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Abstract

The fungus Aspergillus fumigatus is a ubiquitous opportunistic human pathogen capable of

causing a life-threatening disease called invasive aspergillosis, or IA, with an associated

40–90% mortality rate in immunocompromised patients. Of the approximately 250 species

known in the genus Aspergillus, A. fumigatus is responsible for up to 90% of IA infections.

This study focuses on examining the role of the putative polysaccharide synthase cpsA

gene in A. fumigatus virulence. Additionally, we evaluated its role in cellular processes that

influence invasion and colonization of host tissue. Importantly, our results support that cpsA

is indispensable for virulence in A. fumigatus infection of non-neutropenic hosts. Our study

revealed that cpsA affects growth and sporulation in this fungus. Absence of cpsA resulted

in a drastic reduction in conidiation, and forced overexpression of cpsA produced partially

fluffy colonies with low sporulation levels, suggesting that wild-type cpsA expression levels

are required for proper conidiation in this fungus. This study also showed that cpsA is neces-

sary for normal cell wall integrity and composition. Furthermore, both deletion and overex-

pression of cpsA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces,

and caused increased sensitivity to oxidative stress. Interestingly, metabolomics analysis

indicated that cpsA affects A. fumigatus secondary metabolism. Forced overexpression of

cpsA resulted in a statistically significant difference in the production of fumigaclavine A,

fumigaclavine B, fumigaclavine C, verruculogen TR-2, and tryprostatin A.

Introduction

Invasive Aspergillosis (IA) is a life-threatening mycosis in immunocompromised individuals.

The fungus A. fumigatus is the most common cause of IA [1], resulting in high mortality rates

between 40% and 90%. The deadliness of A. fumigatus is in large part due to the small size of

its conidia (2 to 3 μm in diameter). These spores can easily reach the lung alveoli, establishing

PLOS ONE | https://doi.org/10.1371/journal.pone.0216092 April 26, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nepal B, Myers R, Lohmar JM, Puel O,

Thompson B, Van Cura M, et al. (2019)

Characterization of the putative polysaccharide

synthase CpsA and its effects on the virulence of

the human pathogen Aspergillus fumigatus. PLoS

ONE 14(4): e0216092. https://doi.org/10.1371/

journal.pone.0216092

Editor: Kap-Hoon Han, Woosuk University,

REPUBLIC OF KOREA

Received: February 7, 2019

Accepted: April 12, 2019

Published: April 26, 2019

Copyright: © 2019 Nepal et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The funding institution for this study was

Northern Illinois University. The funder had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-9160-5846
http://orcid.org/0000-0002-1775-0874
http://orcid.org/0000-0003-4641-5175
https://doi.org/10.1371/journal.pone.0216092
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216092&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216092&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216092&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216092&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216092&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216092&domain=pdf&date_stamp=2019-04-26
https://doi.org/10.1371/journal.pone.0216092
https://doi.org/10.1371/journal.pone.0216092
http://creativecommons.org/licenses/by/4.0/


an infection that can become angioinvasive, colonizing other organs in the human body,

including the liver, kidneys, and brain. In the case of immunocompetent individuals, conidia

are efficiently eliminated through normal mucociliary clearance. In addition, epithelial cells or

alveolar macrophages are able to eliminate conidia and initiate a proinflammatory response

that recruits neutrophils (PMN type). These neutrophils destroy hyphae from germinated

conidia that evade macrophages. The highest risk of developing IA is primarily a consequence

of a dysfunction of these defenses. In the immunocompromised, such as patients with hemato-

logical malignancies, transplants, prolonged steroid treatments and cancer and HIV, the sys-

temic nature of the infection can be fatal [2,3,4]. The risk of IA increases due to neutropenia

(depletion of neutrophils) and corticosteroid-induced immunosupression [5,6,7,8,9].

Among the factors that contribute to virulence are A. fumigatus cell wall integrity, the abil-

ity of the organism to adhere to surfaces and to rapidly adapt to environmental stresses

encountered in vivo. Cell wall composition and integrity are important for survival of A. fumi-
gatus in the host, as the cell wall protects the cell components from host defense systems [10].

In addition, it is known that the ability of an organism to adhere to surfaces is a precursor for

biofilm formation [11]. Biofilms provide an important layer of protection from the host

immune system [12]. Furthermore, when a microorganism encounters a variety of stressors,

such as oxidative or osmotic stress, it must be able to adapt quickly in order to survive inside

of the host environment [13]. Production of secondary metabolites could also influence A.

fumigatus virulence [14]. This opportunistic pathogen is capable of producing up to 226 differ-

ent secondary metabolites, some of these compounds can act as immunosuppressants, affect-

ing pathogenetic processes [15].

Current IA treatment options are limited, usually consisting of a regimen of antifungal

drugs including azoles, which inhibit the synthesis of ergosterol, and polyene drugs, which

bind to ergosterol disrupting fungal cell membrane [16]. However, emerging isolates of A.

fumigatus resistant to the current drug treatments have been identified [17]. Due to the devas-

tating effects of IA on human and animal health, together with the emergence of drug-resis-

tance, it is paramount to seek new strategies against these fungal infections, such as searching

for novel genetic fungal elements that regulate virulence and/or factors that influence host col-

onization. These factors could serve as a possible genetic targets for the generation of novel

antifungal drugs in the treatment of IA. One of these candidates, cpsA, encodes a putative poly-

saccharide synthase in A. fumigatus. A cpsA homolog was previously found in a mutagenesis

screening in the model fungus Aspergillus nidulans [18]. In this model, cpsA is necessary for

normal asexual and sexual development as well as for production of sterigmatocystin toxin

and penicillin. A. fumigatus CpsA presents 73.2% sequence similarity and 66.2% identity with

its putative homolog in A. nidulans [19]. Here we show that A. fumigatus cpsA influences mul-

tiple cellular processes in this opportunistic human pathogen. Specifically, our study indicated

that cpsA is required for normal pathogenesis in a non-neutropenic murine model, in addition

to being necessary for normal morphological development of A. fumigatus. cpsA was also

found to be indispensable for normal cell wall composition and integrity, as well as for adher-

ence to surfaces and resistance to oxidative stress. Furthermore, metabolomics analysis

revealed that secondary metabolism is also cpsA-dependent.

