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Abstract

Calcific aortic valve disease (CAVD) is characterized by a fibrocalcific process. The regula-

tory mechanisms that drive the fibrotic response in the aortic valve (AV) are poorly under-

stood. Long noncoding RNAs derived from super-enhancers (lncRNA-SE) control gene

expression and cell fate. Herein, multidimensional profiling including chromatin immunopre-

cipitation and sequencing, transposase-accessible chromatin sequencing, genome-wide

3D chromatin contacts of enhancer-promoter identified LINC01013 as an overexpressed

lncRNA-SE during CAVD. LINC01013 is within a loop anchor, which has contact with the

promoter of CCN2 (CTGF) located at ~180 kb upstream. Investigation showed that

LINC01013 acts as a decoy factor for the negative transcription elongation factor E (NELF-

E), whereby it controls the expression of CCN2. LINC01013-CCN2 is part of a transforming

growth factor beta 1 (TGFB1) network and exerts a control over fibrogenesis. These findings

illustrate a novel mechanism whereby a dysregulated lncRNA-SE controls, through a loop-

ing process, the expression of CCN2 and fibrogenesis of the AV.

Author summary

Calcific aortic valve disease is the most common heart valve disorder characterized by a

thickening of the aortic valve resulting from fibrotic and calcific processes. Because the

aortic valve replacement is currently the only therapeutic option, the identification of key

molecular processes that control the progression of the disease could lead to the develop-

ment of novel noninvasive therapies. Growing evidence suggests that long noncoding

RNAs (lncRNAs) fine tune gene expression in health and disease states. By using a multi-

dimensional profiling including genome-wide 3D enhancer-promoter looping data, we

identified LINC01013, a lncRNA, as a regulator of fibrogenesis. Specifically, we found that
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LINC01013 is located in a cluster of distant enhancers (super-enhancer) in aortic valve

interstitial cells and has significant long-range looping with the promoter of CCN2, a gene

that orchestrates fibrogenesis. We discovered that LINC01013 is acting as a decoy factor

for a negative transcription elongation factor, whereby it controls the transcription of

CCN2. In turn, higher expression of LINC01013 during calcific aortic valve disease pro-

moted the expression of CCN2 and a fibrogenic program. These findings provide evi-

dence that LINC01013 is a key regulator of fibrogenesis in CAVD.

Introduction

Calcific aortic valve disease (CAVD) is the most frequent heart valve disorder [1]. The progres-

sion of CAVD culminates in aortic valve (AV) stenosis, which can be treated by aortic valve

replacement (AVR) in symptomatic patients. AVR either surgical or by percutaneous

approach is associated with elevated cost and significant morbidity/mortality [2]. Hence, the

identification of key underpinning processes that control the development of CAVD could

lead to medical therapy to prevent the progression of CAVD. Analyses of surgically explanted

AVs have shown that the thickening of leaflets, a hallmark feature of CAVD, is associated with

an excess of extracellular matrix components such as collagen fibrils [2]. Research conducted

over the last several years has underlined several molecular processes involved in the develop-

ment of CAVD and has highlighted that valve interstitial cells (VICs) have a high plasticity [3].

As such, according to different cues VICs may transition from quiescent to activated cells with

an increased potential for fibrogenesis [3]. Studies have consistently shown that the transform-

ing growth factor (TGF) beta pathway was involved in fibrogenesis and the development of

CAVD [4]. Pre-clinical and clinical data have highlighted the benefit of targeting the TGF beta

pathway to reduce the cardiac fibrosis [5] and the key role of the TGF beta-CCN2/CTGF axis

[6]. However, key regulators of the TGF beta pathway that orchestrate and instruct a fibrogenic

programme in the AV are still largely unknown.

Transcription factors and enhancers control gene expression pattern [7]. Super-enhancers

(SE) are groups of distant-acting cis-regulatory elements (enhancers) in close proximity, which

are enriched in chromatin loops with the promoter of genes [8]. The folding pattern of the

chromatin brings distant elements, such as SE, in contact with gene promoters and exert a con-

trol on the transcriptional process. Studies have highlighted that SE are cell-specific and con-

trol cell fate and identity [8]. Enhancer and SE may express noncoding RNA including long

noncoding RNA (lncRNA) [9,10]. The expression of lncRNA derived from SE (lncRNA-SE)

provides another layer of control on gene expression [10]. Studies on cardiac fibrosis have

demonstrated that lncRNA or lncRNA-SE could be targeted to reduce cardiac fibrosis [11,12].

In this work, we hypothesized that dysregulated lncRNA-SE expressed by VICs may contribute

to fibrogenesis, an early and key process in the development of CAVD. By using functional

assays and genomic multidimensional profiling of VICs and AVs (S1 Fig), we identified

LINC01013, a CAVD-dysregulated lncRNA-SE within a regulatory DNA loop that controls

the transcriptional process of gene enriched in the TGF beta pathway and promotes

fibrogenesis.

Results

Super-enhancer in valve interstitial cells

SEs exhibit a strong enrichment for the active H3K27ac regulatory mark and play a major role

in the signaling pathways. We thus wondered if SEs could be involved in the biology of the
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AV. For that purpose, in VICs, we first generated chromatin immunoprecipitation for

H3K27ac followed by sequencing to identify active regulatory elements. We identified 82,662

strong peaks corresponding to putative regulatory elements. We next used these data to iden-

tify SEs by using the ranking of super-enhancer (ROSE) algorithm as described previously

[13,14]. ROSE is the most utilized approach to identify SEs; briefly the algorithm performs a

ranking of strong and close H3K27ac peaks, and then identifies SEs from peaks plotted on a

scatter plot upper an inflection point for which the slope is 1. Thus, in VICs, we identified

1085 SEs (S1 Table). We wanted to replicate these data by using another algorithm integrated

into the HOMER tools, and we observed that 83.3% of the SEs identified by HOMER (S2

Table) are also found by the ROSE algorithm. By using GREAT (see the Methods section), we

found that the 1085 SEs were highly enriched in gene ontology (GO) for extracellular matrix

organization (GO:0030198) (P = 2.01 x 10−21) (Fig 1A). Active regulatory elements like

enhancers and SEs are characterized by a chromatin accessibility. In VICs, we performed an

assay for transposase-accessible chromatin and massively parallel sequencing (ATAC-seq) to

capture the open chromatin regions. We found that there was a significant and a positive cor-

relation of the ATAC-seq signal close to the SEs (observed/expected ratio = 5.2, P<1 x 10−16

binomial test) (Fig 1B): these findings attest the importance of the SEs identified as active regu-

latory elements. By using an extensive annotation of lncRNAs (GENCODE [15] version 32)

that was intersected with the SE dataset, we identified 324 SEs from which at least one lncRNA

is transcripted, called lncRNA-SE (S3 Table), which represent 30% of all the SE in VICs (Fig

1C). Based on the ROSE algorithm [8], lncRNA-SE were ranked higher than regular SE

(R-SE), from which no lncRNA is transcribed (P<0.0001, Wilcoxon ranked-sum test) (Fig

1D). We thus wondered whether lncRNA-SE were associated with increased open chromatin

compared to R-SE. In ATAC-seq, the tag density for the core region (±5kB) was significantly

increased in lncRNA-SE compared to R-SE (P<0.0001, Wilcoxon ranked-sum test) (Fig 1E

and 1F). SE are enriched in 3D chromatin looping involved in gene regulation [14]. In VICs,

genome-wide enhancer-promoter 3D mapping was evaluated by using H3K27ac HiChIP,

which generated 454,964,884 unique paired-end tags. Fig 2A shows an example of an interac-

tion matrix for the chromosome 6 with a resolution of up to 1kb. S2 Fig shows interaction

matrices for the others chromosome. In total, in VICs we mapped 36,229 high-confidence

loops at false discovery rate (FDR)<0.01. The mean number of protein coding gene promoters

(±1 kb from transcription start site) mapped by 3D chromatin looping was 1.2 and 1.9 for

R-SE and lncRNA-SE respectively. Taken together, these data highlight that VIC-associated

lncRNA-SE are highly ranked SE with increased open chromatin and are spatially coordinated

with distant protein coding genes.

