 and S512 are used in the proposed GL turbo system.
The CP is set to 128 symbols. One frame includes 100 blocks, and one block includes 1024
information bits. Assume that a 4 kHz bandwidth is provided. For S256, with rate-1/2,
rate-1/4, rate-1/8 and rate-1/16 convolutional codes, the transmission rates are 2667 bits/s,
1333 bits/s, 667 bits/s and 333 bits/s, respectively, and the corresponding bandwidth
efficiencies are 0.67 bps/Hz, 0.33 bps/Hz, 0.17 bps/Hz and 0.08 bps/Hz, respectively.
The SNR is from −4 dB to 13 dB. A static channel, as shown in Figure 6, and the white
Gaussian noise are used.

The BER performance for S256 is shown in Figure 7. It can be seen from the results
that both the ST scheme and the channel estimate fusion based on Gaussian likelihood
are effective. The lower the encoding rate, the better the BER performance that the sys-
tem can achieve. Taking Figure 7b, with SNR = 7 dB and rate-1/4 convolutional code,
after three iterations, 100 blocks of information bits are correctly decoded. From Figure 7,
after two iterations, all information bits with rate-1/2 convolutional code and SNR = 13 dB
(Figure 7a), with rate-1/4 convolutional code and SNR = 8 dB (Figure 7b), with rate-1/8
convolutional code and SNR = 3 dB (Figure 7c) and with rate-1/16 convolutional code
and SNR = 0 dB (Figure 7d) are correctly decoded.
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Figure 6. Impulse response of a channel.

Table 1. Parameters of simulations and experiments.

Simulation Yellow Sea 1 Yellow Sea 2

Encoding rate 1/2, 1/4, 1/8, 1/16 1/4, 1/8, 1/16 1/2, 1/4
Power ratio r 0.15:1 to 0.3:1 0.25:1 0.25:1

Segment length 128, 256, 512, 1024 sym 256, 512, 1024 sym 256 sym
CP 128 sym 128 sym 16 sym

1 frame, 1 block 100 blocks, 1024 bits 16 blocks, 1024 bits 16 blocks, 1024 bits
Mapping, system QPSK, Baseband QPSK, Single carrier QPSK, Single carrier

Time dura. of one bit — 5× 10−4, 10× 10−4, 20× 10−4 s 2.5× 10−4, 5× 10−4 s,
Time dura. of one symbol — 2.5× 10−4 s 2.5× 10−4 s

Center frequency, Filter — 12 kHz, Band pass 12 kHz, Band pass
Bandwidth — 4 kHz 4 kHz

Sampling frequency — 96 kHz 96 kHz
S256, Transmission rate — 1333, 667, 333 bits/s 3765, 1882 bits/s

S256, Band. effi. (bps/Hz) — 0.33 (1/4), 0.17, 0.08 0.94 (1/2), 0.47
Communication distance — 5.5 km 5.5 km

Transducer depth — 4 m 4 m
Hydrophone depth — 4 m 5 m

Relative speed — 0.5 m/s 0.5 m/s
SNR −4 dB to 13 dB approximately 9 dB approximately 13 dB

