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Abstract
1.	 Invasive	pests	pose	a	great	threat	to	forest,	woodland,	and	urban	tree	ecosys-
tems.	The	oak	processionary	moth	(OPM)	is	a	destructive	pest	of	oak	trees,	first	
reported	in	the	UK	in	2006.	Despite	great	efforts	to	contain	the	outbreak	within	
the	original	infested	area	of	South-	East	England,	OPM	continues	to	spread.

2.	 Here,	we	analyze	data	consisting	of	the	numbers	of	OPM	nests	removed	each	
year	from	two	parks	in	London	between	2013	and	2020.	Using	a	state-	of-	the-	art	
Bayesian inference scheme, we estimate the parameters for a stochastic com-
partmental	SIR	(susceptible,	infested,	and	removed)	model	with	a	time-	varying	
infestation	rate	to	describe	the	spread	of	OPM.

3.	 We	 find	 that	 the	 infestation	 rate	 and	 subsequent	basic	 reproduction	number	
have remained constant since 2013 (with R0	between	one	and	two).	This	shows	
further	controls	must	be	taken	to	reduce	R0	below	one	and	stop	the	advance	of	
OPM	into	other	areas	of	England.

4. Synthesis.	Our	 findings	demonstrate	 the	 applicability	of	 the	SIR	model	 to	de-
scribing	OPM	spread	and	show	that	further	controls	are	needed	to	reduce	the	
infestation rate. The proposed statistical methodology is a powerful tool to ex-
plore	the	nature	of	a	time-	varying	infestation	rate,	applicable	to	other	partially	
observed	time	series	epidemic	data.
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1  |  INTRODUC TION

Invasive pests, such as non- native insects, pose a threat to forest, 
woodland,	and	urban	tree	ecosystems	by	damaging	and	killing	trees	
and	reducing	biodiversity	(Freer-	Smith	&	Webber,	2017; Kenis et al., 
2009;	Manchester	&	Bullock,	2000).	This	threat	has	increased	in	re-
cent years due to growth in international travel and trade (Roy et al., 
2014)	coupled	with	a	changing	climate	driving	the	migration	of	spe-
cies into new ecosystems (Lenzner et al., 2020).	The	loss	of	biodiver-
sity has a profound economic impact, through short-  to long- term 
control	measures	 and	 the	 impact	 on	 ecosystem	 services	 (Aukema	
et al., 2011; Boyd et al., 2013; Bradshaw et al., 2016).

The	oak	processionary	moth	(OPM),	Thaumetopoea processionea, 
is an invasive and destructive pest of oak trees, causing defolia-
tion	and	making	trees	vulnerable	to	other	stressors	and	pathogens.	
The	 larvae	of	OPM	have	poisonous	hairs,	 containing	an	urticating	
toxin	(thaumetopoein)	which	is	harmful	to	human	and	animal	health	
(Gottschling	&	Meyer,	2006;	Maier	et	al.,	2003, 2004;	Rahlenbeck	
&	Utikal,	2015).

OPM	was	 introduced	to	the	UK	through	accidental	 imports	on	
live oak plants, first reported in 2006. Up to 2010, the governmen-
tal	 policy	was	 one	 of	 eradication	 (Mindlin	 et	 al.,	2012; Tomlinson 
et al., 2015).	However,	 in	2011	it	was	decided	that	OPM	was	fully	
established	in	the	South-	East	England	area	and	so	the	government	
moved	to	a	containment	strategy,	aiming	to	contain	the	OPM	infes-
tations	within	this	original	outbreak	area	(Tomlinson	et	al.,	2015).	In	
2018,	legislation	was	introduced	to	curb	continuing	imports	through	
the	 Plant	 Health	Order	 (Plant	 Health	 (England)	 (Amendment)	 (no.	
3)	Order,	2018).	Despite	the	containment	strategies,	 the	extent	of	
OPM	 has	 continued	 to	 spread	with	 recent	 analysis	 suggesting	 an	
expansion rate of 1.7 km/year for 2006– 2014, with an increase to 
6	km/year	from	2015	onwards	(Suprunenko	et	al.,	2021).	The	regions	
surrounding the current infestation area are particularly climatically 
suitable	 (Godefroid	et	 al.,	2020),	 and	 so	being	able	 to	predict	 and	
control	the	future	dynamics	of	the	OPM	population	is	crucial	to	pro-
tect these areas.

