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Malaria causes long-term effects 
on markers of iron status in children: 
a critical assessment of existing clinical 
and epidemiological tools
Filip C. Castberg1,2 , Edem W. Sarbah3 , Kwadwo A. Koram3 , Nicholas Opoku4,5 , Michael F. Ofori3 , 
Bjarne Styrishave6 , Lars Hviid1,7  and Jørgen A. L. Kurtzhals1,2* 

Abstract 

Background: Most epidemiological studies on the interplay between iron deficiency and malaria risk classify individ-
uals as iron-deficient or iron-replete based on inflammation-dependent iron markers and adjustment for inflamma-
tion by using C-reactive protein (CRP) or α-1-acid glycoprotein (AGP). The validity of this approach and the usefulness 
of fibroblast growth factor 23 (FGF23) as a proposed inflammation-independent iron marker were tested.

Methods: Conventional iron markers and FGF23 were measured in children with acute falciparum malaria and after 
1, 2, 4, and 6 weeks. Children, who were transfused or received iron supplementation in the follow-up period, were 
excluded, and iron stores were considered to be stable throughout. Ferritin levels 6 weeks after admission were used 
as a reference for admission iron status and compared with iron markers at different time points.

Results: There were long-term perturbations in iron markers during convalescence from acute malaria. None of the 
tested iron parameters, including FGF23, were independent of inflammation. CRP and AGP normalized faster than 
ferritin after malaria episodes.

Conclusion: Malaria may bias epidemiological studies based on inflammation-dependent iron markers. Better mark-
ers of iron status during and after inflammation are needed in order to test strategies for iron supplementation in 
populations at risk of malaria.
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Background
The geographical distributions of iron deficiency and 
malaria overlap. Iron deficiency has a negative impact 
on child development [1–4], but may also be associated 
with reduced susceptibility to infections because iron is 
essential for the growth of micro-organisms [5]. In line 
with this, an increasing number of epidemiological stud-
ies suggest that iron deficiency has a protective effect 

against malaria [6–10]. However, these studies have used 
conventional inflammation-dependant biomarkers, such 
as ferritin, as indicators of iron status, although they are 
known to be modified (usually increased) by malaria [11, 
12]. The studies may therefore be biased due to iron sta-
tus misclassification of study subjects.

Correspondingly, iron supplementation has been asso-
ciated with increased risk of malaria, e.g., in the widely 
cited Pemba trial, which showed that routine iron supple-
mentation resulted in increased morbidity and mortality 
among participating children [13]. Although some other 
studies have failed to confirm this finding [14], it remains 
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a matter of dispute how to safely treat iron deficiency in 
areas where malaria is endemic.

Conventionally, serum ferritin has been used as the key 
iron marker as it reflects total body iron storage. How-
ever, ferritin is also an acute phase protein [15], so in an 
acute inflammatory situation, such as during malaria, 
serum ferritin levels may not accurately reflect body iron 
stores. In the present study, a time-series study of iron 
biomarkers was performed, as called for in the recent 
BRINDA study of anaemia in the context of inflamma-
tion [16]. Iron status was assumed to be stable during the 
study period for each study subject provided he or she 
did not receive a blood transfusion or iron supplemen-
tation. Thus, the intention was to use ferritin levels after 
normalization post infection as an indication of the true 
iron status during an acute malaria attack.

Using this reference point, the possibility that other 
iron markers during acute malaria might be correlated 
with ferritin after normalization was studied. The main 
focus was on hepcidin and fibroblast growth factor 23 
(FGF23). Hepcidin is a peptide hormone that is regu-
lated by iron stores, inflammation and erythropoietic 
demand and controls iron efflux from most cells in the 
body, in particular enterocytes and macrophages. Hepci-
din has been suggested as the best marker to guide iron 
treatment as it has been proposed to be a key determi-
nant of iron utilization [17, 18]. Yet, hepcidin was found 
to be a poor predictor of bone marrow iron deficiency 
and of iron incorporation in severely anaemic Malawian 
children [19]. FGF23, a bone-derived hormone regulat-
ing vitamin D and phosphate homeostasis, has been pro-
posed as an inflammation-independent iron marker in a 
single epidemiological study [20]. In the present study, 
the aim was to investigate if FGF23 was independent of 
inflammation in acute malaria.