Materials and methods

Strains and culture conditions

The A. fumigatus strains used in this study are listed in Table 1. Strains were grown on glucose

minimal medium (GMM) [20] with the necessary supplements at 37˚C. In the case of solid

medium, 10 g/L agar was added. Fungal stocks were maintained in 30% glycerol at -80˚C.

The cpsA gene affects virulence in Aspergillus fumigatus
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Construction of the cpsA deletion strain

In order to characterize the function of cpsA in A. fumigatus, a deletion strain was generated as

follows. First, 1.1 kb 5’ UTR and 1.5 kb 3’ UTR fragments were PCR amplified from the cpsA
locus using primers cps5F and cps5R, and cps3F and cps3R, respectively (all primers used in

this study are listed in Table 2). The selectable marker, pyrG, was PCR amplified with cps-

pyrGF and cps-pyrGR primers from A. parasiticus genomic DNA. Fusion PCR [21] was car-

ried out using P7-F(cps5nest) and P8-R(cps3nest) primers resulting in a 5025 bp deletion cas-

sette. The fusion cassette was then transformed into the CEA17 strain. Genomic DNA from

the transformants was analyzed by Southern blot. The selected deletion mutant was designated

as TMNV1.1.

Generation of the cpsA complementation strain

The complementation vector was generated as follows: A DNA fragment of 4.9 kb containing

the cpsA coding region and 1.4 kb 5’ UTR and 3’ UTR regions was PCR amplified with primers

1925F and 1926R with engineered NotI sites. The PCR product was then digested with NotI

Table 1. Fungal strains used in this study.

Strain name Pertinent genotype Source

CEA10 Wild type (veA+) Gift from Robert Cramer

CEA17 pyrG1 (veA+) Gift from Robert Cramer

TMNV1.1 pyrG1, ΔcpsA::pyrGA.para This study

TBN1 ΔcpsA::pyrGA.para +, cpsA::ptrA+ This study

TBN3.1 gpdA::cpsA::trpC::pyrG, pyrG1, veA+ This study

https://doi.org/10.1371/journal.pone.0216092.t001

Table 2. Primers used in this study.

Name Sequence (5’! 3’)

cps5F

cps5R

CCCGTGCTGACAGCTGACAGTAG
GATTAACGACCGGCCAACGAAGTT T

cps3F

cps3R

TTGGGGTTCTGTTCTTCCCATGCTC
GGGCAGTGATAGGATGGGCAAC

cps-pyrGF GATTAACGACCGGCCAACGAAGTTTACCGGTCGCCTCAAACAATGCTCT

cps-pyrGR GAGCATGGGAAGAACAGAACCCCAAGTCTGAGAGGAGGCACTGATGCG

P7-F(cps5nest) GTCCCTAAGCTCGCTTCTCCTAGC

P8-R(cps3nest) GGAGAGAACTGAAATGGCGGCTC

1925F TAAATTGCGGCCGCTTCTGTGAGATGGCATGAAAAGTTCGA

1926R AAAAAAGCGGCCGCACCAATAGTTGTTAAGACCCCTCCAC

1918F AAAAAAGGCGCGCCATGGCTTTCCCATTCATGCGAG

1986R AAAAAAGGCGCGCCATGGCTTTCCCATTCATGCGAG

592-gpdaF AAGTACTTTGCTACATCCATACTCC

1927R TTATTGGCGCGCCTCATTGAGTTATGAAGTTGGGGTAGTACG

849 18S-qRtPCR-F TAGTCGGGGGCGTCAGTATTCAGC

850 18S-qRtPCR-R GTAAGGTGCCGAGCGGGTCATCAT

1919 cpsA-qRT-F GGTGAGGTTGCTTCTCCAGTTGC

1920 cpsA-qRT-R GATGGTATCACACGGCTGGGAGA

1158 brlA-qRT-F TGCACCAATATCCGCCAATGC

1159 brlA-qRt-R CGTGTAGGAAGGAGGAGGGGTTACC

2105 qPCR abaA F

2106 qPCR abaAR

GTCAGCAAAGCCGAAGATGGACTACC
GTTGTCGTGGCTCAAGGCGTAC

https://doi.org/10.1371/journal.pone.0216092.t002
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and ligated to the vector pTD3, previously digested with the same enzyme. pTDS3 harbors the

Aspergillus oryzae pyrithiamine resistance gene (ptrA) used as selectable marker in fungal

transformation. The ligation resulted in the complementation vector pBN1. This plasmid was

then transformed into the ΔcpsA strain, TMNV1.1. The transformants were confirmed by

diagnostic PCR using primers 1918F and 1986R. The selected cpsA complementation strain

(Com) used in this study was designated as TBN1.

Construction of the overexpression cpsA strain

To generate an overexpression strain (OE), the cpsA coding region was first PCR amplified

with primers 1918F and 1986R, which contain engineered AscI and NotI restriction sites. The

DNA fragment was then digested with AscI and NotI and ligated to the pTDS1 vector previ-

ously digested with the same enzymes. pTDS1 contains the constitutive gpdA(p) promoter and

trpC(t) terminator sequences in addition to the A. fumigatus pyrG marker. The resulting vec-

tor, pBN2, was then transformed into CEA17. Transformants were confirmed using diagnostic

PCR with primers 592-gpdaF and 1927R. The selected overexpression strain used in this study

was designated as TBN3.1.