Mathematical	models	provide	a	powerful	tool	for	describing	and	
predicting the spread of tree disease and pest infestation (Gertsev 
&	 Gertseva,	 2004; Orozco- Fuentes et al., 2019;	 Wang	 &	 Song,	
2008).	 For	 OPM,	 previous	 work	 has	 included	 using	 models	 from	
electric network theory to predict high- risk regions (Cowley et al., 
2015)	along	with	species	distribution	models	to	examine	the	spatial	
distributions	of	OPM	 (Scholtens,	2021)	 and	 the	 effects	of	 climate	
change on its expansion (Godefroid et al., 2020).	Bayesian	inference	
can	be	used	to	 inform	and	evaluate	these	ecological	mathematical	
models (Ellison, 2004).	Previously,	Bayesian	approaches	have	been	
used to estimate key parameters in the spatio- temporal invasion 
of alien species (Cook et al., 2007);	however,	 the	 techniques	have	
yet	to	be	applied	to	data	for	the	spread	of	OPM.	Nevertheless,	the	
Bayesian	 paradigm	 provides	 a	 natural	 mechanism	 for	 quantifying	
and propagating uncertainty in the model parameters and dynamic 
components.	 Consequently,	 Bayesian	 inference	 techniques	 have	
been	 ubiquitously	 applied	 in	 the	 broad	 area	 of	 epidemiology	 (see	

e.g., Fuchs, 2013; Kypraios et al., 2017;	McKinley	et	al.,	2014 for an 
overview).

In	this	paper,	we	use	data	tracking	the	numbers	and	locations	of	
OPM	nests	removed	from	oak	trees	as	part	of	a	control	program	in	
two	parks	 in	London.	We	 illustrate	 the	use	of	 statistical	 inference	
techniques	for	estimating	the	parameters	for	a	classic	SIR	compart-
mental model (Bartlett, 1949;	Kermack	&	McKendrick,	1927)	 con-
sisting	 of	 susceptible,	 infested,	 and	 removed	 states.	 To	 allow	 for	
intrinsic	stochasticity	in	the	spread	of	OPM,	we	use	an	Itô	stochas-
tic	differential	equation	(Oksendal,	1995)	representation	of	the	SIR	
model. This is further modified via the introduction of a time- varying 
infestation rate, as is necessary to capture the effect of unknown 
influences such as preventative measures (Dureau et al., 2013).	
Bayesian	inference	for	the	resulting	model	is	complicated	by	the	in-
tractability	of	 the	observed	data	 likelihood,	and	subsequently,	 the	
joint	posterior	distribution	of	the	key	quantities	of	 interest	 (model	
parameters	and	dynamic	components).	We	overcome	these	difficul-
ties	via	a	linear	Gaussian	approximation	of	the	stochastic	SIR	model,	
coupled	with	a	Markov	chain	Monte	Carlo	scheme	(Fearnhead	et	al.,	
2014)	for	generating	samples	from	the	joint	posterior.	These	meth-
ods	are	outlined	in	Section	2	and	detailed	in	Appendix	S1,	Sections	
S1	and	S2,	for	use	as	a	toolbox	to	apply	to	other	ecological	datasets.	
We	use	the	parameters	from	the	compartmental	model	to	estimate	
a yearly R0	measure	for	OPM,	analogous	to	the	basic	reproduction	
number	for	a	pathogen	(Heesterbeek	&	Dietz,	1996),	and	estimate	
the	OPM	population	in	2021.

2  |  METHODS

In	this	section,	we	present	the	observational	time	series	data	with	a	
summary	of	the	data	collection	methods	(Section	2.1),	the	details	of	
the	stochastic	SIR	model	(Section	2.2),	and	an	outline	of	our	statis-
tical	 inference	methods	 (Section	2.3).	Further	statistical	details	 in-
cluding	the	relevant	algorithms	are	set	out	in	Appendix	S1	(Sections	
S1	and	S2).

2.1  |  Data

The data in this paper are from Richmond and Bushy Park, col-
lected	 and	processed	by	The	Royal	 Parks.	 This	 is	 shared	with	 the	
Forestry	Commission	on	an	annual	basis	to	inform	the	national	Oak	
Processionary	 Moth	 Programme	 (Contingency	 Plan,	 2021).	 The	
University	of	Southampton	(GeoData)	provide	analysis,	support,	and	
hold	the	program	data	on	behalf	of	the	Forestry	Commission.

The	 data	 used	 in	 this	 study	 were	 obtained	 through	 the	 re-
cording	 of	OPM	nest	 removals	 in	Richmond	 and	Bushy	Parks	 in	
South-	West	London.	For	each	of	the	years	2013–	2020,	it	contains	
(i)	 the	eastings	and	northings	of	 trees	which	had	nests	 removed	
and	(ii)	the	number	of	nests	removed	from	each	tree.	The	dataset	
consists	of	8470	unique	 tree	 locations,	with	1767	 in	Bushy	Park	
and 6703 in Richmond Park. The locations of the trees which had 
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nests removed are shown across the two parks in Figure 1. There 
are no recordings of the locations of trees, which did not have any 
nests removed.

The	raw	and	cumulative	time	series	of	the	numbers	of	removed	
nests are shown in Figure 2(a,b).	We	 count	 each	 tree	 in	 the	 year	
it	 first	had	nests	 removed	as	one	 “removal”	 in	 the	SIR	model	 (see	
Section	 2.2),	 regardless	 of	 how	many	 nests	were	 recorded	 as	 re-
moved from this location. The raw and cumulative time series for 
the	number	of	unique	trees	which	had	nests	removed	are	shown	in	
Figure 2(c,d).	We	use	the	 latter	cumulative	time	series,	R(t), as our 
observational	data	in	the	following	sections.