Methods
Ethical statement
The study was approved by the Noguchi Memorial Insti-
tute for Medical Research Institutional Review Board 
(NMIMR STC Number: STC Paper 5(1) 2013–2014) and 
by the Ethical Review Committee of the Ghana Health 
Service (file GHS-ERC 08/05/14). Parents/guardians of 
all study participants were informed in their local lan-
guage, Ewe, of the goals, benefits and risks of taking part 
in the study, and written consent was obtained prior to 
enrolment.

Study site and participants
The study was conducted in Hohoe, a town located 
about 220  km northeast of Accra, in an area of tropi-
cal, semi-deciduous, forest vegetation and used 

a convenience sample of children included in the 
MAVARECA study (Malaria Vaccine and Research 
Capacity Building in Ghana) [21]. Malaria transmission 
intensity in the area is high and has two seasonal peaks: 
a major one in April–July and a minor one in Septem-
ber–November [22]. Study participants were enrolled 
at Hohoe Municipal Hospital, June–August 2014 (pilot 
study) and June–August 2015.

Inclusion criteria were age 1–12  years, positive 
Plasmodium falciparum rapid diagnostic test (RDT), 
microscopic finding of peripheral parasitaemia > 2500 
infected erythrocytes (IEs)/µL, fever (≥ 37.5 °C) within 
the first 24  h of admission or a history of fever in the 
preceding 24  h. Subjects were excluded if they had 
severe co-morbidity, including sickle-cell disease, or 
received a blood transfusion during admission due to 
severe anaemia (haemoglobin (Hb) < 5 g/dL) as the iron 
content of the transfused erythrocytes would otherwise 
distort the interpretation of the analysis of iron marker 
kinetics during follow up. During the follow-up period, 
patients were excluded if they presented with malaria, 
other severe disease or new spikes in inflammatory 
markers (C-reactive protein (CRP) > 5 mg/L or α-1-acid 
glycoprotein (AGP) > 1  g/L), or had taken iron supple-
mentation (only excluded after such an event). The rea-
son for excluding these patients was that these events 
would have affected day-42 results and thus the final 
endpoint.

Upon enrolment, a project nurse and physician com-
pleted a standardized questionnaire and performed 
a clinical examination. Severe malaria was defined 
according to WHO criteria [23]. Uncomplicated 
malaria cases were treated with a 3-day course of oral 
artemether–lumefantrine (AL), while severe malaria 
cases were treated with intravenous quinine for at least 
24 h until oral AL was tolerated as follow-on therapy. In 
severe cases, ceftriaxone was given as empiric therapy 
for possible sepsis.

The patients were followed for 6 weeks and attended 
the research clinic 14 and 42  days post-admission 
(regular follow-up group). A sub-set of patients liv-
ing near the hospital were also asked to come 7 and 
28  days post-admission (frequent follow-up group). 
At follow-up visits, the patients or their parents were 
systematically interviewed about new symptoms and 
medicine use, including iron supplements, during the 
follow-up period. A missed follow-up appointment did 
not exclude the patient from future follow-up visits. 
Patients were encouraged to attend the research clinic 
at any time during the follow-up period if they devel-
oped any new symptoms.

For the purpose of this study, inflammation was 
defined as either CRP > 5  mg/L or AGP > 1  g/L, while 
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iron deficiency was defined as ferritin concentrations 
< 15 µg/L on day 42.