Differentially expressed lncRNA-SE and 3D genome mapping

We next wondered if lncRNA-SE were differentially expressed during the development of

CAVD. By using RNA-sequencing (RNA-seq) in 10 control nonmineralized AVs and 19 surgi-

cally-explanted mineralized AVs (CAVD), we profiled the expression of lncRNAs. RNA

sequencing was annotated with GENCODE version 32. Fig 2B presents a heatmap of differen-

tially expressed lncRNAs between control nonmineralized and mineralized AVs (CAVD).

When comparing CAVD to control AVs, 178 and 111 lncRNAs were upregulated and downre-

gulated respectively (FDR<0.05) (S4 Table). Among the differentially regulated lncRNAs

there were 18 lncRNA-SE (10 upregulated and 8 downregulated in CAVD) (S5 Table). In

order to identify the putative genes regulated by lncRNA-SE we mapped these regulatory ele-

ments to their protein coding genes (±1 kb from the transcription start site) by using chroma-

tin looping information obtained with the H3K27ac HiChIP in VICs. Among the 18

PLOS GENETICS Super-enhancer-associated lncRNA and fibrogenesis of the aortic valve

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010010 January 18, 2022 3 / 24

https://doi.org/10.1371/journal.pgen.1010010


Fig 1. Super-enhancer (SE) in valve interstitial cells (VICs). A) Gene ontology enrichment for SE in VICs (adjusted P-value). B) ATAC-seq

signal relative to distance from SE. C) Pie chart showing that 30% of VICs SE intersect with lncRNA (lncRNA-SE); SEs for which no lncRNA

is transcribed are defined as regular SE (R-SE). D) The ranking of super-enhancer (ROSE) algorithm indicates that lncRNA-SE rank higher

than R-SE in VICs. E) Signal intensity for open chromatin (ATAC-seq) was higher at the core of lncRNA-SE compared with R-SE. F) Box plot

revealing higher ATAC-seq signal for lncRNA-SE.

https://doi.org/10.1371/journal.pgen.1010010.g001
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Fig 2. CAVD associated lncRNA-SE and 3D mapping. A) Chromosome 6 interaction matrices at the indicated resolutions from H3K27ac

HiChIP in VICs. B) Heat map of lncRNA expression in 10 control and 19 calcified aortic valves. C) Venn diagram of genes mapped by

chromatin contact with differentially expressed lncRNA and genes encompassed in the GO for extracellular matrix organization displaying

that only CCN2 is common to both sets. D) Virtual 4C representations of chromatin interactions at 6q23.2 revealing cell line specific contact

between lncRNA-SE, LINC01013 and CCN2 promoter region. Tracks for H3K27ac ChIP-seq and HiChIP (1D), H3K4me1 ChIP-seq, SE-

lncRNA, ATAC-seq signal and H3k27ac HiChIP (3D).

https://doi.org/10.1371/journal.pgen.1010010.g002
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differentially expressed lncRNA-SE, we found that in total 4 were having significant chromatin

contacts with distant promoters of protein coding genes (S6 Table). The mean distance

between a differentially expressed lncRNA-SE and a protein coding gene was ~89 kb. We won-

dered whether genes mapped by H3K27ac HiChIP and having loops with lncRNA-SE could

be part of the GO for extracellular matrix organization, the highest enriched ontology for SE in

VICs. Fig 2C shows a Venn diagram of genes mapped by chromatin contact with differentially

expressed lncRNA-SE and genes encompassed in the GO for extracellular matrix organization.

One gene promoter for CCN2 (6q23.2) having loops with a differentially expressed lncRNA-SE

overlapped with the GO for extracellular matrix organization. We next examined the genome

3D interactions at 6q23.2 by using virtual 4C (v4C), which provides an anchor as a viewpoint

of all interactions (with the anchor) within a genomic region and visualized in 2D. Fig 2D

shows v4C representation of chromatin interactions at 6q23.2 in VICs where LINC01013/
LOC100507254, a poorly conserved lncRNA-SE according to the NONCODE database [16],

interacts with the promoter region of CCN2 located ~180 kb upstream. High confidence sig-

nificant loops identified strong chromatin contacts between the promoter of LINC01013 and

the promoter of CCN2 as well as many significant non-coding chromatin contacts at these

loci. LINC01013 is overexpressed in mineralized compared to control nonmineralized AVs

and SE region for LINC01013 extends over ~30 kb. CCN2 encodes for the connective tissue

growth factor (CTGF), a matricellular protein involved in cell adhesion, proliferation and syn-

thesis of extracellular matrix [17,18]. Interrogation of enhancer-promoter chromatin contacts

using H3K27ac HiChIP at the 6q23.2 locus showed that similarly to VICs, LINC01013 interacts

with CCN2 in human coronary artery smooth muscle cells (HCASMC), whereas there is no

chromatin looping at this locus in blood cells such as naive T cells and GM12878 (B cell line)

(Fig 2D). These data underline that spatial organization of chromatin at the LINC01013 locus

is likely specific to mesenchymally-derived cells. The S3 Fig gives a summary of the sequential

analysis which conducted to the prioritization of LINC01013.

Characterization of the LINC01013 locus

We confirmed with a higher resolution the data obtained in HiChIP by using chromatin con-

formation capture (3C) and pairs of primers covering the region of LINC01013 (S7 Table). In

VICs, the 3C assay showed that the promoter region of CCN2 (used as an anchor) interacted

with the promoter region of LINC01013 (Fig 3A). Alternative splicing of LINC01013 produces

transcripts with 2 or 3 exons. In VICs, only the 3 exons transcript was expressed, whereas the 2

exons transcript was not detected by RT-qPCR (Fig 3B). We generated data to confirm the

RNA-seq analysis. We measured the level of transcripts encoding for LINC01013 in 18 control

nonmineralized and 26 mineralized AVs by using quantitative RT-qPCR. Table 1 presents the

demographic data for the patients for whom the AVs were obtained. We found that

LINC01013 was increased by 2.95-fold in mineralized compared to control AVs (P<0.0001;

age- and sex-adjusted P = 0.0003) (Fig 3C). The noncoding potential of LINC01013 was con-

firmed by using CPAT [19] (coding probability = 0.04), a logistic regression algorithm to

probe the coding potential (S8 Table). In VICs, a ChIP-seq with an antibody directed against

H3K4me1, a histone mark of enhancer, showed strong peaks over the LINC01013 region,

which overlapped with H3K27ac and open chromatin (Fig 2D). We next asked whether the

dysregulation of LINC01013 in CAVD could be linked to a disease-associated epigenetic pro-

cess. We measured by quantitative ChIP the enrichment of H3K27ac at the promoter of

LINC01013 in control and mineralized AVs. Compared to control AVs, we found that the

H3K27ac mark at the promoter of LINC01013 was increased by 5.41-fold in mineralized AVs
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(Fig 3D). Taken together, these orthogonal data suggest that LINC01013 is located in extended

histone marks of active regulatory elements and is spatially coordinated with CCN2.