2.2  |  Stochastic SIR model

We	consider	a	SIR	model	 (Andersson	&	Britton,	2000;	Kermack	&	
McKendrick,	1927)	 in	which	a	population	of	trees	of	fixed	size	N is 

classified	 into	compartments	consisting	of	 susceptible	 (S),	 infested	
(I  ),	 and	 removed	 (R)	 trees.	 Although	most	 commonly	 used	 in	 epi-
demiology,	 SIR	models	have	previously	been	used	 to	describe	 the	
spread of tree diseases (Parry et al., 2014;	Rodriguez-	Quinones	&	
Gordillo, 2019)	 and	 invasive	 species	 through	 varying	 landscapes	
(Ferrari et al., 2014;	Wildemeersch	et	al.,	2019).	In	our	case,	suscep-
tible	 trees	 are	 those	 that	 have	 yet	 to	 ever	 be	 infested	with	OPM	
nests and are at risk from the currently infested trees. The time se-
ries	data	we	use	(see	Section	2.1)	are	observations	of	the	removed	
category,	trees	that	have	previously	been	infested	with	OPM	nests	
and	have	now	had	these	nests	removed.	A	fixed	population	of	trees	
is	appropriate	as	over	the	timescale	of	interest	the	number	of	trees	
born	into	the	S	compartment	will	be	sufficiently	small	to	be	negligi-
ble.	Transitions	between	compartments	can	be	summarized	via	two	
pseudo- reactions of the form

S + I
�

⟶2I, I
�

⟶R.

F I G U R E  1 Map	of	the	nests	removed	
from	Bushy	(bottom	left)	and	Richmond	
(top	right)	parks	between	2013	and	2020.	
The area of the marker is proportional to 
the	number	of	nests	removed
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The	first	transition	describes	the	“contact”	of	a	currently	infested	
tree	with	a	susceptible	tree	(in	this	case,	since	trees	have	fixed	lo-
cations,	a	probabilistic	opportunity	for	the	S to I  transition to occur 
through	the	dispersal	of	OPM)	and	with	the	net	effect	resulting	in	
one	additional	infested	tree	and	one	fewer	susceptible.	The	second	
transition accounts for the currently infested trees moving into the R 
category as their nests are removed. The parameters � and � govern 
the rate of infestation and removal, respectively. The infestation rate 
for	the	whole	population	(assuming	one	initial	infested	tree)	of	trees	
is thus �N	to	scale	for	the	number	of	possible	“contacts”.	It	is	clear	
that	transitions	should	result	in	discrete	changes	to	the	numbers	of	
trees in each state. This most naturally leads to a continuous time, 
discrete	valued	Markov	 jump	process	 (MJP)	description	of	disease	
dynamics,	as	detailed	in	Appendix	S1,	Section	S1	(Ho	et	al.,	2018).	
We	eschew	the	MJP	formalism	in	favor	of	a	continuous-	valued	ap-
proximation,	formulated	as	a	stochastic	differential	equation	(SDE).	
This	is	a	pragmatic	choice,	since	the	SDE	model	ultimately	leads	to	
a	computationally	efficient	inference	scheme,	and	the	model	can	be	
easily augmented with additional components, such as time- varying 
parameters,	which	we	now	describe.

The	SDE	representation	of	 the	standard	SIR	model	can	be	de-
rived	 directly	 from	 the	MJP	 (see	 Appendix	 S1,	 Section	 S1).	 Here,	
we extend this to include a time- varying infestation process. Let 
Xt = (St , It , �̃t)

� where Stand Itdenote	 the	 numbers	 in	 each	 of	 the	
states Sand Iat time t ≥ 0and �̃t = log�tis	 the	 (transformed)	 time-	
varying infestation process. Note that the fixed population size gives 
Rt = N − St − Itfor all t ≥ 0so	that	the	current	state	of	the	SIR	model	
is	completely	described	by	Xt.	We	model	�̃tas a generalized Brownian 
motion process so that

and W3,t is a standard one- dimensional Brownian motion process. 
Hence, we assume that the log infestation rate evolves according to 
a	 random	walk	 in	 continuous	 time,	 with	 variability	 controlled	 by	�. 

Combining	this	process	with	component	SDEs	describing	the	dynam-
ics of St and It	gives	the	complete	SDE	description	of	the	SIR	model	with	
time- varying infestation rate as

Here, xt = (st , it , �̃t)
� is the state of the system at time t, θ = (γ, σ)′	is	the	

vector of static parameter values, Wt = (W1,t, W2,t, W3,t)′	is	a	vector	
of uncorrelated standard Brownian motion processes, and the drift 
function a(xt , �)and diffusion coefficient b(xt , �)are	given	by

Unfortunately, due to the nonlinear forms of a(xt , �) and b(xt , �) ,	
the	SDE	specified	by	(1)	and	(2)	cannot	be	solved	analytically.	We,	
therefore,	replace	the	intractable	analytic	solution	with	a	tractable	
Gaussian	 process	 approximation,	which	 is	 the	 subject	 of	 the	 next	
section.	 The	 resulting	 linear	 noise	 approximation	 is	 subsequently	
used as the inferential model.