Laboratory methods
Venous blood (6  mL) was collected in lithium-hepa-
rin- and EDTA-coated tubes at each of the above time 
points. A WHO-approved RDT kit and Giemsa-stained 
blood smears were used to assess malaria infection sta-
tus, and Hb (reference range 11–18  g/dL, coefficient of 
variation (CV) < 4%), mean corpuscular volume (MCV, 
76–96 fL, CV < 5%), mean corpuscular Hb concentra-
tion (MCHC, 31–36  g/dL, CV < 6%), mean corpuscu-
lar Hb (MCH, 27–30  pg, CV < 5%), red cell distribution 
width (RDW-CV, < 14.6%, CV < 15%) were measured 
using a Sysmex XS 500i. Remaining plasma was sepa-
rated by centrifugation and stored frozen at − 80  °C 
until further analysis. Plasma hepcidin concentrations 
(0.6–13.9 mmol/L, CV < 11%) were determined by mass 
spectrometry. Sample preparation was done in Eppen-
dorf Lobind tubes (Sigma Aldrich, Søborg, Denmark) 
and all work was done under anaerobic conditions. 
Briefly, heparin plasma and internal standard [hep-25, 
Peptides International (Louisville, KY, USA)] was mixed 
with Macro-Prep® CM Weak Cation Exchange (WCX) 
beads (Bio-Rad, Hercules, CA, USA) and ammonium 
acetate at pH 7.5. After washing, the analyte was eluted 
with 25  µL 2.5% Trifluoroacetic acid, 50% Acetonitrile 
LC–MS Chromasolv solution (both from Sigma-Aldrich) 
and the WCX beads were separated from supernatant by 
centrifugation at 500g. Peptide spectra were then gener-
ated on a Microflex matrix-enhanced laser desorption/
ionization (MALDI) TOF–MS platform (Bruker Dalton-
ics, Bremen, Germany). Levels of FGF23 (< 125 RU/mL, 
CV 2.4%) were measured in duplicates using a 2nd gen-
eration, C-terminal, two-site ELISA (Immutopics Inc, 
CA, USA). Biochemical parameters (reference ranges), 
including AGP (≤  1  g/L), bilirubin (4–22  µmol/L), high 
sensitivity CRP  (≤   5  mg/L), fe (5–30  µmol/L), ferri-
tin (15–140  µg/L), haptoglobin (0.3–1.8  g/L), lactate 
dehydrogenase (LDH, 150–400  U/L), transferrin (18.7–
50  µmol/L), and transferrin saturation (20–50%) were 
analysed on a Cobas 8000, (Roche, Rotkreuz, Switzer-
land, all CV < 7%). Levels of soluble transferrin receptor 
(sTfR, 0.76–1.76  mg/L, 3.6–4.3%) were measured (2014 
samples only) in duplicates by BNII nephelometry (Sie-
mens, Munich, Germany). Sickle cell Hb phenotype was 
determined by electrophoresis, while glucose-6-phos-
phate dehydrogenase (G6PD) deficiency was determined 
by methylene blue reduction test [24] (day  42 samples 
only).

Urine (> 12 mL) was collected at enrolment and tested 
for signs of microscopic haematuria and urinary tract 
infections using Siemens  Multistix®10 SG. Microscopy 

analysis of all 2014 pilot urine samples yielded no positive 
results for Schistosoma haematobium eggs. In 2015, only 
samples with dipstick data suggesting haematuria were 
assessed by microscopy.

Stool samples (> 4  mL) were collected during admis-
sion. At least 2  mL were stored frozen (for later PCR 
detection of infection by Cryptosporidium, Giardia lam-
blia and Entamoeba histolytica), while at least 2 mL were 
mixed with formalin (10%) and stored at room tempera-
ture for later formalin-ether concentration (a.m. Ridley) 
and microscopy for cysts, helminth larvae and eggs.

Statistical analysis
Data were double-entered in a Microsoft Access data-
base. Mismatches were resolved by consultation of the 
original records. Statistical analyses were done in SAS v. 
9.4 (SAS Institute, NC, USA). All continuous variables 
are presented as geometric means ± 2 standard devia-
tions (SD), unless otherwise specified. Longitudinal data 
were analysed using log-transformed variables in a mixed 
effects model. P values < 0.05 were considered statistically 
significant. As some CRP values were 0, i.e., below the 
lower detection level of 1, “1” was added to the CRP value 
before log transformation. Pearson’s correlation coeffi-
cient (R) was used to determine correlation between log-
transformed iron markers.

Only data collected ± 2  days from the scheduled fol-
low-up date were included, except for day  42, where 
delays in data collection were tolerated (six samples were 
collected after day 44, the latest on day 51).

Results
A total of 156 patients with a positive RDT were 
recruited to participate in the study. Three patients did 
not meet the fever criteria, one was excluded due to 
sickle cell disease, 40 had ≤ 2500  IEs/µL on presenta-
tion, and 14 patients received a blood transfusion during 
admission on clinical indication or because their Hb lev-
els decreased to < 5 g/dL. The analysis is restricted to the 
98 remaining patients (Fig.  1). A summary of the study 
population characteristics can be found in Table 1. 