Mouse model pathogenicity analysis

Pathogenicity studies were carried out as previously described by Myers et al. [22] with minor

modifications. Briefly, six-week old female, outbred ICR Swiss mice, weighing approximately

25 g were used for this experiment. Fifty mice divided into 5 separate groups were used, each

group contained 10 mice. Animals were rendered neutropenic by intraperitoneal injection of

cyclophosphamide (150 mg/kg of body weight) on days -4, -1 and 3 days post infection and

Kenalog (40 mg/kg) on the day of infection. The immunosuppressed mice were infected with

fungal spores of A. fumigatus CEA10 wild type, ΔcpsA, and Com strains. Sedated mice (10

mice per strain) were infected by nasal instillation of 106 spores/40 μl of PBS. Post infection

mice were observed three times daily for first five days and 5 times on day six and seven. All

remaining mice were euthanized on day eight.

A separate experiment was carried out using a non-neutropenic model. Mice were treated

with Kenalog (40 mg/kg) subcutaneously one day prior the infection. The animals were then

infected intranasally with 106 spores/ 40 μl PBS. The mice were monitored 3 times daily for 14

days. All remaining mice were euthanized on day 15. Statistical analysis for this and the previ-

ous experiments was done using IBM SPSS software. P-values lower than 0.05 was determined

to be statistically significant.

This study was carried out in strict accordance with the Guide for the Care and Use of Lab-

oratory Animals of the National Research Council. The protocol was approved by the Institu-

tional Animal Care and Use Committee of Northern Illinois University (Permit #12–0006).

All efforts were made to minimize suffering. Humane euthanasia by CO2 inhalation was per-

formed when mice met criteria indicating a moribund state; these endpoints include behaviors

of unresponsiveness to tactile stimuli, inactivity, lethargy, staggering, anorexia and/or clinical

signs of bleeding from the nose or mouth, labored breathing, agonal respirations, purulent

exudate from eyes or nose, abnormally ruffled fur, or greater than 20% weight loss. The

method of euthanasia by CO2 inhalation is consistent with recommendations of the Panel on

Euthanasia of the American Veterinary Medical Association.

Morphological analysis

The A. fumigatus CEA10 wild type, ΔcpsA, complementation (Com) and cpsA overexpression

(OE) strains were point-inoculated on GMM and incubated in the dark at 37˚C for 64 h.

The cpsA gene affects virulence in Aspergillus fumigatus
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Effects on vegetative growth were assessed as colony diameter in mm. The experiment was per-

formed with three replicates.

To determine whether cpsA is involved in the regulation of conidiation in A. fumigatus, the

strains were top-agar inoculated on GMM, and incubated in the dark at 37˚C for 72 h. Then, 7

mm-diameter cores were harvested and homogenized in water. Conidia were quantified using

a hemocytometer (Hausser Scientific, Horsham, PA) and a Nikon Eclipse E-400 bright-field

microscope (Nikon Inc., Melville, NY). The experiment was carried out in triplicate.

Determination of cell wall defects

To assess whether cpsA affects the A. fumigatus cell wall, the wild type, ΔcpsA, Com, and OE

strains were exposed to different concentrations of sodium dodecyl sulphate (SDS) as previ-

ously described [22] with minor modification. Briefly, the wild type, ΔcpsA, Com, and OE

strains were point- inoculated on GMM supplemented with 0%, 0.005%, 0.01%, 0.015% and

0.02% SDS. The cultures were incubated at 37˚C for 72 h under dark condition, when they

were photographed.

An additional experiment was carried out in which the A. fumigatus strains were point-

inoculated on GMM supplemented with 32 μg/mL and 64 μg/mL of Nikkomycin Z in a

24-well plate. The cultures were incubated at 37˚C for 48 h and photographed.

Cell wall chemical analysis

Previously, the A. nidulans cpsA was found to regulate cell wall composition by affecting the

levels of central cell wall components such as mannoprotein, glucan and chitin [19]. Due to

these results it is possible that cpsA may also regulate cell wall composition in A. fumigatus. To

determine the levels of mannoprotein, glucan and chitin in the wild type, ΔcpsA, Com and OE

strains, a protocol previously described [19] was utilized with minor modifications. Briefly, the

A. fumigatus strains were inoculated into 50 mL of liquid GMM medium (106 spores/ mL)

and incubated at 37 ˚C for 48 h at 250 rpm in a rotary shaker. Mycelium was harvested using

miracloth (Calbiochem, San Diego, CA), washed three times with sterile ddH2O and stored at

-20 ˚C. Prior to analysis, mycelia were treated with 1 ml of cell wall buffer (2% SDS in 50 mM

Tris-HCl buffer supplemented with 100 mM Na-EDTA, 40 mM β-Mercaptoethanol and 1

mM PMSF) and boiled for 15 minutes to remove any unbound cell wall proteins and water sol-

uble sugars. Then, the buffer was removed and mycelia were washed 3 times with sterile

ddH2O. The samples were then lypholized overnight. Approximately, 40 mg of lyophilized

mycelia per strain was used for the analysis, including 3 replicates per strain. The samples were

treated with 3% NaOH at 75 ˚C for one hour and then centrifuged at 15,000 g for 15 minutes

to separate the soluble and insoluble fractions. The supernatant was collected and used for the

analysis of mannoprotein and any soluble glucans that may be present. The pellet was further

digested with 96% formic acid for 4 h at 100 ˚C. After digestion, the formic acid was evapo-

rated and the residue re-suspended in 1 mL of sterile ddH2O which was further used to ana-

lyze the amount of chitin and insoluble glucan present. Mannoprotein, glucan, and chitin

levels were determined as previously described [23, 24, 25]. Mannoprotein, glucan, and chitin

levels were determined by absorbance at 560 nm, 490 nm, and 520 nm, respectively, using an

Epoch spectrophotometer (Biotek, Winooski, VT).