Taking a block of 1024 information bits with rate-1/4 convolutional code as an ex-
ample, where the noise is not added, the channel in Figure 6 is used, and the channel
estimation and equalization results are shown in Figure 8. S256 and a static channel are
used; therefore, the channels of the four consecutive segments are the same and their
channels are perfectly correlated, i.e., αp = 1. When turbo equalization is not used, i.e., with
0 iterations, the corresponding channel estimate and equalization results are shown in
Figure 8(a1),(b1). The estimated channel in Figure 8(a1) is obviously different from the real
channel in Figure 6, and the constellation points after LMMSE equalization in Figure 8(b1)
are significantly scattered. When turbo equalization is performed once, i.e., after one itera-
tion, the corresponding equalization results are shown in Figure 8(b2), where it is noted that
the estimated channels have been updated before turbo equalization, and the aggregation
degree of the constellation points after LMMSE equalization becomes significantly better.
When turbo equalization is performed two times, i.e., after two iterations, the correspond-
ing equalization results are shown in Figure 8(b3), where the constellation points after
LMMSE equalization are ideally condensed together, and the corresponding estimated
channel in Figure 8(a2) is exactly the same as the real channel in Figure 6, demonstrating
the effectiveness of the ST scheme used for enhancing the channel estimation and tracking
capability and the GL algorithm used for the channel information fusion of the segments.
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Figure 7. BER performance for S256. (a) Rate-1/2 convolutional code; (b) rate-1/4 convolutional
code; (c) rate-1/8 convolutional code; (d) rate-1/16 convolutional code.
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Figure 8. Estimated channels and constellations of a block of 1024 information bits with S256 in
simulations at SNR = 13 dB. (a1) Channel estimate of one segment without iteration; (a2) channel
estimate of one segment after 2 iterations; (b1) constellations after 0 iteration; (b2) constellations after
1 iteration; (b3) constellations after 2 iterations; (b4) constellations after 3 iterations.

From Figure 8b, it is clear that we can carry out adaptive communications according
to the pre-set constellation aggregation degree threshold. It is important to note that we do
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not show the adaptive communication performance, as we can see the results clearly from
Figure 7.

Next, we test the BER performance with a variety of power ratios of the training
sequence and the symbol sequence. Taking S128 with rate-1/2 convolutional code as an
example, the BER performance of the system is shown in Figure 9a. The green triangle line
represents the BER performance with a power ratio 0.2:1 and SNR = 13 dB; after three itera-
tions, 100 blocks of information bits are correctly decoded. Considering the complexity and
variability of underwater acoustic channels incurred by the moving transceivers, the power
ratio 0.25:1 is used in the follow-up simulations and experiments. Assuming that the
SNR = 13 dB and the power ratio is 0.25:1, the BER performance of the system is shown
in Figure 9b. The blue star line represents the BER performance of the system with the
training interference elimination; after two iterations, 100 blocks of information bits are
correctly decoded, demonstrating the effectiveness of the training interference elimination.
The pink square line represents the BER performance of the system without the training
interference elimination, and it can be seen that, if we do not use the training interference
elimination, the system simply does not work.
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Figure 9. BER performance of the system with S128 and SNR = 13 dB. (a) A variety of power ratios
of the training sequence and the symbol sequence; (b) with or without the training interference
elimination. The power ratio is 0.25:1.

Then, we test the BER performance of the system by using the ST scheme and the GL
algorithm, where W1024 is used as the benchmark turbo system. The BER performance
comparison is shown in Figure 10. From Figure 10a, if the GL algorithm is not used,
the system with a variety of segment lengths does not work. From Figure 10b, if the GL
algorithm is used to fuse the local channel estimates to obtain global channel estimates, it
can be seen that, no matter how long the segment is, the BER performances for S128, S256,
S512 and W1024 are similar. This is because, regardless of the segment length, the ‘whole’
standard symbol block is used to acquire the global channel estimate for each segment.
This demonstrates that the proposed GL turbo system (S128, S256 and S512) can achieve a
similar performance as the benchmark turbo system (W1024).
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Figure 10. BER performance of the system with SNR = 13 dB, rate-1/2 convolutional code and the
power ratio 0.25:1. (a) The GL algorithm is not used for channel estimation; (b) the GL algorithm is
used for channel estimation.

5. Experimental Results

Two separate underwater acoustic communication experiments with moving transceivers
were carried out in the Yellow Sea in 2021, named Yellow Sea 1 and Yellow Sea 2, respec-
tively. Their deployments are shown in Figure 11a,b, respectively. We did not use a vertical
array in the experiments. The two receiving hydrophones were completely independent,
i.e., they had nothing to do with each other. Therefore, multiple receiver channels were
not exploited in the system. The height of the sea waves was from 0.5 m to 1 m; the sea
temperature was 5.6 °C; the south wind was from level 3 to level 4; the ship with the
transducer floated away from the ship with the hydrophone at a speed of approximately
0.5 m/s.