2.2.1  |  Linear	noise	approximation

The	linear	noise	approximation	(LNA)	provides	a	tractable	approxi-
mation	 to	 the	SDE	given	by	 (1)	 and	 (2).	 In	what	 follows	we	give	a	
brief	derivation;	formal	details	can	be	found	in	Kurtz,	(1972)	(see	also	
Kampen, 2001; Komorowski et al., 2009).

Consider a partition of Xt as

where {�t , t ≥ 0} is a deterministic process satisfying the ODE

d�̃t = �dW3,t

(1)dXt = a(xt , �)dt +

√
b(xt , �)dWt .

(2)a(xt , �) =

⎛
⎜⎜⎜⎜⎝

−exp(�̃t)st it

exp(�̃t)st it−� it

0

⎞
⎟⎟⎟⎟⎠
, b(xt , �) =

⎛
⎜⎜⎜⎜⎝

exp(�̃t)st it −exp(�̃t)st it 0

−exp(�̃t)st it exp(�̃t)st it+� it 0

0 0 �2

⎞
⎟⎟⎟⎟⎠
.

(3)Xt = �t + Zt ,

F I G U R E  2 (a)	Raw	and	(b)	cumulative	
number	of	OPM	nests	removed	from	
Richmond	(blue)	and	Bushy	(orange	
dashed)	parks	between	2013	and	2021.	
The	number	of	(c)	raw	and	(d)	cumulative	
unique	trees	(described	by	their	eastings	
and	northings)	which	had	nests	removed	
between	2013	and	2021.	The	cumulative	
number	of	trees	is	the	time	series	R(t)
corresponding to the “removed” category 
in	the	SIR	model	(see	Section	2.2)
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and {Zt , t ≥ 0} is a residual stochastic process. The residual process Zt 
satisfies

which	will	 typically	 be	 intractable.	 The	 assumption	 that	||Xt − �t|| is 
“small” motivates a Taylor series expansion of a(xt , �) and b(xt , �)	about	
�t, with retention of the first two terms in the expansion of a and the 
first term in the expansion of b. This gives an approximate residual pro-
cess {Ẑt , t ≥ 0} satisfying

where Ht	is	the	Jacobian	matrix	with	(i , j)th	element

For	the	SIR	model	in	(1)	and	(2),	we	therefore	have

Given an initial condition Ẑ0 ∼ N(̂z0, V̂0),	 it	 can	 be	 shown	 that	
Ẑt	 is	 a	 Gaussian	 random	 variable	 (see	 Fearnhead	 et	 al.,	 2014).	
Consequently,	the	partition	in	(3)	with	Zt	replaced	by	Ẑt, and the ini-
tial conditions �0 = x0 and Ẑ0 = 0 give

where �t	satisfies	(4)	and	Vt satisfies

Further	details	on	the	derivation	of	(6)	are	given	in	Appendix	S1,	
Section	S1.	Hence,	 the	 linear	noise	approximation	 is	characterized	
by	 the	Gaussian	distribution	 in	 (5),	with	mean	and	variance	 found	
by	solving	the	ODE	(ordinary	differential	equation)	system	given	by	
(4)	and	(6).	Although	this	ODE	system	will	typically	be	intractable,	a	
numerical	scheme	can	be	straightforwardly	applied.

2.3  |  Bayesian inference

We	consider	the	case	in	which	not	all	components	of	the	stochastic	
epidemic	model	are	observed.	Moreover,	we	assume	that	data	points	
are	 subject	 to	 measurement	 error,	 which	 accounts	 for	 mismatch	

between	the	latent	and	observed	process,	due	to,	for	example,	the	
way	in	which	the	data	are	collected.	Observations	(on	a	regular	grid)	
yt , t = 0, 1,⋯n are assumed conditionally independent (given the la-
tent	process)	with	conditional	probability	distribution	obtained	via	
the	observation	equation,

where P =	 (1,	1,	0)′.	This	choice	of	P is due to the data consisting of 
observations	on	the	removed	state	Rt, which, for a known population 
size N,	 is	 equivalent	 (in	 information	 content)	 to	 observing	 the	 sum	
St + It .	Note	 that	 the	 logarithm	of	 the	 infestation	 rate	process,	 �̃t, is 
completely	unobserved.	Our	choice	of	observation	model	is	motivated	
by	a	Gaussian	approximation	to	a	Poisson	Po(P′xt)	distribution,	with	the	
role of �2

e
	to	allow	a	decoupling	of	the	mean	and	variance.	Moreover,	

the	assumption	of	 a	Gaussian	observation	model	 admits	a	 tractable	
observed	data	likelihood	function,	when	combined	with	the	LNA	(see	
Section	2.2,	Fearnhead	et	al.,	2014; Golightly et al., 2015)	as	a	model	
for the latent epidemic process Xt. Details on a method for the efficient 
evaluation	of	this	likelihood	function	can	be	found	in	Section	S2.3	of	
Appendix	S1.