LINC01013 and transcriptional response at CCN2
We assessed the expression of LINC01013 in the cytosol and the nuclear compartments of

VICs. After cell fractionation, we observed that LINC01013 was expressed in both the nuclear

Fig 3. LINC01013 locus characterization. A) Chromatin conformation capture (3C) assay demonstrating contact between LINC01013 and

CCN2 promoter regions (n = 4). B) Quantitative PCR (qPCR) primers design represented by the arrows to amplify specifically the long or the

short transcripts of LINC01013 (3 or 2 exons). C) qPCR assay confirming increased RNA expression of LINC01013 in mineralized (n = 27)

compared to non-mineralized (n = 17) aortic valves. D) ChIP-qPCR indicating higher H3K27ac signal in calcified valves at the LINC01013
promoter (CTL: n = 4, CAVD: n = 7).

https://doi.org/10.1371/journal.pgen.1010010.g003
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and cytosol fractions (Fig 4A). To explore the functional role, we designed an antisense oligo-

nucleotide (ASO) targeting LINC01013. In VICs, the transfection of ASO provided a strong

reduction of LINC01013 (Fig 4B). Transfection of the ASO against LINC01013 in VICs also led

to a significant reduction of transcripts encoding for CCN2measured after 72 hours (Fig 4C).

In the same line, the knockdown of LINC01013 was followed by a significant reduction of

CCN2 (CTGF) at the protein level (Fig 4D). Promoter-proximal pausing of RNA polymerase

II (RNAPII) is a widespread regulatory mechanism of the transcriptional process [20]. NELF

(negative elongation factor) is a protein complex interacting with the RNAPII [21] which

restrains its progression usually 20 to 60 bp downstream from the transcription start site (TSS)

[20]. The recruitment of the NELF complex is associated with the phosphorylation on serine 5

of the c-terminal domain of RNAPII (RNAPII-Ser5p) enriched at paused promoters [20,22].

Previous studies have identified that some noncoding RNAs can modulate the recruitment of

the NELF complex by sequestering the NELF-E subunit [23,24]. Considering that LINC01013
has a nuclear localization and its locus is spatially coordinated with the promoter of CCN2, we

hypothesized that LINC01013 can act as a decoy factor for the NELF-E subunit and thus mod-

ulate its recruitment at CCN2. We performed a RNA immunoprecipitation (RIP) assay to eval-

uate the possible interaction between LINC01013 and NELF-E. In VICs, a pull-down of the

NELF-E subunit followed by a quantitative RT-qPCR showed that LINC01013 was enriched by

6-fold compared to the IgG control (Fig 4E). In addition, quantitative ChIP demonstrated that

the knockdown of LINC01013 in VICs led to a significant enrichment of the NELF-E subunit

at the TSS of CCN2 (Fig 4F). However, at the promoter of LINC01013, we observed a poor

enrichment of NELF-E compared to the IgG control and no impact on the recruitment after

the knockdown (S4A Fig). In line with these findings, we found that the knockdown of

LINC01013 was accompanied by a higher level of RNAPII-Ser5p at the TSS of CCN2 (Fig 4G).

However, total RNAPII revealed a similar occupancy at the TSS of CCN2 with or without the

knockdown (Fig 4H). These data thus indicate that LINC01013 controls the magnitude of the

Table 1. Clinical data for control and CAVD.

Control valves CAVD P-value

(n = 17) (n = 27)

Age 50 ± 3,71 68 ± 1,53 0,0001

Male (%) 88 63 0,0897

Smoking (%) 12 22 0,5149

Hypertension (%) 41 81 0,0094

Diabetes (%) 0,0 0,0 1

Coronary heart disease (%) 17,6 18,5 1

Bicuspid Avs (%) 0,0 37,0 0,0037

BMI (kg/m2) 25,8 ± 1,2 29,7 ± 1,2 0,0135

Waist circumference (cm2) 114 ± 2,06 105,5 ± 3,8 0,8213

Statins (%) 47 70 0,1053

AV area (cm2) - 1 ± 0,1 -

Aortic peak gradient (mmHg) - 63,0 ± 5,5 -

Aortic mean gradient (mmHg) - 37,1 ± 3,4 -

Triglycerides (mmol/L) 1,65 ± 0,27 1,16 ± 0,08 0,9267

LDL (mmol/L) 1,93 ± 0,25 2,08 ± 0,13 0,3215

HDL (mmol/L) 1,04 ± 0,09 1,35 ± 0,09 0,0144

Creatinine (μmol/L) 121,94 ± 8,96 79,96 ± 4,65 0,9998

Creatinine clearance (ml/min) 65,05 ± 5,31 77,75 ± 5,71 0,0581

https://doi.org/10.1371/journal.pgen.1010010.t001
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Fig 4. LINC01013 regulates the transcription at CCN2. A) Cell fractionation and qPCR showing LINC01013 expression in both the nuclear

and cytosolic compartments (n = 3). B-D) LINC01013 (n = 9) (B) and CCN2 (n = 8) (C) RNA levels and CCN2 protein (n = 6) (D) decrease

following treatment with LINC01013 ASO. E) RNA immunoprecipitation assay (RIP) indicating an interaction between the LINC01013 and

NELF-E protein, western blot demonstrating NELF-E immunoprecipitation (n = 4). F) ChIP-qPCR revealing a rise in NELF-E protein at the

CCN2 promoter after treatment with LINC01013 ASO (n = 7). G-H) ChIP-qPCR showing increased RNAPII-Ser5P (n = 8) (G) occupancy at

the CCN2 promoter after treatment with the ASO against LINC01013, but unchanged total RNAPII (n = 4) (H).

https://doi.org/10.1371/journal.pgen.1010010.g004
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transcriptional response at CCN2 through a modulation of RNAPPII pausing by acting as a

decoy factor for the NELF-E subunit.