(a) (b)

Receiver

5.5 km
4 m

31 m

Transducer
Hydrophone

0.5 m/s

4 m
5.5 km

4 m

31 m

Transducer

Hydrophone

5 m

0.5 m/s

Figure 11. Experimental deployment. (a) Yellow Sea 1; (b) Yellow Sea 2.

The detailed experimental parameters are shown in Table 1. For the two experiments,
QPSK mapping and the power ratio of the training sequence and the symbol sequence
0.25:1 were used; both the communication distances of the transceivers were approximately
5.5 km; one frame included 16 blocks, and one block included 1024 information bits; the
single-carrier communication system was used; the center frequency was 12 kHz with a
bandwidth of 4 kHz; and the sampling frequency was 96 kHz. The signal structure for field
experiments is shown in Figure 12.
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Figure 12. Signal structure for field experiments.

5.1. Adaptive Underwater Acoustic Communications with SNR = 9 dB

The experimental deployment and instruments for Yellow Sea 1 are shown in Figure 11a
and Figure 13, respectively. Rate-1/4, rate-1/8 and rate-1/16 convolutional codes were
adopted. S256, S512 and W1024 were used, and the CP was set to 128 symbols. Taking
S256, for rate-1/4, rate-1/8 and rate-1/16 convolutional codes, the transmission rate were
1333 bits/s, 667 bits/s and 333 bits/s, respectively, and the corresponding bandwidth
efficiencies were 0.33 bps/Hz, 0.17 bps/Hz and 0.08 bps/Hz, respectively. Both transceivers
were deployed at a depth of 4 m.

Figure 13. Experimental instruments in the Yellow Sea. (a) The whole system; (b) transmitter;
(c) power amplifier; (d) the transducer and the hydrophone; (e) receiver.

We firstly used rate-1/16 convolutional code, and the BER performance of 16 data
blocks based on the GL algorithm is shown in Figure 14. By comparing the results of S256,
S512 and the benchmark turbo system (W1024), it can be seen that S256 was much more
effective than S512 and the benchmark turbo system for underwater acoustic communi-
cations with moving transceivers. After only one iteration, all information bits with S256
were correctly decoded. However, both S512 (pink square curve) and the benchmark turbo
system (blue dotted curve) are completely invalid. This is because moving communications
incur time-varying channels. The average channel estimate does not effectively represent
the channel information of the 512 symbol block and 1024 symbol block. Taking the first
block for S256 in Figure 14 as an example, as S256 was used, there were four consecu-
tive segments for the first data block, and their channels were different due to floating
transceivers, i.e., αp 6= 1. It is important to note that αp can be obtained automatically, and
can be calculated by using the estimated channels of the four segments, as αp was equal to
the correlated coefficient of the estimated channels of the four segments, which was also
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used in the initial channel estimation. When turbo equalization was not used, i.e., with
0 iterations, the corresponding channel equalization results are shown in Figure 15(b1),
and the constellation points after LMMSE equalization were very scattered. Then, the
automatically determined αp was recalculated by using the updated channel estimates of
the four segments. When turbo equalization was performed once, i.e., after one iteration,
the corresponding equalization results are shown in Figure 15(b2), where the constellation
points after LMMSE equalization were ideally condensed together. The corresponding
estimated channels of the four segments in Figure 15a were significantly different, where
αp = 0.07 after one iteration, demonstrating the time-variation of the channel and the
effectiveness of the ST scheme and the GL algorithm.

0 1 2

Iteration number

10
0

B
E

R

 S256

 S512

 W1024

Figure 14. BER performance of the GL turbo system with rate-1/16 convolutional code for Yellow
Sea 1.