Twenty-four patients were excluded during follow-
up: 16 had re-infection or recrudescence, while 8 devel-
oped new spikes in inflammatory markers. Eight patients 
never attended a follow-up visit, and 12 other patients 
were lost to follow-up by day 42. Fifty-four patients, who 
had normal inflammatory marker levels on day 42 were 
retained in the study (Fig. 1). No statistical differences in 
age, gender and iron or inflammatory parameters on day 
0 were detected between the 54 patients who completed 
the study and the 44 who did not. Similarly, no significant 
differences in gender and iron or inflammatory param-
eters on day 0, 14 and 42 were noted between the regular 
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follow-up group (N = 39) and the frequent follow-up 
group (N = 59). Patients scheduled for frequent follow-
up were 1  year older (geometric mean age 4.2 vs 3.3, 
P = 0.03), but had similar gender distribution compared 
with the children in the regular follow-up group. Twenty-
one samples were excluded as they were taken outside 
the predefined follow-up window (± 2 days of scheduled 
visits).

On admission, 76% of the included patients were mildly 
(Hb 8–11  g/dL) or moderately (Hb 5–8  g/dL) anae-
mic. (Patients with severe anaemia (Hb < 5  g/dL) were 
excluded). Hb levels decreased until day  7 post-admis-
sion despite treatment, but had returned to normal levels 
by day 28 (Fig. 2a). Indicators of haemolysis (low hapto-
globin levels, Fig. 2b) and high levels of bilirubin (Fig. 3a) 
and lactate dehydrogenase (LDH) (Fig.  3b) followed 
this pattern. Erythropoiesis appeared to be suppressed 
(low RDW) at admission, and was followed by signs of 
increased erythropoiesis on day 7 (Fig. 2c), in agreement 
with an earlier study [25].

Ferritin levels were high on day 0 and gradually 
decreased during follow-up, including a statistically sig-
nificant drop between day 28 and day 42 (Fig. 4a). Ferritin 
levels on day 42 had been selected as an indicator of the 
iron status throughout the study period, and the kinetics 
curve (Fig. 2a) supported the assumption that decreases 
beyond that day would be minimal.

Four of the children (8%) were iron-deficient (ferritin 
concentrations below < 15  µg/L on day 42). The acute 
phase proteins CRP (Fig. 4b) and AGP (Fig. 4c) are com-
monly used to compensate for the effect of inflammation 
when ferritin levels are used to detect iron deficiency [16, 
26, 27]. Similar to ferritin, they were raised on day 0 and 
gradually fell, but they normalized faster than ferritin 
with no detectable difference between day 28 and day 42 
levels.

FGF23 levels were significantly elevated on day 0, and 
thus not independent of inflammation as previously 
claimed [20]. Day 0 levels of FGF23 showed a dichoto-
mized distribution and were poorly correlated with CRP 
and AGP levels [R = 0.05 (P = 0.03), R = 0.03 (P = 0.08), 
respectively]. Levels had normalized by day 7 and 
remained stable throughout the remaining observation 
period (Fig. 5). Yet, even after it had normalized, FGF23 
levels on days 14, 28 and 42 remained poorly correlated 
with ferritin levels on day 42 [R = − 0.58 (P < 0.0001), 
R = − 0.56 (P = 0.02), and R = − 0.51 (P = 0.0001), 
respectively].

Classic markers used in anaemia work-up, such as 
MCV (Fig. 6a), MCHC (Fig. 6c) and MCH (Fig. 6e), were 
all stable throughout the observation period and the 
regression analysis between day 0 and day 42 values were 
close to the identity line (Fig.  6b, d, f ), indicating that 
measurements on day 0 were predictive of measurements 

N=156 

Excluded on/during admission 
Fever Criteria not met (N=3) 
Sickle Cell Disease (N=1) 
Peripheral parasitaemia ≤ 2500 IEs/µL (N=40) 
Blood transfusion (N=14) 

N=98 

Day 42 N=54 

Day 0 

Excluded/lost during follow-up 
Malaria reinfec�ons/recrudescence (N=16) 
New spike in inflammatory parameters (N=8) 
Lost to follow-up (never a�ended any follow-up visit) (N=8) 
Lost to follow-up by day 42 (but a�ended at least 1 follow-up visit) (N=12) 

Day 7 

Day 14 

Day 28 

N=34 

N=24 

N=69 

N=39 

Regular 
follow-up 

N=59 

N=34 

N=28 N=41 

N=24 

N=28 N=26 

Total Frequent 
follow-up + = 

Recruited 

Fig. 1 Study flow chart. Study profile of patients who were recruited, enrolled in, and completed the study
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on day 42 on study subject level. One MCHC measure-
ment deviated far from all others without any other 
noticeable characteristics of this patient. This value was 
considered a measurement error and was omitted in the 
data analysis.