Adhesion assay

To evaluate the possible role of cpsA in adhesion capacity, each strain was inoculated in 50 ml

GMM at a concentration of 106 spores/ml. Aliquots of 130 μl from these suspensions were

added to each well of a 96-well plate and incubated at 37˚C for 24 h. After incubation, the

The cpsA gene affects virulence in Aspergillus fumigatus
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mycelial mat and medium was removed. The remaining biomass adhered to the walls of the

plastic wells was washed three times with water before staining with 130 μl 0.01% Crystal Vio-

let (CV) in water for 20 min at room temperature. The stained wells were washed three times

with water, allowed to dry, and then destained with 130 μl of 30% acetic acid. The absorbance

was read at 560 nm on an Epoch spectrophotometer (Biotek, Winooski, VT).

Environmental stress tests

To assess the role of cpsA in the resistance to oxidative stress, the wild type, ΔcpsA, Com and

OE strains were point-inoculated on solid GMM supplemented with 0, 10, 20, 30, 40 and

50 μM menadione in a 24-well plate and incubated at 37 ˚C for 72 h. The experiment included

two replicates.

To evaluate the resistance of the A. fumigatus strains to osmotic stress, the strains were

point- inoculated on GMM supplemented with 0.8 M Sucrose, 1.2 M Sorbitol, 0.6 M KCl, or

0.7 M NaCl. The cultures were incubated at 37˚C, for 72 h in the dark.

Metabolomics analysis

Production, collection, and extraction of secondary metabolite compounds. The A.

fumigatus cpsA strains were inoculated at a concentration of 106 spores/ml into 250 ml flasks

containing 50 ml of liquid YES medium (yeast extract 20 g/L and sucrose 40 g/L, pH 5.8 ± 0.2)

and incubated at 37˚C at a speed of 250 rpm for 5 days. The experiment was carried out using

4 replicates for each fungal strain. After 5 days, 40 ml of supernatant was collected by filtering

through miracloth (Calbiochem, San Diego, CA). Secondary metabolites were extracted using

a 1:1 chloroform to supernatant ratio. The mix was vortexed vigorously and left overnight for

separation. The chloroform layer was collected and transferred to a 50 ml beaker where it was

allowed to evaporate. The extracts were then resuspended in 500 μl of methanol and filtered

through a 0.2 μm filter before being allowed to evaporate again prior to resuspension before

the LC-MC analysis.

Liquid chromatography coupled with mass spectrometry (LC-MS) analysis. Sample

analysis was performed using high performance liquid chromatography (HPLC) coupled to an

LTQ Orbitrap XL high resolution mass spectrometer (HRMS) (Thermo Fisher Scientific, Les

Ulis, France). Briefly, extracts were dissolved in 500 μl of water-acetonitrile and 10 μL of this

suspension were injected into a reversed phase (150�2.0 mm) 5 μm Luna C18 (2) column (Phe-

nomenex, Torrance, CA, USA) operated at a flow rate of 0.2 mL/min. A gradient program was

performed with 0.05% formic acid (phase A) and 100% acetonitrile (phase B) with the follow-

ing elution gradient: the elution started with a linear gradient ranging from 20% to 50% in 30

min, then phase B was increased to 90% within 5 min. After a 10 min isocratic elution, the gra-

dient was decreased to initial value within 5 min and remained at this value for the last 10 min.

HRMS acquisitions were achieved with electrospray ionization (ESI) in the positive and nega-

tive modes as follows: spray voltage +5.5 kV, capillary temperature 350˚C, sheath gas (N2) flow

rate 30 au (arbitrary units), auxiliary gas (N2) flow rate 10 au in the positive mode, and spray

voltage -3.7 kV, capillary temperature 350˚C, sheath gas (N2) flow rate 30 au, auxiliary gas (N2)

flow rate 10 au in the negative mode. Full MS spectra were acquired at a resolution of 7500

with a range of mass-to-charge ratio (m/z) set to 50–850 while the MS/MS spectra were gener-

ated at low resolution by collision-induced dissociation (CID) according to the following

parameters: collision energy = 35 eV, isolation width = 1.5 Da, activation Q = 0.250 and activa-

tion time = 30 min. The identity of compounds was confirmed by comparison either with

HPLC-MS2 analysis of a standard compound or on a basis of results obtained in [26, 27]. The

chaetominine standard was purchased from Bioaustralis (Smithfield, Australia).

The cpsA gene affects virulence in Aspergillus fumigatus
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Gene expression analysis

Plates containing 30 mL of liquid GMM were inoculated with 106 spores/mL of A. fumigatus
wild type, ΔcpsA, Com and OE strains, and incubated in the dark at 37 ˚C, for 48 h and 72 h.

Total RNA was extracted using TriSure. Approximately 5μg of extracted RNA was then treated

with DNase and 1 μg of treated RNA was then reverse transcribed using Moloney murine

leukemia virus (MMLV) reverse transcriptase (Promega). Synthesized cDNA was used to eval-

uate the expression of cpsA, brlA and abaA by qRT- PCR with the Applied Biosystems 7000

Real -Time PCR system. SYBR green jumpstart TAq Ready Mix (Sigma) was used for fluores-

cence detection. The primer pairs used for qRT-PCR are also listed in Table 2. The relative

expression levels were calculated using the 2-ΔΔCT method [28].