 

    

 

 

 

   

(a)                                          (b)      

Figure 15. Estimated channels and equalization results of the first block with S256 and 1/16 code
rate for Yellow Sea 1 in Figure 14. (a) The estimated channels of the consecutive four segments after 1
iteration; (b1) constellations after 0 iteration; (b2) constellations after 1 iteration.
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Then, we carried out field experiments with a variety of convolutional codes to test the
effectiveness of direct adaptive communications. The adaptive threshold setting is shown in
Table 2. We used the mean aggregation degree after one iteration to compare the threshold,
where the inner boundary is set to ξin = 0.03 and the outer boundary is set to ξex = 0.2.
When the mean aggregation degree is ξm < 0.03, the encoding (transmission) rate will be
improved automatically; when the mean aggregation degree is ξm > 0.2, the encoding
(transmission) rate will be reduced automatically; when the mean aggregation degree is
0.03 ≤ ξm ≤ 0.2, the encoding (transmission) rate will be kept the same.

Table 2. Threshold setting of mean aggregation degree ξm after one iteration for Yellow Sea 1 and
Yellow Sea 2.

ξm < 0.03 Improve the encoding rate
ξm > 0.2 Reduce the encoding rate

0.03 ≤ ξm ≤ 0.2 Keep the encoding rate

The calculation of the mean aggregation degree ξm is shown in Table 3. For Yellow Sea
1, assuming that rate-1/16 convolutional code was used first, after one iteration, the mean
aggregation degree was ξm = 0.002, which was less than 0.03. Therefore, the encoding
rate was improved automatically, i.e., the encoding rate was adjusted from rate-1/16
convolutional code to rate-1/8 convolutional code automatically. We can see that, after one
iteration, with rate-1/8 convolutional code, the mean aggregation degree was ξm = 0.0591,
which belonged to [0.03, 0.2]. Therefore, the encoding rate was kept the same. Assuming
that rate-1/4 convolutional code was used first, after one iteration, the mean aggregation
degree was ξm = 0.4442, which was more than 0.2. Therefore, the encoding rate was
reduced automatically, i.e., the encoding rate was adjusted from rate-1/4 convolutional
code to rate-1/8 convolutional code automatically. As after one iteration with rate-1/8
convolutional code, the mean aggregation degree was ξm = 0.0591, which belonged to
[0.03, 0.2], the encoding rate was kept. The aggregation performance of the 16 blocks of
information bits with S256 is shown in Figure 16. From Figure 16b, after one iteration
with rate-1/8 convolutional code, the constellation points of the 16 blocks of information
bits were obviously clustered.

Table 3. Calculation of the mean aggregation degree ξm for Yellow Sea 1 and Yellow Sea 2.

Iteration Number
Yellow Sea 1 Yellow Sea 2

Rate-1/4 Rate-1/8 Rate-1/16 Rate-1/2 Rate-1/4

0 0.5546 0.5505 0.5613 0.4719 0.5396
1 0.4442 0.0591 0.002 0.041 0.007
2 0.2953 3.44 × 10−6 3.09 × 10−6 0.0018 1.51 × 10−6

The BER performance based on the ST scheme and the GL algorithm with S256 for
Yellow Sea 1 is shown in Figure 17. We can see that, after one iteration, the decoding with
rate-1/4 convolutional code was invalid, and the decodings with rate-1/8 convolutional
code and rate-1/16 convolutional code were valid. With rate-1/8 convolutional code, all
information bits were correctly decoded after one iteration, and the BER performance
was sufficient in meeting the needs for underwater acoustic communications. Therefore,
the rate-1/8 convolutional code was kept, which was in keeping with the result from the
mean aggregation degree, demonstrating the effectiveness of the GL algorithm and the
CA algorithm.
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Figure 16. Constellations of the 16 blocks of data with S256 after 0, 1 and 2 iterations for Yellow Sea
1 in Figure 17. (a1) Rate-1/4, 0 iteration; (a2) rate-1/4, 1 iteration; (a3) rate-1/4, 2 iterations; (b1)
rate-1/8, 0 iteration; (b2) rate-1/8, 1 iteration; (b3) rate-1/8, 2 iterations; (c1) rate-1/16, 0 iteration;
(c2) rate-1/16, 1 iteration; (c3) rate-1/16, 2 iterations.
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Figure 17. BER performance of the GL turbo system with S256 for Yellow Sea 1.
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5.2. Adaptive Underwater Acoustic Communications with SNR = 13 dB