TGF beta pathway and LINC01013

We extracted a protein-protein interaction (PPI) network from RNA-seq in calcified AVs in

order to evaluate the interaction of CCN2 and its pathway. For that purpose, we used an experi-

mentally validated dataset including 156,317 PPIs. The extracted network in CAVD included 446

nodes (gene derived proteins) and 591 edges (connections) and was enriched for TGF beta signal-

ing pathway (Padjusted = 4.17 x 10−72) (Fig 5A and 5B). Highly connected nodes such as SMAD2,

SMAD3, TGFB1 and COL1A1 were linked to CCN2. We measured in VICs the expression of

COL1A1, a widely expressed collagen in the AV, in response to a knockdown of LINC01013
knowing its impact on the expression of CCN2. In VICs, the knockdown of LINC01013 lowered

the protein level of COL1A1 by 55% after 72 hours (Fig 6A). Also, the transfection of an ASO tar-

geting LINC01013 in VIC cultures lowered the extracellular secretion of pro-collagen 1-α by 31%

(Fig 6B). Immunostaining of COL1A1 in VICs in culture demonstrated similar results on whole

cells (S4B Fig). TGF beta is an enriched pathway in CAVD and an important promoter of VIC

activation [3]. We tested whether TGFB1 may impact on the expression ofCCN2 through the acti-

vation of LINC01013. First, in TGFB1-treated VIC cultures (10 ng/ml), we found that the expres-

sion of LINC01013was increased by 1.9-fold (Fig 6C). Similarly, the expression of CCN2was

increased by 3.1-fold in TGFB1-treated VIC cultures (Fig 6D). Of interest, the ASO against

LINC01013 abrogated the TGFB1-induced rise of CCN2 (Fig 6D). Also, in western blot, the level

of CCN2 increased following a treatment with TGFB1, whereas the knockdown of LINC01013
largely abrogated this rise (Fig 6E). We next treated VIC cultures with TGFB1 and we measured

the level of collagen with and without a knockdown of LINC01013. The knockdown of

LINC01013 in VIC cultures prevented the TGFB1-induced rise of COL1A1 transcript and the

secretion of pro-collagen type 1-α (Fig 6F and 6G). Data obtained from an immunostaining of

COL1A1 in whole cells are consistent with these results (S4 Fig). Similarly, the knockdown of

CCN2 by an ASO, which significantly reduced the transcript level of the target, also abrogated

TGFB1-induced rise of COL1A1 (Fig 6H and 6I). Taken together, these data obtained in VICs

indicate that TGFB1-mediated expression of collagen relies on a LINC01013-CCN2 pathway.

Discussion

Herein, genomic profiling of VICs identified that SE are enriched for extracellular matrix orga-

nization. Among these clusters of regulatory elements, lncRNA-SE are enriched in open chro-

matin and loops with gene promoters. We identified a lncRNA-SE, LINC01013, which is

upregulated during CAVD. Functional assessment showed that LINC01013 is within a DNA

loop that has contacts with the promoter of CCN2. LINC01013 is acting as a decoy factor for

NELF-E, whereby it controls the transcription at CCN2. Increased expression of LINC01013
promotes the dissociation of NELF-E from chromatin and the expression of CCN2, which

encodes for a matricellular protein that stimulates fibrogenesis (Fig 6J).

LncRNA and super-enhancers in VICs

In CAVD, previous studies have identified dysregulated lncRNAs such as TUG1 [25] and

MALAT1 [26], which act as sponges of miR-204, a microRNA that regulates the level of the

osteogenic transcription factor RUNX2. Also, the expression of the lncRNA H19 is increased

in VICs during CAVD and controls the expression of NOTCH1, a key regulator of cell fate

[27]. In the heart, CARMEN is a lncRNA-SE, which regulates cardiac specification of precur-

sor cells [28]. To our knowledge, the present work is the first to identify and characterize
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dysregulated lncRNA-SE in CAVD. In VICs, mapping of SE revealed an enrichment for extra-

cellular matrix organization, cell substrate adhesion and actin cytoskeleton. These functional

enrichments represent salient biologic features of the AV, which are dysregulated during the

Fig 5. LINC01013 is associated with the TGF-β pathway. A) Protein-protein interaction (PPI) network from calcified aortic valves and B)

gene ontology enrichment of the proteins included in the network show enrichment for the TGF-β signaling pathway (adjusted P value).

https://doi.org/10.1371/journal.pgen.1010010.g005
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Fig 6. TGF-β mediates LINC01013 activation. A-B) Western blot (n = 6) (A) and pro-collagen-Iα measurements (n = 7) (B) indicate

decreased collagen following LINC01013 ASO treatment. C) TGF-β treatment induces LINC01013 expression (n = 8). D-E) TGF-β-

mediated increase of CCN2mRNA expression (n = 8) (D) and protein level (n = 6) (E) rely on LINC01013 expression. F-G) The rise in

COL1A1 expression (n = 8) and pro-collagen-Iα secretion (n = 7) following TGF-β treatment relies on LINC01013 expression. H) TGF-β
promotes CCN2 expression (n = 7). I) CCN2 ASO (H) negates TGF-β-induced COL1A1 expression level (n = 7). J) Cartoon illustrates

the process whereby LINC01013 controls the expression of CCN2; dashed line is a hypothetical process as a direct interaction of

LINC01013 with DNA at the CCN2 locus remains to be demonstrated.

https://doi.org/10.1371/journal.pgen.1010010.g006
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development of CAVD. Of note, 30% of SE in VICs are lncRNA-SE and are enriched in open

chromatin and loops. These findings suggested that lncRNA-SE may participate to cell fate by

controlling gene expression in regulatory DNA loops. LINC01013 was prioritized for further

functional assessment as this lncRNA-SE has chromatin contacts with the promoter of CCN2,

a gene involved in extracellular matrix organization. In explanted AVs, we found in CAVD

that the promoter of LINC01013 was enriched for H3K27ac, a mark of active chromatin. Thus,

these findings highlighted that lncRNA-SE are dysregulated during CAVD and are involved

into several processes pertaining to matrix organization and activation of VICs.

LINC01013 regulates the transcription of CCN2
Transcription is a highly organized process involving the recruitment of regulatory complexes

along with the RNAPII [29]. Distant-acting elements modulate the transcription process through

DNA loops [30]. Herein, we found that LINC01013 is a decoy factor for NELF-E and exerts,

through a long-distance looping, a control on the expression of CCN2. The NELF complex is

known to be required for the phosphorylation on serine 5 of RNAPPII associated with RNAPII

pausing [20,22]. Consistently, following the knockdown of LINC01013, we found that the level of

RNAPII-Ser5p at the TSS of CCN2was increased. Hence, during CAVD, higher expression of

LINC01013 promotes the dissociation of NELF-E from chromatin and increases the transcrip-

tional response of CCN2. Interestingly, the importance of LINC01013 in the transcriptional control

of CCN2 is also observed in the endothelium. In human umbilical endothelial cells (HUVEC), the

presence of SEs at the LINC01013 locus has been also reported as well as a strong interaction

between the LINC01013 and the CCN2 locus [31]. Also, single-cell RNA sequencing experiments

in HUVEC revealed that a sub-population of cells co-expressed LINC01013 and CCN2 [32]. In this

regard, it appears that an unexplored role for LINC01013 on the expression of CCN2 in endothelial

cells of the aortic valve might be an additional process involved into the pathobiology of CAVD.

TGF beta pathway

Transition of VICs towards activated cells is promoted by TGFB1. In a PPI network, CCN2 has

several connections with different members of the TGF beta pathway. In line with previous

works, we found in VICs that TGBFB1 induced the expression and secretion of collagen type 1,

a predominant collagen within the AV. Of interest, we found that TGFB1 also induced the

expression of LINC01013. We thus hypothesized that LINC01013may regulate TGFB1-depen-

dent fibrogenesis. To this effect, ASO-mediated knockdown of LINC01013 prevented

TGFB1-induced expression of COL1A1 and secretion of pro-collagen type 1-α. Also, TGFB1-in-

duced expression of COL1A1 was abrogated by the silencing of CCN2. Taken together, the pres-

ent findings in VICs suggest that TGFB1-induced synthesis of collagen relied on a

LINC01013-CCN2 pathway. These data are consistent with the role of CCN2 in fibrotic diseases.