Statistical analysis

Statistical Analysis was carried out for all quantitative data in this study unless specified differ-

ently. ANOVA (Analysis of Variance) in conjunction with Tukey’s post hoc test was per-

formed using the statistical software program R version x64 3.3.0.

Results

Identification of A. fumigatus cpsA
Previously, a cpsA homolog was found through a random mutagenesis study in A. nidulans
(Ramamoorthy et al., 2012). Putative cpsA homologs are present in numerous fungal species

[19, 29, 30]. A BLASTp search was performed with the A. nidulans CpsA amino acid sequence

to look for homologs in A. fumigatus. From this search, the best hit was XP_746682, annotated

as a putative polysaccharide synthase. This protein has an identity score of 83% with respect to

CpsA in A.nidulans. To confirm our results, we performed a reciprocal BLAST and found that

XP_746682 best hit in A. nidulans was CpsA (AN9069).

Absence of cpsA results in decreased virulence in a non-neutropenic

murine model

Aspergillus fumigatus is the most common cause of IA [2, 31]. The increasing rate of organ

transplant and stem cell transplant, preexisting lung infections such as cystic fibrosis, sarcoido-

sis, steroid therapy or any condition that weakens the immune status are major predisposing

factors for IA [32]. Since A. nidulans cpsA influences multiple cellular processes in A. nidulans
[19], we tested whether A. fumigatus cpsA is involved in virulence in two different immuno-

suppressed environments, neutropenic and non-neutropenic mice. First, the strains for these

experiments were generated as described in the Material and Methods section. The ΔcpsA
strain was confirmed by Southern analysis (S1A Fig), obtaining the expected 2.1 kb band for

ΔcpsA and 5.6 kb for the wild type sample, indicating successful replacement of the cpsA cod-

ing region by the A. parasiticus pyrG selection marker. In addition, the cpsA complementation

was obtained and confirmed using diagnostic PCR (S1B Fig).

Our virulence experiment with neutropenic mice showed that cpsA is dispensable in this

immune-depressed environment (Fig 1A), however when the mice were immune-depressed

with corticosteroids only, a statistically significant difference in virulence was observed

depending on the presence or absence of cpsA (Fig 1B). The groups infected with spores from

the deletion cpsA mutant showed higher survival rate when compared to the groups infected

with wild -type spores. The Com strain showed a similar virulence pattern to that of the wild-

type strain, indicating rescue of the wild-type phenotype when the cpsA wild-type allele was

reintroduced in the deletion mutant. No mortality was reported in the control groups.
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cpsA is required for normal growth and conidiation in A. fumigatus
To determine whether cpsA regulates morphological development in A. fumigatus, the wild

type, ΔcpsA, Com and OE strains were point-inoculated on GMM and incubated for 64 h. The

OE strains included in this experiment were confirmed by diagnostic PCR (Fig 1C). Absence

of cpsA resulted in a significant decrease in vegetative colony growth compared to the controls,

whereas forced over-expression of cpsA resulted in an increase in colony growth and aerial

mycelium (Fig 2A). Complementation with the cpsA wild-type allele rescued wild-type

phenotype.

Conidiation is an efficient dispersal mechanism in A. fumigatus [2]. Previously, cpsA was

found to regulate asexual development in A. nidulans [19]. In order to investigate the role of

cpsA in asexual development in A. fumigatus, spores from wild type, ΔcpsA, Com and OE

strains were top-agar inoculated on GMM and incubated for 72 h. The ΔcpsA strain showed a

statistically significant reduction in conidial production compared to the wild type. Interest-

ingly, cpsA OE strain also showed a reduction in conidiation levels when compared to the iso-

genic control strains (Fig 2B). Gene expression analysis of brlA and abaA, both transcription

factor genes of the central regulatory pathway controlling conidiophore formation in Aspergil-

lus [33,34] revealed downregulation of both genes in the absence of cpsA in 48 h and 72 h old

cultures (Fig 2C). Differently from ΔcpsA, the OE cpsA strain presented a significant increase

in brlA and abaA after 72 h of incubation (Fig 2C).

cpsA is necessary for normal cell wall integrity and composition

Fungal cell wall is a rigid structure that constitutes a protective barrier against environmental

stresses. Its integrity is essential for fungal survival [10]. Our study revealed that cpsA also

affects cell wall integrity in this opportunistic human pathogen. Both ΔcpsA and OE cpsA
showed increased sensitivity when exposed to SDS in the culture medium. A concentration of

Fig 1. Effect of cpsA in virulence in a murine model. The A. fumigatus wild type (WT), ΔcpsA and Com strains were used to infect

female ICR outbred mice. (A) For the neutropenic model, mice were treated with intraperitoneal injection of cyclophosphamide and

Kenalog as described in Materials and Methods section. Untreated controls did not receive any treatment and uninfected controls

received both cyclophosphamide and Kenalog treatment but not fungal spores. Post infection mice were observed three times daily

for first five days and 5 times on day six and seven. Presented data is the result of single experiment (N = 10 total for each group). (B)

For the non-neutropenic model, mice were treated only with Kenalog, one day prior to the infection. Untreated controls did not

receive Kenalog treatment, and uninfected controls received the Kenalog treatment but not fungal spores. Mice were monitored for

survival for 14 days. Statistical analysis was done using IBM SPSS statistics 25. Presented data are the combined results of two

independent experiments (N = 25 total for each groups).

https://doi.org/10.1371/journal.pone.0216092.g001
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0.015% significantly reduced the growth of ΔcpsA in comparison to the isogenic control strains

(Fig 3A). In addition, when grown in the presence Nikkomycin Z, a chitin synthase inhibitor,

the deletion strain presented a completely aconidial phenotype. However, no noticeable differ-

ence was observed in colony radial growth (Fig 3B).