The experimental deployment in the Yellow Sea is shown in Figure 11b. An underwa-
ter acoustic communication machine (Seatrix Modem) was used, whose illustration and
dimensions are shown in Figures 18 and 19, respectively. The introduction of the machine
is listed in Table 4. An SD card was plugged in Seatrix Modem to collect data at the receiver,
and the collected data were analyzed by using a computer. The transmitting ship floated
away from the receiving ship at a speed of approximately 0.5 m/s. For Yellow Sea 2,
rate-1/2 and rate-1/4 convolutional codes were used. S256 was used, and the CP was set to
16 symbols. The transmission rates were 3765 bits/s and 1882 bits/s, respectively, and the
corresponding bandwidth efficiencies were 0.94 bps/Hz (rate-1/2) and 0.47 bps/Hz (rate-
1/4), respectively. The deployment depths of the transducer and the hydrophone were
4 m and 5 m, respectively. The main goal of the experiment is to demonstrate a successful
implementation on modem hardware for the proposed algorithms. As the receiver in
Section 5.2 has a higher SNR than the receiver in Section 5.1, higher code rates can be used
in Section 5.2. As the communication environments in Sections 5.1 and 5.2 are similar, their
channels are comparable.

(a) (b)

Figure 18. Illustration of underwater acoustic communication machine (Seatrix Modem). (a) Single
machine; (b) multiple machines.
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Figure 19. Dimension of underwater acoustic communication machine (Seatrix Modem).

Table 4. Introduction of underwater acoustic communication machine (Seatrix Modem).

Communication frequency 9 kHz to 14 kHz (10 kHz to 14 kHz was used)
Communication distance 6000 m with high SNR
Work depth 2000 m
Electrical parameters Received power consumption 1 w;

Transmission power consumption 10 w to 60 w;
Built-in 400 wh rechargeable battery;
RS-232 interface.

Mechanical parameters Length 790 mm ×Width (Diameter) 130 mm;
Weight 15 kg (including the battery)
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We used rate-1/2 and rate-1/4 convolutional codes and S256. The BER performance
based on the GL algorithm is shown in Table 5. It can be seen that S256 was very effective
for underwater acoustic communications with moving transceivers. After only one iter-
ation, all information bits were correctly decoded. Taking the fourth block with rate-1/2
convolutional code in Table 5 as an example, there were four consecutive segments for the
fourth data block, and their channels were different due to floating transceivers, i.e., αp 6= 1.
When turbo equalization was not used, i.e., with 0 iterations, the corresponding channel
equalization results are shown in Figure 20(b1), and the constellation points after LMMSE
equalization were very scattered. Then, the automatically determined αp was updated.
When turbo equalization was performed once, i.e., after one iteration, as shown in Fig-
ure 20(b2), the constellation points after LMMSE equalization were still scattered. After
three iterations, as shown in Figure 20(b4), the constellation points after LMMSE equaliza-
tion were ideally condensed together. The corresponding estimated channels of the four
segments in Figure 20a were significantly different, where αp = 0.09 after three iterations,
demonstrating the time-variation of the channel and the effectiveness of the ST scheme
and the GL algorithm. Comparing Figure 15a in Yellow Sea 1 and Figure 20a in Yellow
Sea 2, it can be seen that their channel lengths are almost the same. This is because the
communication environments are basically the same. We did not show BERs for S512 and
W1024, as they basically do not work.