Given data y = (y0, y1,⋯, yn)	 and	upon	 ascribing	 a	 prior	 density	
�(�) to the components of θ = (γ, σ, σe)′	 (augmented	to	 include	�e ),	
Bayesian inference proceeds via the joint posterior for the static pa-
rameters �	 and	 unobserved	 dynamic	 process	 x = (x0, x1,⋯, xn).	We	
have that

where �(y|�)	is	the	observed	data	likelihood	and	�(x|y, �) is the condi-
tional	posterior	density	of	the	latent	dynamic	process.	Although	�(y|�) 
and �(x|y, �)	can	be	obtained	in	closed	form	under	the	LNA,	the	joint	
posterior	in	(8)	is	intractable.	In	Appendix	S1	Section	S2,	we	describe	a	
Markov	chain	Monte	Carlo	scheme	for	generating	(dependent)	samples	
from	(8).	Briefly,	this	comprises	two	steps:	(i)	the	generation	of	samples	
�(1),⋯, �(M) from the marginal parameter posterior �(�|y) ∝ �(�)�(y|�) 
and	(ii)	the	generation	of	samples	x(1),⋯, x(M)	by	drawing	from	the	con-
ditional posterior �(x|y, �(i)), i = 1,⋯,M.

Given inferences on the static parameters � and the latent dy-
namic process x, we consider the following diagnostics for assessing 
model fit. The within- sample predictive density is

and the one step ahead out of sample predictive density is

Hence,	 in	 both	 cases	 we	 properly	 account	 for	 parameter	 and	
latent	 process	 uncertainty.	 Although	 the	 densities	 in	 (9)	 and	 (10)	
will	be	intractable,	we	may	generate	samples	via	Monte	Carlo,	see	
Appendix	S1	Section	S2	for	further	details.

(4)
d�t
dt

= a(�t , �), �0 = x0,

dZt = {a(xt , �) − a(�t , �)}dt +

√
b(xt , �)dWt ,

dẐt = Htẑt dt +

√
b(�t , �)dWt ,

(Ht)i,j =
�ai(�t , �)

��j,t
.

Ht =

⎛
⎜⎜⎜⎜⎝

−exp(�̃t)it −exp(�̃t)st −exp(�̃t)st it

exp(�̃t)it exp(�̃t)st−� exp(�̃t)st it

0 0 0

⎞
⎟⎟⎟⎟⎠
.

(5)Xt ∼ N
(
�t ,Vt

)
,

(6)dVt

dt
= VtH

�
t
+ b(�t , �) + HtVt , V0 = 0.

(7)Yt ∼ N(P�xt , �
2
e
P�xt), t = 0, 1,…, n

(8)�(�, x|y) ∝ �(�)�(y|�)�(x|y, �),

(9)�(ỹ|y) = ∫ ∫ �(ỹ|x, �)�(�, x|y)dxd�,

(10)�(yn+1|y) = ∫ ∫ �(yn+1|xn+1, �)�(xn+1|xn, �)�(�, x|y)dx0:n+1d�.
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3  |  RESULTS

We	assume	the	epidemic	time	series	(see	Section	2.1)	for	the	cumu-
lative	number	of	trees	with	removed	nests,	R(t), shown in Figure 2(c),	
can	 be	 described	 by	 the	 compartmental	 SIR	 model	 with	 a	 time-	
varying	 infestation	 rate	 (see	 Section	 2.2).	 The	 aim	 is	 to	 estimate	
the	key	parameters	through	the	Bayesian	inference	techniques	de-
scribed	 in	Section	2.3.	These	are	 the	time-	varying	 infestation	rate	
per tree, �(t), with corresponding stochastic noise parameter � de-
scribing	d�̃t = dlog(�t) = �W3,t, the removal rate �,	and	the	observa-
tion error �e.

Section	 S2.4	 of	 Appendix	 S1	 provides	 details	 of	 the	 assumed	
population	 sizes	 for	each	park,	 initial	numbers	 for	 the	S (suscepti-
ble)	 and	 I 	 (currently	 infected)	 tree	categories	and	 the	 initial	 infes-
tation	rate,	along	with	the	starting	parameter	values	for	the	MCMC	
scheme and prior specification. Regarding the latter, we take an 
independent prior specification for the components of �, so that 
�(�) = �(�)�(�)�(�e).	We	then	take	lognormal	LN(1, 1)	distributions	for	
� and �e, and a lognormal LN (0, 0. 52)	distribution	for	�.	We	assume	
that initial log infestation rate �̃0 follows a Gaussian N ( − 8.5, 0. 52) 
distribution.	 These	 choices	 are	motivated	 by	 the	 assumption	 of	 a	
median	removal	time	of	around	1	year	(95%	credible	interval:	(0.38,	
2.66)),	and	a	basic	reproduction	number	at	time	0	of	R0 = �0N∕� cov-
ering	a	wide	range	of	plausible	values.	For	example,	with	N = 5 × 103 
the	prior	distributions	 for	� and �̃0	 lead	 to	a	95%	credible	 interval	
for R0 of (0.25, 4.1).	The	 initial	conditions	are	chosen	based	on	the	

increase	 in	the	removal	category	 in	the	first	available	year,	 for	ex-
ample, for Richmond Park there were 1414 new trees in the removal 
category	 between	 2013	 and	 2014	 (new	 trees	 that	 had	 nests	 re-
moved	in	2014),	so	we	assume	this	was	approximately	the	number	of	
infested	locations	in	2013.	We	investigated	several	choices	for	initial	
conditions	and	find	our	results	robust	to	these	variations.