The results from the SDS and Nikkomycin Z analyses suggest that lack of cpsA could cause

cell wall defects. To further evaluate this possibility the cell wall chemical composition was ana-

lyzed in the wild type, ΔcpsA, Com and OE strains. Specifically, we found that deletion of the

cpsA gene in A. fumigatus caused a statistically significant increase in mannoprotein levels.

Glucan levels present in the soluble alkali of ΔcpsA were similar to those in the wild type, how-

ever, a statistically significant increase in glucan levels in the insoluble alkali was observed.

Chitin levels were also evaluated, and our results indicated that cpsA does not affect chitin bio-

synthesis in A. fumigatus. Forced over-expression of cpsA did not alter cell wall composition

(Table 3).

cpsA affects adhesion to surfaces

Fungal biofilm is crucial for fungal pathogenicity. A. fumigatus produces biofilm on both biotic

and abiotic surfaces [35]. One requirement for biofilm formation is the ability of an organism

to adhere to a surface [11]. To examine the effect of cpsA on adherence we inoculated liquid

GMM with fungal spores from the wild type, ΔcpsA, Com, and OE strains in a 96 well plate.

Our analysis revealed that either absence or forced overexpression of cpsA resulted in a slight

but significant decrease in adhesion capacity in 24 h old cultures (Fig 4).

Fig 2. cpsA influences growth and conidiation in A. fumigatus. (A) Point-inoculated cultures of A. fumigatus wild

type, ΔcpsA, Com and OE strains. Plates were incubated at 37˚C for 48 h. On right, measurement of colony diameter.

(B) Conidial quantification of A. fumigatus wild type, ΔcpsA, Com and OE top-agar inoculated cultures grown at 37˚C

for 72 h. (C) Gene expression analysis of brlA and abaA using qRT-PCR from mycelia collected from liquid stationary

cultures incubated in the dark for 48 h and 72 h. The relative expression was calculated using 2-ΔΔCT method as

described by Livak and Schmittgen [28]. Values were normalized to the expression level of WT at 48 h. The error bar

represents the normalized standard error.

https://doi.org/10.1371/journal.pone.0216092.g002
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cpsA influences resistance to oxidative stress and is dispensable for

resistance to osmotic stress

Airborne conidia are inhaled and deposited in bronchioles and alveolar spaces, where the

organism may be exposed to reactive oxygen species (ROS). ROS cause damage to various cel-

lular components such as lipids, proteins and DNA. Oxidative stress resistance plays a vital

role in protecting cells from possible damage caused by ROS [36]. We examined the role of

Fig 3. Cell wall stress assay. A) A. fumigatus wild type, ΔcpsA, Com and OE strains were point-inoculated on GMM

supplemented with different concentration of SDS and incubated at 37˚C for 72 h B) The above A. fumigatus strain set

was point-inoculated on GMM supplemented with the indicated concentrations of Nikkomycin Z in a 24-well plate

and incubated for 24 h at 37˚C.

https://doi.org/10.1371/journal.pone.0216092.g003
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Table 3. Cell wall composition (μg/mg ± standard error).

Alkali-Soluble Alkali-Insoluble

Mannoprotein Glucan Glucan Chitin

WT 58.88 ± 4.12 A 183.98 ± 3.27 A 87.62 ± 9.75 A 4.89 ± 0.52 A

ΔcpsA 83.04 ± 5.98 B 229.49 ± 10.23 A 239.07 ± 24.52 B 7.14 ± 1.35 A

Com 62.65 ± 2.57 A 268.71 ± 27.13 A 140.72 ± 7.28 A 6.94 ± 0.95 A

OE 53.51 ± 4.10 A 243.50 ± 28.51 A 89.07 ± 16.00 A 5.78 ± 0.67 A

https://doi.org/10.1371/journal.pone.0216092.t003

Fig 4. cpsA affects adhesion capacity. Liquid GMM (130μl) where inoculated with 106spores/mL of wild type, ΔcpsA,

Com and OE strains in individual wells of a Polystyrene 96-well culture plate. Twenty-four wells were used per strain.

Mycelium was stained with Crystal violet as described in Materials and Methods section. The plate was incubated at

37˚C for 24 h. The bar graph represents the average OD for each strain measured at 560 nm. The error bar represents

the standard error.

https://doi.org/10.1371/journal.pone.0216092.g004
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cpsA in resistance to oxidative stress exposing the wild type, ΔcpsA, Com and OE strains to dif-

ferent concentrations of Menadione. Growth of ΔcpsA was completely abolished at a concen-

tration of 50 μM (Fig 5). In addition, overexpression cpsA showed a marked reduction in

growth at this concentration although colonies still formed.