Then, we tested the effectiveness of direct adaptive communications with real un-
derwater acoustic communication machines. The adaptive threshold setting is shown in
Table 2. We still used the mean aggregation degree after one iteration to compare the thresh-
old, where the inner boundary is set to ξin = 0.03 and the outer boundary is set to ξex = 0.2.
When the mean aggregation degree is ξm < 0.03, the encoding (transmission) rate will be
improved automatically; when the mean aggregation degree is ξm > 0.2, the encoding
(transmission) rate will be reduced automatically; when the mean aggregation degree is
0.03 ≤ ξm ≤ 0.2, the encoding (transmission) rate will be kept the same.
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Figure 20. Estimated channels and equalization results of the fourth block with S256 and 1/2 code
rate for Yellow Sea 2 in Figure 14. (a) The estimated channels of the consecutive four segments after
3 iterations; (b1) constellations after 0 iteration; (b2) constellations after 1 iteration; (b3) constellations
after 2 iterations; (b4) constellations after 3 iterations.

The calculation of the mean aggregation degree ξm is shown in Table 3. For Yellow Sea
2, assuming that rate-1/4 convolutional code was used first, after one iteration, the mean ag-
gregation degree was ξm = 0.007, which was less than 0.03. Therefore, the encoding rate was
improved automatically, i.e., the channel code was adjusted from rate-1/4 convolutional
code to rate-1/2 convolutional code automatically. After one iteration with rate-1/2 convo-
lutional code, the mean aggregation degree was ξm = 0.041, which belonged to [0.03, 0.2].
Therefore, the encoding rate was kept the same. Assuming that rate-1/2 convolutional



Sensors 2022, 22, 2142 21 of 25

code was used firstl, after one iteration, the mean aggregation degree was ξm = 0.041, which
belonged to [0.03, 0.2]; therefore, the encoding rate was kept. The aggregation performance
of the 16 blocks of information bits with S256 for Yellow Sea 2 is shown in Figure 21.
From Figure 21a, after one iteration with rate-1/2 convolutional code, the constellation
points of the 16 blocks of information bits became obviously clustered.

(a) 

 (b)
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Figure 21. Constellations of the 16 blocks of data with S256 after 0, 1 and 2 iterations for Yellow Sea 2
in Table 5. (a1) Rate-1/2, 0 iteration; (a2) rate-1/2, 1 iteration; (a3) rate-1/2, 2 iterations; (b1) rate-1/4,
0 iteration; (b2) rate-1/4, 1 iteration; (b3) rate-1/4, 2 iterations.

The BER performance based on the GL algorithm with S256 is shown in Table 5. Af-
ter one iteration, the decoding performance with rate-1/2 convolutional code was sufficient
in meeting the needs for underwater acoustic communications. Therefore, the rate-1/2 con-
volutional code was kept, which was in keeping with the result from the mean aggregation
degree. The experiment demonstrated the effectiveness and practicability of the proposed
algorithms in real underwater acoustic communication machines.

Table 5. BER performance of the GL turbo system with S256 at SNR = 13 dB for Yellow Sea 2.

Block Number
Rate-1/2 Rate-1/4

Iteration Number Iteration Number

0 1 2 0 1 2

1 8.8% 0 0 0 0 0
2 2.3% 0 0 0 0 0
3 0.7% 0 0 0 0 0
4 3.1% 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 2.0% 0 0

10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0 0

Mean 0.9% 0 0 0.1% 0 0
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From the above simulations and experimental results, we can conclude that the best
segment length is 2n, and should be close to and longer than the channel length, and shorter
than a period of the training sequence, where n is an integer. Considering the transmission
rate and time variation of the channel, S256 is better than S128, S512 and W1024. The two
separate experimental results show that, with SNR = 9 dB, the 1/8 code rate is effective;
with SNR = 13 dB, the 1/2 code rate is effective. Even if αp = 0.07 and αp = 0.09 (αp can be
obtained by calculating the correlation coefficient of the consecutive segments), i.e., the
channels of the four segments are weakly correlated, the proposed system is still effective.