Clinical implications

The present work underlined that LINC01013 regulates the transcription of CCN2, which pro-

motes fibrogenesis, an underpinning process in the development of CAVD. Hence, these find-

ings provide evidence that LINC01013 could be targeted in order to control CAVD. Further

work on the role of key regulators of fibrogenesis in the AV could lead to novel therapies.

Limitations

Though we showed that LINC01013 is a transcriptional regulator of CCN2 by acting as decoy

factor for NELF-E, the present study did not investigate the possible direct interaction of
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LINC01013 with DNA at this locus. Further experiments are needed to address the interaction

of LINC01013 with chromatin. The expression of lncRNAs was documented in surgically

explanted AVs and thus it was not possible to assess whether LINC01013 is expressed early

during the development of CAVD. The role of LINC01013 was examined in vitro and whether

targeting its expression in vivo would result in lower fibrosis of the AV is presently unknown,

and the development of a mouse model for translational studies could constitute a challenge:

the poor conservation of LINC01013 through species requires more investigation to identify a

putative orthologue in mouse. However, conservation of synteny between human and mouse

at the CCN2 and LINC01013 loci would suggest the presence of an orthologue, for which the

sequence remains to be determined by using unbiased methods like rapid amplification of

cDNA ends followed by long-read RNA sequencing (RACE-seq).

Conclusions

We provide evidence that lnRNA-SE are dysregulated during CAVD and participate to cell

fate and extracellular matrix organization. Specifically, we identified LINC01013, a lnRNA-SE

that is spatially coordinated with CCN2 and regulates the expression of CCN2 and the fibrotic

response. Increased expression of LINC01013 promotes the expression of CCN2 and the syn-

thesis of collagen. Targeting LINC01013 could prevent fibrosis of the AV.

Methods

Ethics statement

The protocol was approved by the ethical committee of the Institut Universitaire de Cardiolo-

gie et de Pneumologie de Québec. Written formal consent was obtained from the subjects.

VICs isolation

VICs were isolated from non-mineralized aortic valves obtained from patients during heart

transplantation procedure. Aortic leaflets cut into pieces were incubated in 0.3% type I collage-

nase (Invitrogen, Thermo Fisher Scientific, ON, Canada) at 37˚C for 45 minutes and then fil-

tered through a 70 μm mesh before a centrifugation for 5 minutes at 1,500 rpm. Cells were

resuspended in complete media (DMEM, 10% FBS with L-glutamine and sodium pyruvate)

and used between passages 3 to 7.

ChIP-seq library preparation and sequencing

VICs isolated were fixed with 1% formaldehyde at room temperature for 10 minutes and then

quenched with glycine to 0.125 M. Cells were harvested in 1 mL of PBS 1X/5% BSA (Sigma-

Aldrich, ON, Canada) and then centrifuged 5 minutes at 800 x g at 4˚C before removing the

supernatant. Cells were resuspended in 1 mL of lysis buffer L1A/B (10 mM Hepes-KOH pH

7.5, 85 mM KCl, 1 mM EDTA, 0.5% NP-40 containing PMSF, sodium butyrate and PIC

(Sigma-Aldrich, ON, Canada)) and incubated on ice for 10 minutes. Cellular extracts were

centrifuged for 5 minutes at 8,000 x g, then nuclei were sonicated on ice with a Bioruptor Stan-

dard Sonicator (Diagenode, NJ, USA) in 450 μL of L3 buffer (5 mM Tris-HCl pH 7.5, 100 mM

NaCl, 10 mM EDTA, 0.5 mM EGTA, 0.1% deoxycholate, 0.5% sarkosyl, supplemented with

PMSF, sodium butyrate and PIC) for 3 minutes cycles alternating 10 seconds ON and 10 sec-

onds OFF with 30% amplitude. Triton-X100 to final concentration of 1% was added and

nuclear extracts were centrifugated for 5 minutes at 18,000 x g at 4˚C. Immunoprecipitations

were then performed for 2 hours at 4˚C with 2 μg of H3K4me1 (#5326, Cell Signaling Technol-

ogy, New England Biolabs, ON, Canada) or 2 μg of H3K27Ac (#ab4729, Abcam, ON, Canada)
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pre-bound to protein G Dynabeads (Life Technologies, Thermo Fisher Scientific, ON, Can-

ada). Samples were washed three times with ice cold wash buffer I (20 mM Tris-HCl pH 7.5,

150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS, 2 mM EDTA), wash buffer II (10

mM Tris-HCl, 250 mM LiCl, 1% NP-40, 0.7% deoxycholate, 1 mM EDTA) and TET (10 mM

Tris-HCl pH 7.5, 1 mM EDTA, 0.1% Tween-20). DNA-proteins complex were eluted with

100 μL of 1% SDS/TE at room temperature for 40 minutes. Reverse-crosslink was performed

at 65˚C overnight after addition of NaCl to 300 mM final concentration. RNA were digested

with 0.33 mg/mL of RNase A (Qiagen, ON, Canada) for 1 hour at 37˚C and proteins digested

for 1 hour at 55˚C with 0.5 mg/mL of proteinase K (Qiagen, ON, Canada). DNA was purified

using DNA clean up & concentrator kit (Zymo Research, Cedarlane, Canada). Libraries were

constructed using the QIAseq Ultralow Input Library Kit (Qiagen, ON, Canada) and PCR-

amplified for 10–12 cycles. Fragments of 200–1,000 bp were selected according to manufactur-

er’s instructions. As a control, 1% input chromatin libraries after sonication were sequenced

for each ChIP samples. Sequencing was performed using 75-bp reads on an Illumina

HiSeq4000 (UCSD IGM Genomics Facility, CA, USA). Data are available in GEO (accession

number GSE154511).

ATAC-seq library preparation and sequencing

Nuclei from approximatively 2.5 x 105 to 4 x 105 of VICs were treated as previously [33]

described with some modifications. Transposition reactions were performed using the Tn5

Transposase and TD reaction buffer from the Nextera DNA library preparation kit (Illumina,

CA, USA) for 30 minutes at 37˚C. The transposed DNA were then purified using DNA clean

up & concentrator kit (Zymo Research, Cedarlane, Canada) and DNA were eluated in 20 μL of

elution buffer (Buffer EB from DNA clean up & concentrator kit). Libraries were first ampli-

fied for 5 cycles using custom-synthesized index primers followed by a second amplification.

The appropriate number of additional PCR cycles was determined using quantitative real-time

PCR by plotting the Rn value (fluorescent signal from SYBR Green I) versus cycle number and

determining the cycle number corresponding to one-third of the maximum fluorescent inten-

sity. Libraries were PCR-amplified for 4–7 cycles and then purified using DNA clean up &

concentrator kit (Zymo Research, Cedarlane, Canada). Library quality was assessed on a BioA-

nalyser (Agilent, ON, Canada) using Agilent High Sensitivity DNA kit (Agilent, ON, Canada).

Sequencing was performed using 75-bp reads on an Illumina HiSeq4000 (UCSD IGM Geno-

mics Facility, CA, USA). Data are available in GEO (accession number GSE154510).