3.1  |  Inference results

We	ran	the	MCMC	scheme	for	10	× 103 iterations and monitored the 
resulting	chains	for	convergence.	Indicative	trace	plots	can	be	found	
in	 Appendix	 S1,	 Figure	 S1	 and	 suggest	 that	 the	 sampler	 has	 ade-
quately	explored	the	parameter	space.	Additional	chains	 initialized	
at	different	starting	values	(not	shown)	further	confirm	convergence.

From	the	main	MCMC	run,	we	obtain	the	posterior	within-	sample	
means	 (with	 50%	 and	 95%	 credible	 intervals)	 for	R(t), S(t), and I(t), 
shown in Figures 3 and 4(a–	c)	for	Bushy	and	Richmond	Park,	respec-
tively. The logarithmic time- dependent infestation rate, �̃t = log(�), is 
shown in Figures 3 and 4(d).	For	Bushy	Park,	the	logarithmic	infesta-
tion	rate	is	plausibly	constant	(given	a posteriori	variance)	at	�̃t ≈ − 8 ,	
corresponding to an approximate infestation rate of � = 3.4 × 10−4 
and thus for the whole population of Bushy park an infestation rate 
of �N = 1.7.	 Similarly,	 for	 Richmond	 Park,	 the	 infestation	 rate	 is	
plausibly	 constant	with	 �̃t ≈ − 10, corresponding to an infestation 
rate of � = 4.5 × 10−5 and �N = 1.8. Reassuringly, samples from the 

F I G U R E  3 Bushy	Park.	The	within-	
sample	posteriors	for	(a)	R(t),	(b)	S(t), 
(c)	I(t),	and	(d)	log(�t)	with	mean	(blue	solid	
line)	± one standard deviation (shaded 
region),	the	50%	(blue	dashed),	and	the	
95%	(blue	dot-	dashed)	credible	regions.	
The	observed	time	series	for	R(t) is overlaid 
in	(a)	(orange	dashed).	The	corresponding	
(e)	posterior	densities	for	the	inferred	
parameters �	(removal	rate),	� (noise on �̃t)	
and �e	(observation	error)
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within- sample predictive for R(t) are consistent with the data used to 
fit	the	model	(see	panel	(a)	of	Figures 3 and 4).

The posterior density plots of the parameters � = (� , �, �e) are 
shown in Figures 3 and 4(e),	for	Bushy	and	Richmond	park,	respec-
tively.	Pairwise	joint	posterior	densities	can	be	found	in	Appendix	S1,	
Figure	S2.	The	marginal	posterior	distribution	of	� is centered around 
� ≈ 1	for	both	Bushy	and	Richmond.	The	marginal	posterior	for	� is 
centered around � ≈ 0.75 for Bushy and � ≈ 0.5 for Richmond. The 
observation	error	�e is centered around �e ≈ 1 for Bushy and �e ≈ 0.5 
for Richmond.

3.2  |  Estimation of R0

From the posterior estimations of �̃t for each year and the parameter 
�,	we	can	estimate	 the	basic	 reproduction	number	R0. This gives a 
measure	of	the	strength	of	infectivity	through	the	number	of	trees	
which	become	infested	as	a	result	of	a	single	infested	tree	over	its	in-
fested	life	time	(i.e.,	the	expected	number	of	secondary	infestations	
resulting	from	a	single	original	infestation).	This	provides	additional	
information over the parameter �, since R0 takes into account the 
lifetime in which a tree can infest another tree (i.e., the removal rate 
�).	In	a	deterministic	system,	for	an	epidemic	to	die	out,	R0	must	be	
less than the threshold value of one. However, in the stochastic case, 
it	is	possible	for	R0	to	be	above	one	but	the	epidemic	still	die	out	as	
a	result	of	the	stochastic	fluctuations.	Therefore,	it	is	required	that	

R0 < 1 for the epidemic to shrink, upon averaging over the stochas-
ticity.	In	a	SIR	model	with	a	constant	infestation	rate,	�,	the	basic	re-
production	number	is	given	by	R0 = �N∕�. Here, we adapt this to use 
the	time	variant	 infestation	rate	 to	get	a	 reproduction	number	 for	
each	of	the	years	between	2013	and	2020,	R0 = �(t)N∕�. Box plots 
showing	the	posterior	distributions	of	R0	for	both	parks	are	shown	in	
Figure 5.	For	both	parks	R0	has	been	stable,	within	errors,	since	2013	
(corresponding to the relatively constant �t ).	However,	this	suggests	
that R0	is	still	above	one,	and	therefore,	the	epidemic	will	continue	to	
propagate	in	these	areas	and	potentially	beyond.