In this study we also examined the possible role of cpsA in osmotic stress resistance supple-

menting GMM with different osmotic stress reagents such as 0.6 M Potassium chloride (KCl),

0.7 M Sodium chloride (NaCl), 0.8 M Sucrose and 1.2 M Sorbitol. When grown in presence of

KCl and NaCl no difference in growth between the deletion mutant and the wild type control

was detected (S2 Fig). In addition, when grown on GMM the OE cpsA strain normally presents

an increase in colony growth when compared to the wild type strain, however, grown on

GMM supplemented with KCl or NaCl the colony diameter was similar to that of the wild

type. We noted that when grown on medium supplemented with Sucrose and Sorbitol the

ΔcpsA strain produced a dark green pigment visible on the back of the colony that was absent

in the control strains.

cpsA-dependent metabolomics analysis

Previously cpsA was found to be necessary for the production of several secondary metabolites

in the model organism A. nidulans [19]. We hypothesize that cpsA would also regulate second-

ary metabolism in A. fumigatus. To test this hypothesis, the A. fumigatus wild type ΔcpsA,

Com and OE strains were grown in liquid stationary YES medium for 5 days. Our LC-MS

analysis revealed statistically significant decreases in fumigaclavine A, fumigaclavine B,

fumigaclavine C along with statistically significant increases in verruculogen TR-2 and try-

prostatin A in the OE cpsA strain compared to the wild type (Table 4). Interestingly, the pro-

duction of fumigaclavine A and C were unaffected in the absence of the cpsA gene, whereas

Fig 5. cpsA is required for normal resistance to oxidative stress. A 24-well plate containing GMM supplemented

with different concentrations of menadione, was point-inoculated with the A. fumigatus wild type, ΔcpsA, Com and

OE strains and incubated at 37 ˚C for 72 h.

https://doi.org/10.1371/journal.pone.0216092.g005
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the production of fumigaclavine B was increased in the deletion cpsA strain. In addition, the

production of verruculogen TR-2 and tryprostatin A were not altered in the absence of cpsA
(Table 4).

Discussion

In fungi, polysaccharides play a crucial role in structural integrity, and comprise more than

90% of the cell wall [37]. Besides structural roles, fungal polysaccharides serve as an energy

reserve in the form of intracellular inclusions [38]. Polysaccharides also play a role in patho-

genesis by influencing the host-pathogen interaction [39]. cpsA, annotated as a putative poly-

saccharide synthase gene, was identified in a mutagenesis screening in the model fungus A.

nidulans where it influenced several cellular processes including development and secondary

metabolism [18,19]. Sequence analysis showed that cpsA homologs exist in other fungal species

including the opportunistic human pathogen A. fumigatus.
Although A. fumigatus is a saprophytic fungus, in recent years it has become one of the

most important human fungal pathogens in the immunocompromised population [2,31].

Approximately 11 million patients are affected by Aspergillus each year. In addition, resistance

to existing treatments is emerging [17]. In this study we evaluated the potential of A. fumigatus
cpsA as a possible target for new future strategies against fungal infection. cpsA putative homo-

logs have also been found in the pathogenic Basidiomycete Cryptococcus neoformans, Cps1,

where this gene also positively regulates virulence [40]. In C. neoformans, Cps1 was experi-

mentally described as a hyaluronic acid synthase [29]. In Ascomycetes, a Cps1 putative homo-

log was also found in Neurospora crassa by Fu et al. [30], however, after extensive chemical

analyses hyaluronic acid was not detected in N. crassa nor in the model fungus A. nidulans
[30,19]. It is possible that this gene was evolutionarily diverted in Ascomycetes to synthesize a

different polysaccharide which is of great relevance in the biology of these organisms. Future

research efforts will continue to elucidate the identity of this compound in Aspergillus.

Similarly to the case in A. nidulans, A. fumigatus cpsA positively affects vegetative growth;

deletion of cpsA resulted in smaller colonies. However, differently from A. nidulans, overex-

pression of cpsA in A. fumigatus resulted in larger colonies when compared to the wild type. In

addition, we observed that either deletion or overexpression of cpsA caused a drastic reduction

in conidial production in both fungi, suggesting that wild-type CpsA levels in balanced stoichi-

ometry with other unknown factors are required for normal conidiation in this fungus. Fur-

thermore, the brlA, and abaA regulatory genes, which are part of the central developmental

pathway [34,41] are cpsA-dependent. Specifically, a decrease in brlA and abaA expression was

observed in the cpsA deletion mutant compared to the wild type. Interestingly, overexpression

of cpsA showed an increase in the expression of both brlA and abaA after 72 h of incubation

with respect to the control, while conidial production remained lower than the wild type, sug-

gesting that the effect of cpsA on conidiation is complex and involves additional factors in A.

fumigatus. The positive effect of cpsA on conidiation appears to also be conserved in N. crassa

Table 4. LC-MS analysis data (average of normalized values ± standard error).

Compound WT ΔcpsA Com OE cpsA
Fumigaclavine A 2.40 x 107 ± 8.6 x 106 5.4 x 107 ± 1.7 x 107 5.1 x 107 ± 2.2 x 106 1.44 x 106 ± 6.8 x 105

Fumigaclavine B 6.0 x 107 ± 4.3 x 107 3.3 x 108 ± 1.3 x 108 5.8 x 107 ± 1.8 x 108 Not detected

Fumigaclavine C 1.8 x 108 ± 1.5 x 107 3.5 x 108 ± 5.7 x 108 4.9 x 108 ± 2.3 x 108 1.9 x 107 ± 5.7 x 106

TR2 1.2 x 107 ± 1.8 x 106 9.7 x 106 ± 2.1 x 106 2.3 x 107 ± 5.3 x 106 5.5 x 107 ± 1.1 x 107

Tryprostatin A 5.1 x 107 ± 1.8 x 107 7.0 x 107 ± 1.6 x 107 5.5 x 107 ± 5.6 x 106 2.8 x 108 ± 2.2 x 107

https://doi.org/10.1371/journal.pone.0216092.t004
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[30]. It is likely that other cpsA homologs across fungal genera could have a similar effect on

development.