ChIP-seq and ATAC-seq analysis

FASTQ files were mapped to the UCSC genome build hg19 using Bowtie2 with default set-

tings. BigWIG and peak calling were respectively generated with bamcoverage tool and

MACS2 with default parameters.

Super-enhancers analysis

Super-enhancers identification was performed as described previously [13,14] with a few mod-

ifications. First, MACS2 was used to identify enhancers based on H3K27ac peaks with a q-

value threshold of 1 x 10−5. H3K27ac peaks which overlapped with the ENCODE [34] black-

listed genomic regions were removed. The remaining H3K27ac peaks defined as enhancers

were then used to identify super-enhancers (SE) by performing the ROSE [8] (Rank Ordering

of Super-Enhancers) algorithm with default settings (stitching distance of 12.5 kb without TSS

exclusion). GREAT [35] was used to determine Gene Ontology (GO) enrichment of SE;

GREAT uses a binomial test to identify significant enrichments from the deviations of a
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theoretically expected distribution of observations to control for false positives, and gives a

binomial p-value associated with the enrichments. SE ranking by ROSE were compared with a

Wilcoxon ranked-sum test. Open chromatin enrichment for SE was evaluated with the Geno-

metricCorr [36] package. lncRNA-SE and R-SE were defined from SE by using the Bedtools

intercept function with the TSS of lncRNAs from the GENCODE [15] version 32 dataset.

ATAC-seq signal around lncRNA-SE and R-SE were calculated with HOMER [37] and plot

with R by using a loess smoothing method. The 5kb centered ATAC-seq signal from

lncRNA-SE and R-SE was compared with a Wilcoxon ranked-sum test.

H3K27ac HiChIP

H3K27ac HiChIP data for GM12878, Naïve T cells and HCAMSC were used from GEO

(accession number GSE101498) [38]. H3K27ac HiChIP for VICs was performed as described

by Mumbach et al. [39]. About 1 million of VICs were crosslinked with 1% formaldehyde for

15 minutes and quenched by glycine (0.125 M final). Cells were resuspended with 500 μL of

cold HiC lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% NP-40, supplemented with

PIC, Sigma-Aldrich, ON, Canada) with rotation at 4˚C for 30 minutes. Nuclei were isolated by

centrifugation at 2,500 x g for 5 minutes at 4˚C, washed with cold HiC lysis buffer, resus-

pended with 0.5% SDS and incubated for 10 minutes at 62˚C. 285 μL of water and 50 μL of

10% Triton X-100 were then added to quench SDS followed by an incubation at 37˚C for 15

minutes. Chromatin was digested 2 h at 37˚C by addition of 40 U of MboI restriction enzyme

and 50 μL of CutSmart buffer 10X (New England BioLabs, ON, Canada). Enzyme was inacti-

vated at 62˚C for 20 minutes. To mark DNA overhangs with biotin, a mix containing biotin–

dATP, dCTP, dGTP, dTTP (Thermo Fisher, ON, Canada) and DNA Polymerase I Klenow

fragment (New England BioLabs, ON, Canada) was added, followed by an incubation at 37˚C

for 1 hour with rotation. Ligation was then performed at room temperature for 4 hours with

rotation by addition of a ligation master mix containing ligase buffer (New England BioLabs,

ON, Canada), 10% Triton X-100, BSA (Thermo Fisher, ON, Canada), 4,000 U of T4 ligase

(New England BioLabs, ON, Canada), and 660 μL of water. Nuclei were then isolated by cen-

trifugation at 2,500 x g for 5 minutes and resuspended in Nuclear lysis buffer (50 mM Tris-

HCl pH 7.5, 10 mM EDTA, 1% SDS, supplemented with PIC, Sigma-Aldrich, ON, Canada)

before sonication on ice with a Bioruptor Standard Sonicator (Diagenode, NJ, USA). Sample

was clarify for 15 minutes at 16,100 x g at 4˚C and 800 μL of ChIP Dilution buffer (0.01% SDS,

1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 7.5, 167 mM NaCl) were added.

34 μL of protein G Dynabeads (Life Technologies, Thermo Fisher Scientific, ON, Canada)

were washed and resuspended in 50 μL of ChIP Dilution buffer. Sample was then added to

beads, followed by an incubation at 4˚C for 1 hour with rotation. Sample was put on a magnet

and supernatant removed into a new tube. 4 μg of H3K27ac antibody (#ab4729, Abcam, ON,

Canada) were added, and the sample was incubated overnight at 4˚C with rotation. 34 μL of

protein G Dynabeads in 50 μL of ChIP dilution buffer were added to the sample for an incuba-

tion at 4˚C for 2 hours. Beads were then washed sequentially with Low Salt Wash buffer (0.1%

SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 7.5, 150 mM NaCl), High Salt

Wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 7.5, 500 mM

NaCl) and LiCl wash buffer (10 mM Tris-HCl pH 7.5, 250 mM LiCl, 1% NP-40, 1% sodium

deoxycholate, 1 mM EDTA), and resuspended in 100 μL of DNA Elution buffer (50 mM

sodium bicarbonate pH 8.0, 1% SDS). Sample was incubated at room temperature for 10 min-

utes with rotation followed by 3 minutes at 37˚C shaking, and then placed on a magnet. The

supernatant was then transferred in a new tube and another 100 μL of DNA Elution buffer was

added to the beads for another same incubation to obtain 200 μL of sample. Reverse-crosslink
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was performed by addition of Proteinase K (Qiagen, ON, Canada) and a first incubation at

55˚C for 45 minutes with shaking followed by a second incubation at 67˚C for 1.5 hours. DNA

was then purified with clean up & concentrator kit (Zymo Research, Cedarlane, Canada) and

quantified with QuBit (Thermo Fisher, ON, Canada). 5 μL of Streptavidin C-1 beads (Life

Technologies, Thermo Fisher Scientific, ON, Canada) were washed with Tween Wash buffer

(5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween-20) and resuspended in

10 μL of 2X Biotin Binding buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 2 M NaCl). Sample

was then added for an incubation of 15 minutes at room temperature with rotation, and placed

on a magnet. Supernatant was discarded and beads washed twice by adding 500 μL of Tween

Wash buffer and incubating at 55˚C for 2 minutes shaking. Beads were washed in 100 μL of 1X

TD buffer (2X TD buffer is 20 mM Tris-HCl pH 7.5, 10 mM magnesium chloride, 20%

dimethylformamide), and then resuspended in 25 μL of 2X TD buffer, an appropriate amount

of Tn5 adjusted for the DNA quantity (about 5 ng) and water to 50 μL, followed by an incuba-

tion at 55˚C for 10 minutes with interval shaking. Sample was then placed on a magnet and

supernatant removed. 100 μL of 50 mM EDTA were then added to the sample for an incuba-

tion at 50˚C for 30 minutes, followed by two washes at 50˚C for 3 minutes, and two additional

washes in Tween Wash buffer at 55˚C for 2 minutes. Beads were then resuspended in 10 mM

Tris. Sample was placed on magnet and beads resuspended in 50 μL of a PCR master mix

(25 μL of Phusion HF 2X (New England BioLabs, ON, Canada), 1 μL of each Nextera

Ad1_noMX and Nextera Ad2.1 at 12.5 μM, and 23 μL of water). The following PCR program

was performed: 72˚C for 5 min, 98˚C for 1 min, then cycle at 98˚C for 15 s, 63˚C for 30 s, and

72˚C for 1 min. Cycle number was set to 10 considering the amount of DNA. Library was

placed on a magnet and eluted into a new tube before purification with clean up & concentra-

tor kit (Zymo Research, Cedarlane, Canada). Library size selection (300–700 bp) was per-

formed by cutting a 2% agarose gel and DNA purified with PureLink Quick Gel Extraction

(Thermo Fisher, ON, Canada). Library quality was assessed on a BioAnalyser (Agilent, ON,

Canada) using Agilent High Sensitivity DNA kit (Agilent, ON, Canada). Paired-end sequenc-

ing with 690 million reads was performed with NovaSeq 6000 S4 (UCSD IGM Genomics Facil-

ity, CA, USA). Data are available in GEO (accession number GSE154512).