3.3  |  Forward prediction

Predictions	 of	 the	 spread	 of	 OPM	 are	 needed	 to	 inform	 control	
strategies.	To	test	the	validity	of	the	SIR	model	with	the	inferred	pa-
rameters	from	Section	3.1	and	thus	how	well	the	model	can	capture	
future	 expansions	 in	OPM,	we	 can	 calculate	 a	one-	year	 prediction	
for	a	known	data	point.	We	remove	the	last	data	point,	R(2020), and 
re-	infer	the	parameters	for	the	new	shortened	observed	time	series.	
We	then	use	these	parameters	to	run	the	model	forward	(10 × 103 )	
simulations,	matching	the	number	of	iterations	in	the	MCMC)	and	ob-
tain an estimate for R(2020). The median predictions with upper and 
lower	quartiles	for	1000	runs	are	shown	in	Figure 6(a,c)	for	Bushy	and	
Richmond,	respectively.	In	both	cases,	the	predictive	interval	captures	
the	observed	data.	Realizations	from	100	forward	runs	are	shown	in	

F I G U R E  4 Richmond	Park.	The	
within-	sample	posteriors	for	(a)	R(t), 
(b)	S(t),	(c)	I(t),	and	(d)	log(�t) with mean 
(blue	solid	line)	± one standard deviation 
(shaded	region),	the	50%	(blue	dashed),	
and	the	95%	(blue	dot-	dashed)	credible	
regions.	The	observed	time	series	for	
R(t)	is	overlaid	in	(a)	(orange	dashed).	The	
corresponding	(e)	posterior	densities	for	
the inferred parameters �	(removal	rate),	� 
(noise on �̃t)	and	�e	(observation	error)
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Figure 6(b,d)	to	show	that	results	are	mostly	concentrated	around	the	
observed	data,	with	some	outliers	over-	estimating	R(t). One- step pre-
dictions	for	the	whole	time	series	are	shown	in	Appendix	S1,	Figure	
S3.	This	suggests	that	the	available	data	are	sufficient	to	inform	the	
model to make predictions over these time scales.

Similarly,	we	can	produce	predictions	for	the	number	of	infested	
locations in 2021, R(2021). The median predictions with upper and 

lower	quartiles	are	shown	in	Figure 7(a,b)	for	Bushy	and	Richmond,	
respectively.	This	 corresponds	 to	an	average	 (median)	of	350	new	
infested	 locations	 (lower-	upper	 quartile	 estimate	 range	 150–	800)	
in	Bushy	Park	and	1100	(700–	2000)	 in	Richmond	Park.	Since	sub-
mission of this manuscript, the data for 2021 were recorded, with 
167 new infested locations in Bushy and 523 in Richmond Park. This 
is	lower	than	our	mean	predicted	estimates,	which	could	be	due	to	

F I G U R E  5 Posterior	distributions	
of R0(t) = �tN∕�	for	(a)	Bushy	and	(b)	
Richmond Park. The central line indicates 
the	median,	with	the	bottom	and	top	
edges	of	the	box	showing	the	25th	
and 75th percentiles, respectively. The 
whiskers extend to the most extreme data 
points not considered outliers, which are 
not shown here

F I G U R E  6 Model	predictions	for	the	
total	number	of	trees	with	removed	nests	
up to 2020, R(2020),	with	median	(blue	
line)	for	(a,	b)	Bushy	and	(c,	d)	Richmond.	
In	(a)	and	(c),	the	shaded	area	shows	
the	50%	credible	region.	In	(b)	and	(d),	
100 simulations are shown from the 
forward model. The orange line shows the 
observed	data
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increased efficacy of the control methods with time. Longer- term 
predictions up to the year 2025 are shown in Figure 7(c,d)	for	Bushy	
and Richmond, respectively. By this time, R(t)	is	beginning	to	saturate	
due	 to	 a	 depletion	 of	 available	 trees	 that	 have	 not	 yet	 previously	
been	infested,	that	is,	the	infestation	has	spread	through	the	whole	
susceptible	population.

4  |  DISCUSSION

Recent modeling work has suggested that the surroundings of 
the	current	OPM	 infestation	area	 in	 the	UK	are	highly	climatically	
suitable	 and,	 therefore,	 at	 very	 high	 risk	 from	 future	 infestations	
(Godefroid et al., 2020).	Since	the	government	strategy	for	the	con-
tainment	of	OPM	relies	on	targeted	control	at	the	boundary	of	the	
current	infested	area,	it	is	crucial	to	understand	and	be	able	to	pre-
dict	the	future	spread	to	optimize	both	the	cost	and	efficacy	of	these	
control programs (Contingency Plan, 2021).