As in the case of N. crassa and A. nidulans [30,19], A. fumigatus cpsA was also found to

influence cell wall function, as shown by the decrease in growth or development observed

when strains lacking or overexpressing cpsA were exposed to the perturbing cell wall agents

SDS and NZ. Furthermore, we found that cpsA affects cell wall composition in A. fumigatus;
deletion of cpsA increased level of mannoprotein and insoluble glucan when compared to the

isogenic control strain. It is possible that the absence of cpsA alters the balance between cell

wall polysaccharides, activating compensatory mechanisms [42,10,43]. These results differ

from those in A. nidulans studies where cpsA deletion and overexpression exhibited a decrease

in mannoprotein, soluble and insoluble glucan, and also chitin [19], suggesting that cpsA
might not be functionally identical in A. nidulans and A. fumigatus.

Biofilm protects the fungus from external stresses, including antifungal agents [44]. Adher-

ence is a requirement for biofilm formation [11]. Our results showed that A. fumigatus cpsA
also influences adhesion to surfaces. Both, deletion or overexpression of cpsA resulted in a

decrease in adhesion capacity. This effect is similar to that observed in A. nidulans [19], how-

ever, loss of adherence in the absence of cpsA was more drastic in the model fungus than in A.

fumigatus.
Cell wall composition and biofilm formation are important in pathogenicity [45,46]. Cell

wall alterations and the reduction of adhesion capacity in the cpsA deletion mutant could have

contributed to the significant decrease in virulence in our murine model, specifically in the

non-neutropenic environment. In addition, these alterations in the cpsA mutant could have

also caused the observed greater sensitivity to oxidative stress, which could further weaken vir-

ulence during infection. Resistance to oxidative stress is relevant when fungal cells are exposed

to immune system components such as macrophages and neutrophils, cell types present in

non-neutropenic patients. These immune cells use reactive oxygen species (ROS) as one of the

armors in controlling invading pathogens during immune clearance [47]. In our pathogenicity

study using non-neutropenic mice, ROS may have been more efficient against the A. fumigatus
strain lacking cpsA than against the wild type.

Other factors that influence virulence include the production of fungal secondary metabo-

lites. Previously, in A. nidulans, cpsA was shown to positively regulate the production of the

mycotoxin sterigmatocystin as well as the antibiotic penicillin [19]. For this reason we analyzed

the cpsA-dependent metabolome in A. fumigatus. In this fungus, deletion of cpsA had a limited

effect on secondary metabolism under the experimental conditions assayed. Our results sug-

gest that the observed reduction in virulence in the absence of cpsA might not be a conse-

quence of cpsA-dependent alterations of secondary metabolism. However, the role of cpsA on

the production of these compounds in the host environment could be greater than that

observed in laboratory cultures, affecting virulence. Future metabolomics studies of infected

host tissue will address this possibility.

In addition, overexpression of cpsA resulted in a decrease in the production of fumigacla-

vine A, fumigaclavine B and fumigaclavine C. Interestingly, when cpsA was overexpressed we

observed significant increases in the production of compounds with potential biotechnological

applications, such as verruculogen TR-2 and tryprostatin A. Verruculogen TR-2 presents anti-

fungal and antifeedant properties, and the diketopiperazine tryprostatin A has manifested

anti-tumoral properties inhibiting the M phase of the mammalian cell cycle [48,49].

In conclusion, this study shows that cpsA is a positive regulator of A. fumigatus pathogene-

sis in a non-neutrophenic murine model, influencing cellular processes that affect tissue colo-

nization of this opportunistic pathogen, such as adhesion, cell wall composition and oxidative

stress resistance. In addition, cpsA affects fungal growth rate and development, which could
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further affect virulence, as well as dissemination and survival of A. fumigatus, making cpsA or

its gene product, CpsA, potential targets in the fight against Aspergillosis. cpsA is absent in the

human genome; however, it is found in other fungi, and therefore it is likely that a safe control

strategy using cpsA could be effective in the treatment of fungal infections caused by A. fumiga-
tus and possibly by other pathogenic species. In addition, forced overexpression of this gene

results in an increase in the production of bioactive compounds with potential biotechnologi-

cal applications.

Supporting information

S1 Fig. Generation of A. fumigatus cpsA deletion strain (ΔcpsA), complementation strain

(Com) and overexpression strain (OE) strain. (A) Schematic diagram and image showing

the replacement of cpsA with the A. parasiticus pyrG gene (pyrGA. para) by a double-crossover

event. KpnI restriction sites and probe template used in the Southern blot analysis to confirm

the proper integration of the cassette are shown. The probe was PCR amplified with primers

cps5F and cps5R (Table 2). The expected band sizes were 5.6 kb for wild type (WT) and 2.1 kb

for ΔcpsA. (B) Generation of Com strain. Schematic diagram of complementation plasmid is

shown. Confirmation of transformants was carried out with diagnostic PCR using primers

1918F and 1986R. The expected band size of 2.1 kb was obtained. Wild-type genomic DNA

and plasmid vector pJET+cpsA (cpsA wild-type allele ligated to the commercial pJET vector—

Thermo Scientific) were used as positive controls, ΔcpsA genomic DNA was used as a negative

control. (C) Generation of OE strain. Schematic diagram of overexpression plasmid is shown.

Confirmation of transformants was also done by diagnostic PCR using primers 592F and

1927R. The expected band size of 2.2 kb was obtained. The overexpression vector pBN2 was

used as positive control and wild-type genomic DNA was used as a negative control.

(PDF)

S2 Fig. cpsA is dispensable for resistance to osmotic stress. GMM supplemented with differ-

ent osmotic stabilizer was point-inoculated with A. fumigatus wild type, ΔcpsA, Com and OE

strains and incubated at 37 ˚C for 72 h. Arrow indicates an unknown pigment produced by

ΔcpsA in GMM plus 0.8M Sucrose or 1.2 M Sorbitol.

(PDF)
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