H3K27ac HiChIP data processing

Paired-end reads were aligned using HiC-Pro with default settings. Contact matrix were gener-

ated with Juicer from the allValidPairs file generated by HiC-Pro [40]. Juicebox [41] was used for

matrix visualisation. Most confident interactions (FDR< 0.01) were determined with FitHiChIP

[42]. The matrix normalized by the vanilla coverage square root for the chromosome 6 at a 5 kb

resolution was dumped using Juicer. This matrix was used to generate the virtual 4C with R con-

sidering all the interactions with a bin containing the TSS of LINC01013. H3K27ac HiChIP 1D

track for VICs was generated using bamcoverage from the BAM file generated by HiC-Pro.

RNA-sequencing

RNA-sequencing was performed on 10 control nonmineralized AVs collected from hearts har-

vested during cardiac transplantation, and 19 surgically-explanted mineralized AVs (CAVD)

from patients undergoing aortic valve replacement. Valve leaflets of each individual were con-

served at -80˚C. One leaflet per valve was crushed with beads in TRIzol by using a Mini Bead

Mill Homogenizer (VWR, QC, Canada), and RNA extracted with the RNeasy Mini Kit (Qia-

gen, ON, Canada) according to the manufacturer’s instructions. Gene expression was evalu-

ated by the Illumina HiSeq 2000 platform. TopHat and Cufflinks were used to align and

assemble reads. Read counts matrix generated by STAR were normalized with the edgeR
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package by using the calcNormFactor function with the trimmed mean of M-values (TMM)

method. Differential gene expression between groups of valves were then compared with

Limma. Correction for multiple testing was performed with Benjamini and Hochberg correc-

tion. LncRNAs with an adjusted value of P<0.05 were considered differentially regulated.

Chromosome conformation capture (3C)

3C experiments were performed as described previously [43]. Briefly, 10 millions of VICs were

crosslinked with 1% formaldehyde for 15 minutes, quenched by glycine (0.125 M final), and

lysed with cold lysis buffer (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2% NP-40, supplemented

with PIC, Sigma-Aldrich, ON, Canada). Nuclei were isolated by centrifugation at 400 x g for 5

minutes at 4˚C, and then resuspended in CutSmart buffer 1.2X (New England BioLabs, ON,

Canada) plus 0.3% SDS. Nuclei were incubated 1 hour at 37˚C while shaking at 900 rpm before

the addition of Triton X-100 (2% final) and incubated another hour with the same conditions.

DNA were digested overnight at 37˚C with 400 U of PstI (New England BioLabs, ON, Can-

ada), and the enzyme was then inactivated by addition of 1.6% SDS at 65˚C for 25 minutes.

Reactions were then diluted for 20-fold by ligation buffer 1.15X (New England BioLabs, ON,

Canada) with 1% Triton X-100, and ligated with 1,000 U of T4 ligase (New England BioLabs,

ON, Canada) at 16˚C overnight. Reverse crosslink was then performed by Proteinase K (Qia-

gen, ON, Canada) addition at 65˚C overnight. RNA was digested with RNase A (Qiagen, ON,

Canada) and ligated DNA fragments were then purified by phenol/chloroform extraction, and

analyzed by quantitative real-time PCR (qPCR).

Quantification of ligated products was performed by qPCR using the PstI cutting site

located upstream the TSS of CCN2 as the anchor. For all fragments, we first normalized using

a genomic GAPDH undigested control, then we used the level of ligation products between the

anchor and the nearest downstream PstI site (#1) as a strong normalizer to correct for genomic

random interactions as described previously [44]. Two biological replicates were conducted

and qPCR were performed in triplicates to improve sensitivity. Primers sequences are pro-

vided in the S6 Table.

Cell transfection and TGF beta treatment

VICs were transfected with HiPerFect transfection reagent (Qiagen, ON, Canada). Knock-

down of LINC01013 and CCN2 were performed 72 hours with a transfection of an oligonucle-

otide antisens (ASO) against LINC01013 (80 nM), CCN2 (40 nM) or NC5 as a negative control

(IDT, IL, USA). TGF beta stimulations were performed 48 hours after 24 hours of transfection

using 10 ng/mL of recombinant human TGF beta 1 (Life technologies, Thermo Fisher Scien-

tific, ON, Canada).

ChIP-qPCR

Mineralized and non-mineralized tissues from aortic valve were homogenized in 1 ml of phos-

phate-buffered saline (PBS) 1X containing PIC (Sigma-Aldrich, ON, Canada). The homoge-

nized samples were centrifuged 5 minutes at 800 x g at 4˚C and pellets were resuspended in

PBS 1X containing PIC and centrifuged 5 min at 800 x g at 4˚C. Pellets were then used to per-

form ChIP experiment. ChIP in VICs were performed with about 2 millions of cells. Pellet

from tissues or VICs were crosslinked with 1% formaldehyde for 15 minutes, quenched by gly-

cine (0.125 M final) and centrifuged 5 minutes at 800 x g at 4˚C. The supernatants were

removed and pellets were then resuspended in 500 μL of lysis buffer (50 mM Hepes-KOH pH

7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, sup-

plemented with PIC, Sigma-Aldrich, ON, Canada). Sonication led to fragmentation of an
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average length of 400 bp. 2 μg of antibodies against H3K27Ac (#ab4729, Abcam, ON, Canada),

RNAPII (#ab26721, Abcam, ON, Canada), RNAPII-Ser5p (#ab5131, Abcam, ON, Canada),

NELFE (#10705-1-AP, Proteintech, IL, USA) or isotype IgG (Cell Signaling Technology, New

England Biolabs, ON, Canada) were incubated with proteins G dynabeads (Life technologies,

Thermo Fisher Scientific, ON, Canada) for 6 hours before DNA samples were added to the

antibodies/dynabeads mixtures and incubated at 4˚C overnight on a rotator. The next day,

samples were washed with low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM

Tris-HCl pH 8.0, and 150 mM NaCl). A second washing with high salt buffer (0.1% SDS, 1%

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, and 500 mM NaCl) was performed, fol-

lowed with LiCl buffer (10 mM Tris-HCl pH 8, 250 mM LiCl, 1 mM EDTA, 1% NP-40) and

finally with TE buffer (10 mM Tris-HCl, pH 8, 1 mM EDTA). The complex was then eluted by

adding 200 μL of elution buffer (1% SDS, 100 mM NaHCO3) at 65˚C for 1 hour. Eluted sam-

ples were reverse crosslinked at 65˚C overnight. DNA fragments were purified using DNA

clean up & concentrator kit (Zymo Research, Cedarlane, Canada) and samples were analysed

by qPCR assay using primers specific to the TSS region of LINC01013 (F:gaggcagtttcctatctggttt,

R:tctatccagaccacttgtgtttag), CCN2 (F:actggctgtctcctctcagc, R:tgtaggactccattcagctcat).