Malaria causes haemolytic anaemia that does not affect 
MCV, MCHC or MCH. Nevertheless, these markers all 
correlated poorly with ferritin levels on day  42 [MCV: 
R = 0.26 (P = 0.07); MCH: R = 0.30 (P = 0.03), MCHC: 
R = 0.10 (P = 0.49)]. Furthermore, the slightly increased 
MCV values day 7 to day 28 (Fig. 6a) and the concomi-
tant decrease in MCHC levels (Fig.  6c) likely reflect 

increased erythropoiesis during this period as indicated 
by the raised RDW on days 7 and 14, (Fig. 2c).

During the acute malaria attack (day 0), hepcidin lev-
els were raised (Fig. 7a), which was reflected in low levels 
of Fe, transferrin and transferrin saturation (Fig.  7b–d). 
Levels of hepcidin, Fe, transferrin, as well as transferrin 
saturation had normalized by day 14. Of all iron param-
eters, day 0 values of transferrin, transferrin satura-
tion and ferritin had the best—yet weak—correlation 
with ferritin levels on day 42 [R = − 0.45 (P = 0.001), 
R = 0.35 (P = 0.01), and R = 0.29 (P = 0.04), respectively] 
(Fig. 8a–c).

Table 1 Study population characteristics

N = Number of children; Value = Number of children unless otherwise specified
a Stunting and underweight are defined as height-for-age and weight-for-age, respectively, < − 2 standard deviations of the WHO Growth Reference [46]
b Low BMI-for-age is defined as BMI-for-age < − 2 standard deviations of the WHO Growth Reference [46]
c Dermatitis (N = 2), gastroenteritis (N = 10), lower respiratory tract infections (N = 3), suspected sepsis (N = 2), upper respiratory tract infections (N = 2), urinary tract 
infections (N = 3)
d No anaemia (Hb ≥ 11 g/dL), mild anaemia (Hb 8–11 g/dL), moderate anaemia (Hb 5–8 g/dL)
e Tested on day 42
h Hookworm, Hymenopelis nana, Schistosoma mansoni or Strongyloides stercoralis. No children were excluded from the study based on stool findings

Description N Value

Child characteristics

 Age (geometric mean, range) 97 3.8 years (1; 12)

 Age < 60 months 97 63

 Female 98 44

 Nutritional status

  Height (mean ± 2SD) 71 98 cm (69.2; 128.6)

  Weight (geometric mean ± 2SD) 98 14.4 kg (7.7; 26.6)

  Stunted (children < 60 months)a 45 13 (29%)

  Underweight (children < 60 months)a 63 11 (17%)

  Low BMI-for-age (children > 60 months)b 26 8 (31%)

Admission

 Hospital admission (yes/no) 98 60/38

 Admission length (median, IQR) 60 3 days (2; 4)

 Clinical malaria (uncomplicated/severe) 98 68/30

 Clinical co-infection on presentation (yes/no)c 98 22/76

Laboratory parameters

 Malaria parasitaemia on presentation (geometric mean ± 2SD) 98 40,326 IEs/µL (3465; 
469,356)

 Haemoglobin on presentation (geometric mean ± 2SD) 98 9.5 g/dL (6.7; 13.5)

 Anaemia level on presentation (no anaemia/mild/moderate)d 98 24/60/14

 Iron deficiency on day 42 (ferritin < 15 µg/L) 52 4

 Glucose-6-phosphate dehydrogenase deficiency (normal enzyme activity/partial defect/full defect)e 54 39/4/11

 Sickle cell genotype (AA/AC/AF/AS) 98 85/8/2/3

 Raised C-reactive protein on day 0 (> 5 mg/L) 94 93

 Raised α-1-acid glycoprotein on day 0 (> 1 g/L) 92 90

 Positive stool microscopy for anaemia-causing pathogenic  organismsf 74 4

Antimalarial treatment prior to hospital attendance 98 19

Antimalarial treatment prescribed (quinine i.v. + artemether–lumefantrine follow-on/artemether–lumefan-
trine only)

98 44/54
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In the 2014 pilot study, sTfR, an indicator of erythro-
poietic intensity, was also measured on days 0, 14 and 42. 
Day 0-levels of sTfR levels were below the day 42 levels 
(P = 0.0004), whereas day  14 levels were above day 42 
levels (P = 0.03), consistent with post-malarial erythro-
poiesis. sTfR/log ferritin ratios were not associated with 
ferritin levels on day 42, why this parameter was omitted 
in the 2015 study.