6. Conclusions

The GL algorithm and the CA algorithm have been proposed to achieve a global
accurate channel estimation of each segment and automatic encoding rate adjustment.
To improve the estimation and tracking capability of time-varying channels, the ST scheme
has been used. For channel estimate fusion of the segments, S256 is the best for practical
moving underwater acoustic communications. Even if the channel correlation coefficients
of the segments are as low as 0.7 and 0.9, the proposed GL turbo system is still effective.
The experimental results demonstrates that a 1/8 code rate is effective at SNR = 9 dB,
and a 1/2 code rate is effective at SNR = 13 dB. In the process of iteration, direct adaptive
communications based on constellation aggregation have been realized. The experimental
results illustrated that the encoding rate can be adjusted automatically among the 1/2
code rate, 1/4 code rate, 1/8 code rate and 1/16 code rate by using the mean aggregation
degree decision. Simulations and experimental results have verified the effectiveness of the
proposed system.
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Appendix A

Assuming that the circulant matrix of the impulse response for the channel is Hn,
the transmitted signals are sn and the white Gaussian noise is w. Then, the received signal
can be represented as (A1).
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yn = Hnsn + w = Hn(rtLs + fn) + w

=



h1 0 0 · · · · · · · · · · · · h2

h2 h1 0
. . . . . .

...
... h2 h1

. . . . . . hLc

hLc

... h2
. . . . . . 0

0 hLc

...
. . . . . . 0

0 0 hLc

. . . . . .
...

...
... 0

. . . . . . 0

0 0
... · · · · · · · · · · · · h1


(Ls+Lc−1)×(Ls+Lc−1)



s1
s2
...

sLs

0
0
...
0


(Ls+Lc−1)×1

+ w

=


h1
h2
...

hLc


Lc×1

∗


s1
s2
...

sLs


Ls×1

+ w

= hn ∗ sn + w

. (A1)

Take elements of hn, sn, tLs ,fn and w to build the channel estimator based on the LS
algorithm. An element of the impulse response of the channel is denoted by hn; an element
of the symbol sequence is denoted by fn; an element of the periodic training sequence
is denoted by tn with a period of T; and the superimposed symbol sequence is denoted
by sn = fn + r× tn. As r is a constant number, the superimposed symbol sequence can
be simplified as sn = fn + tn. Then, an element of the received signal sequence can be
expressed as

yn = hn ∗ sn + wn

=
Lc
∑

i = 1
f(n+1−i)hi +

Lc
∑

i = 1
t(n+1−i)hi + wn,

(A2)

where wn and Lc is the white Gaussian noise and the channel length, respectively. Assuming
that the mean value of the symbol sequence is 0, and T ≥ Lc, then we can obtain

E[yn] =
Lc

∑
i = 1

t(n+1−i)hi. (A3)

Let Ls = pT. We divide E[yn] into p subsegments with a length of T, i.e.,

E[yn] = E


y1
y2
...

yLs


Ls×1

= E


y1T
y2T

...
ypT

, (A4)

where

E[yiT ] =


tiT+1 tiT · · · tiT−Lc+2
tiT+2 tiT+1 · · · tiT−Lc+3

...
...

. . .
...

tiT+T tiT+T−1 · · · tiT+T−Lc+1


T×Lc


h1
h2
...

hLc


Lc×1

∆= Ahn. (A5)
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As we use a periodic training sequence with a period of T, we can acquire

A =


t1 tT · · · tT−Lc+2
t2 t1 · · · tT−Lc+3
...

...
. . .

...
tT tT−1 · · · tT−Lc+1

. (A6)

It can be seen from (A5) that A is a Toeplitz matrix, and its mean is not related to i. A
cumulative sum calculation is performed for E[yn]. When p is a large value, we can obtain

1
p

p

∑
i = 1

E[yiT ] =
1
p

p

∑
i = 1

[yiT ] = Ahn. (A7)

When T ≥ Lc, based on the LS algorithm, we can obtain (3).
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