Nuclear and cytoplasmic RNA purification

Nuclear and cytoplasmic quantification of LINC01013 were performed with the Cytoplasmic

and Nuclear RNA Purification Kit (Norgen Biotek, ON, Canada) according to the manufactur-

er’s instructions. U6 andHPRT were used as controls respectively for the nuclear and cyto-

plasmic compartments. We normalized data for each compartment with the total RNA level in

cells.

Quantitative real-time PCR

RNA from mineralized and non-mineralized aortic valve tissues was purified by using the

RNeasy Mini kit (Qiagen, ON, Canada). RNA from VICs was isolated with E.Z.N.A. Micro

RNA kit (Omega Bio-tek, VWR, QC, Canada). One μg of RNA was reverse transcribed using

the Qscript cDNA supermix from Quanta (VWR, QC, Canada). qPCR were performed with

perfecta sybr supermix from Quanta on the Rotor-Gene 6000 system (Corbett Robotics Inc,

CA, USA). Primers for LINC01013 were obtained from IDT (IDT, IL, USA) (F:ctaaaca-

caagtggtctggataga, R:tttggatcaccaaggcaag). Primers for CCN2 and COL1A1 were purchased

from Qiagen (ON, Canada). The expression of the hypoxanthine-guanine phosphoribosyl-

transferase (HPRT) (Qiagen, ON, Canada) was used as a reference to normalize the results.

Western blotting

Cell extracts from VICs were boiled for 10 minutes and proteins were loaded onto polyacryl-

amide gels followed by electrophoresis and transferred to nitrocellulose membranes. Mem-

branes were blocked with TBS 1X/0.1% Tween-20 containing 5% non-fat dry milk (Sigma-

Aldrich, ON, Canada), incubated with antibodies against CCN2 (#E-AB-12339, Elabscience,

TX, USA), NELF-E (#10705-1-AP, Proteintech, IL, USA), COL1A1 (#84336, Cell Signaling

Technology, New England Biolabs, ON, Canada) or CALNEXIN (#2679, Cell Signaling Tech-

nology, New England Biolabs, ON, Canada) overnight at 4˚C. Membranes were then washed

and incubated with HRP-labeled secondary antibodies (TransBionovo Co., Civic Biosciences

Ltd, QC, Canada). Detection was done using clarity western ECL substrate (BioRad, ON, Can-

ada). Images were acquired and quantification analyses were performed using a ChemiDocMP

(BioRad, ON, Canada) system and the ImageJ software.
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ELISA

The pro-collagen-Iα excretion by VICs was quantified from 100 μL of VICs culture medium

using the Human Pro-Collagen I alpha 1 DuoSet ELISA kit (R&D systems, MN, USA) accord-

ing to the manufacturer’s instructions.

RIP

About 5 millions of VICs were used to perform RIP analysis. First, 20 μg of antibodies against

NELF-E (Proteintech, IL, USA) or isotype IgG (Cell Signaling Technology, New England Bio-

labs, ON, Canada) were incubated with 50 μL of proteins G dynabeads (Life technologies,

Thermo Fisher Scientific, ON, Canada) in 500 μL of IP buffer (0.5% Triton X-100, 200 mM

NaCl, 10 mM Tris-HCl at pH 7.5 and 10 mM EDTA) at 4˚C overnight on a rotator. Cells were

resuspended in cold lysis buffer (0.5% Triton X-100, 10 mM NaCl, 10 mM Tris-HCl pH 7.5, 10

mM EDTA, 0.5 mM PMSF, 1 mM DTT, supplemented with PIC and ProtectRNA, Sigma-

Aldrich, ON, Canada) and incubated 20 minutes on ice before a centrifugation at 400 x g for

10 minutes at 4˚C. NaCl was added to a final concentration of 200 mM and lysate was pre-

cleared with 50 μL of proteins G dynabeads in IP buffer 1 hour at 4˚C on a rotator. The cleared

lysate was then transferred to the tubes containing NELF-E of IgG-coated beads for 3h at 4˚C

on a rotator. Samples were washed five times with 500 μL of IP buffer and then resuspended in

RTK lysis buffer from E-Z Nucleic Acid (E.Z.N.A.) kit (Omega Bio-tek, VWR, QC, Canada).

RNA was reverse transcribed using the Qscript cDNA supermix from Quanta (VWR, QC,

Canada). qPCR were performed with perfecta sybr supermix from Quanta on the Rotor-Gene

6000 system (Corbett Robotics Inc, CA, USA).

Network analysis

Based on TissueNet [45] data, an experimentally validated dataset, protein-protein interaction

(PPI) pairs were extracted in order to generate a PPI network. From data generated with the

RNAs-seq in explanted mineralized AVs (TPM higher than the 10th percentile), PPI pairs were

inferred based on the TissueNet data. To generate the PPI network, the interactome of CCN2

including COL1A1, SMAD2, SMAD3 and TFGB1 was extracted. To that end, interaction pairs

which included CCN2, COL1A1, SMAD2, SMAD3 and TFGB1 were isolated to form an edge

list. To visualize the network, NetworkAnalyst [46] was used.

Collagen immunostaining

Human VICs were seeded on poly-L-lysine coated glass coverslips. Cells were washed once

with PBS 1X and fixed in 3.7% formaldehyde for 30 minutes at room temperature. Cells were

treated 20 minutes with 50 mM NH4Cl in PBS 1X and permeabilized for 10 minutes in PBS

1X containing 0.2% Triton X-100. Cells were then incubated in PBS 1X containing 5% milk

for one hour at room temperature with constant agitation. Incubation with anti-COL1A1

(#E8F4L, Cell Signaling Technology, New England Biolabs, ON, Canada) was performed in

PBS 1X containing 1% milk overnight at 4˚C. Cells were washed four times with PBS 1X, fol-

lowed with one hour incubation with FITC-conjugated anti-rabbit secondary antibody

(Molecular Probes, Thermo Fisher Scientific, ON, Canada). Secondary antibody alone was

used as negative control. Slides were mounted and analysed images were acquired using a

Zeiss microscope LSM800 driven by the Zen software (Objective 20X oil, 1.4 NA, Zeiss, ON,

Canada). Image processing and quantification were performed with ImageJ 1.47g (NIH,

USA). Integrated densities for each cell were calculated after removal of the background for

the negative control.
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Statistical analysis

Continuous data were expressed as mean ± SEM. Normality was tested with the Shapiro-Wilk

test. For two groups, data with normal distribution were compared with Student t-test, for

more than two groups with ANOVA. For data with non-normal distribution, two groups were

compared with the Wilcoxon-Mann-Whitney test or with the Kruskal-Wallis test for more

than two groups. A multivariate regression was used to adjust for age and sex. Categorical data

were compared with Fischer’s exact test. Statistical analysis were performed with JMP 14.2.0 or

Prism 8.0.2.
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Thériault, Yohan Bossé, Patrick Mathieu.
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