We	have	shown	the	applicability	of	a	SIR	compartmental	model	
with	a	time-	varying	infestation	rate	to	describe	the	OPM	epidemic	in	
the	UK	between	the	years	2013	and	2020.	Such	models	have	previ-
ously	been	used	to	describe	the	spread	of	tree	diseases	(Rodriguez-	
Quinones	&	Gordillo,	2019)	and	invasive	species	(Ferrari	et	al.,	2014; 
Wildemeersch	 et	 al.,	 2019).	 The	 statistical	 methodology	 used	 is	
a powerful tool for inferring the parameters of such models from 
real	 data	 and	 is	 transferable	 to	 other	 epidemiological	 and	 ecolog-
ical	 datasets.	 Previously,	 similar	 statistical	 methodology	 has	 been	
used	 to	 describe	 the	 spread	 of	 infectious	 diseases	 (e.g.,	 measles	
(Cauchemez	&	Ferguson,	2008)	and	Ebola	(Fintzi	et	al.,	2020))	and	
the spatial expansion of non- native plants (Cook et al., 2007),	but	has	
not	yet	been	applied	to	the	study	of	invasive	insects.

Our	results	show,	along	with	previous	analysis	(Suprunenko	et	al.,	
2021),	that	the	spread	of	OPM	is	continuing	at	a	stable	rate	despite	

the current intervention methods. Correspondingly, we show that the 
basic	reproduction	number	R0	has	been	above	one	since	2013.	To	see	
a	 reduction	 in	 the	OPM	population	density	and	 to	protect	 the	 sur-
rounding areas, a reduction of R0	to	below	one	would	need	to	be	seen.	
Although	 the	basic	 reproduction	number	R0 is typically used in the 
modeling of infectious diseases (Dietz, 1993;	Ma,	2020),	here	it	gives	
an	 analogous	 measure	 for	 the	 expected	 number	 of	 infested	 trees	
caused	by	a	single	currently	infested	tree	through	its	infested	lifetime.

Driven	by	the	nature	of	the	data	collected,	we	chose	to	make	the	
assumption	that	the	trees	with	removed	nests	best	represented	the	
removed	category	in	the	SIR	model.	Although	not	explicitly	formu-
lated in this model, we expect that after nest removal and spraying 
with	a	biological	 insecticide,	 these	 trees	will	not	be	susceptible	 to	
future infestation on the short time scales considered here. This lim-
itation	of	the	model	could	be	explored	further	through	assuming	this	
data instead represented the infested category (with the caveat that 
these	trees	would	not	actually	be	infective	to	others	at	the	times	the	
data	were	collected)	or	by	extending	the	model	to	an	SIRS	formula-
tion, which would allow for re- infestation after a period of immunity.

For	 simplicity	 and	 to	 be	 better	 described	 by	 a	 SIR	 model,	 we	
counted each tree that had undergone nest removal as one removed 
tree,	regardless	of	how	many	nests	were	recorded	as	being	removed	
from it. However, the defoliation effects and risks to human health 
from	OPM	 are	 closely	 related	 to	 nest	 density	 (i.e.,	 the	 numbers	 of	
nests	per	tree)	(Jactel	et	al.,	2011).	In	future	work,	nest	density	could	be	
taken into account through a nest density- dependent infestation rate.

A	challenge	of	modeling	OPM	and	other	tree	pests	and	diseases	
is the lack of a complete inventory oak trees in the UK, representing 
the	 susceptible	 population	 in	 our	 SIR	model.	 This	 has	 been	previ-
ously	noted	and	highlighted	as	a	priority	for	future	data	collection	by	
other modeling studies (Cowley et al., 2015).	It	is	of	particular	impor-
tance	for	future	spatial	models	of	OPM,	which	require	an	estimate	of	
the	distribution	of	oak	trees	in	the	areas	of	interest.

F I G U R E  7 Model	predictions	
for	the	median	(solid	blue	line)	total	
number	of	trees	with	removed	nests	
up to 2021, R(2021),	for	(a)	Bushy	and	
(b)	Richmond	park,	and	up	to	2025,	
R(2025),	for	(c)	Bushy	and	(d)	Richmond	
park. The shaded area shows the 50% 
credible	region.	The	orange	line	shows	
the	observed	data	up	to	2020	used	to	
parameterize the model, and the red cross 
shows the most recent data for 2021
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It	is	also	worth	noting	that	many	areas	infested	with	OPM	have	
been	undergoing	control	measures	(Contingency	Plan,	2021)	and	so	
any inferred infestation rates represent the dynamics under these 
controls, rather than the inherent parameters of the uncontrolled 
pest spread. In Richmond and Bushy Parks, control measures include 
the	yearly	nest	removal	and	limited	spraying	with	a	biological	insec-
ticide.	It	would	be	interesting	to	conduct	a	similar	analysis	on	a	con-
tained	area	that	had	undergone	no	(or	different)	control	measures	to	
assess the differences in the infestation rates and thus assess the ef-
ficacy of the controls. The effect of confounding factors such as the 
weather, difference in landscapes, and the presence of other pests 
and	parasitoids	should	also	be	investigated.

The results from this work can inform the development of future 
mathematical	models	for	the	spread	of	OPM.	These	models	can	be	
used to identify at- risk regions (Cowley et al., 2015)	and	predict	the	
distribution	of	OPM	on	a	national	scale.	The	development	of	these	
models	will	require	further	targeted	data	collection	to	obtain	com-
plete oak tree inventories, as well as data on the population num-
bers	and	 locations	of	OPM	(or	 indeed	any	other	 invasive	 insect	or	
pathogen).
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