On admission, patients with severe malaria had lower 
Hb (8.5 vs 10.1  g/dL, P < 0.0001), lower haptoglobin 
[0.16 vs 0.36 g/L, (P = 0.0001)], higher LDH [639 vs 445 
U/L (P < 0.0001)], and higher bilirubin [26 vs 19 µmol/L 
(P = 0.005)], compared to patients with uncomplicated 
malaria, consistent with more pronounced haemolysis 
in the severe malaria group. Also, admission levels of 
ferritin and FGF23 were higher in patients with severe 
malaria [643 vs 365 µg/L (P = 0.002) and 647 vs 333 RU/

Fig. 2 Haematology. Haemoglobin (a), haptoglobin (b), and red cell 
distribution width-coefficient of variation (RDW-CV) (c) on days 0, 7, 
14, 28, and 42 post-admission. Geometric means (filled circle) and 
standard deviations (bars) are shown. Number of samples (N) and 
statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001) relative to day 42 are indicated along the top of each 
panel. Normal reference area is indicated by grey shading

Fig. 3 Bilirubin and lactate dehydrogenase. Plasma levels of 
bilirubin (a) and lactate dehydrogenase (b) on days 0, 7, 14, 
28, and 42 post-admission. Geometric means (filled circle) and 
standard deviations (bars) are shown. Number of samples (N) and 
statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001) relative to day 42 are indicated along the top of each 
panel. Normal reference area is indicated by grey shading
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mL (P = 0.02), respectively], likely due to inflammation. 
By day 7, these differences were no longer detectable, 
except differences in haemoglobin levels that did not 
resolve until day 28.

Discussion
In this observational, longitudinal study, conventional 
iron markers as well as FGF23 were measured in children 
on admission with acute falciparum malaria and after 1, 
2, 4 and 6 weeks. The most striking finding was the dura-
tion of iron marker perturbations following episodes of 
falciparum malaria. Ferritin was elevated for more than 
4 weeks after the infection in children without evidence 
of recrudescence or re-infection (Fig.  4a). This finding 
challenges the interpretation of previous epidemiologi-
cal studies of iron deficiency in malaria-exposed popula-
tions, which have used various approaches to control for 
inflammation. Some studies have employed an upward 
adjustment of the cut-off for ferritin in case of raised CRP 
to levels > 8.2–10  mg/L [7, 8], while others have used 
arithmetic correction factors based on CRP and AGP lev-
els [10, 28, 29]. In the recent BRINDA study, it is advo-
cated to use internal linear regression to correct ferritin 
concentrations based on CRP and AGP levels [27]. The 
fact that both CRP and AGP (Fig.  4b, c) normalized at 
least 2 weeks earlier than ferritin (Fig.  4a) suggests that 
this practice may not be sufficient to fully compensate for 
the effect of malaria on ferritin.

The only biomarkers of relevance to iron deficiency 
that were unaffected by the malaria-induced inflamma-
tion were MCV, MCHC and MCH (Fig. 6a, c, e). These 
remained stable throughout the study period with the 
exception of temporary changes associated with erythro-
poiesis. This supports the assumption that the iron status 
of the children did not change markedly over the 6-week 
follow-up period and that the ferritin levels on day 42 are 
likely to reflect the true iron status on day 0. However, 

Fig. 4 Ferritin and inflammation markers. Plasma levels of ferritin 
(a), C-reactive protein, (b), and α-1-acid-glycoprotein (c) on days 0, 
7, 14, 28, and 42 post-admission. Geometric means (filled circle) and 
standard deviations (bars) are shown. Number of samples (N) and 
statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001) relative to day 42 are indicated along the top of each 
panel. Normal reference area is indicated by grey shading

Fig. 5 Fibroblast growth factor 23 (FGF23). Plasma levels of 
FGF23 on days 0, 7, 14, 28s and 42 post-admission on days 0, 7, 
14, 28, and 42 post-admission. Geometric means (filled circle) and 
standard deviations (bars) are shown. Number of samples (N) and 
statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001) relative to day 42 are indicated along the top of each 
panel. Normal reference area is indicated by grey shading
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Fig. 6 Red cell indices. Mean corpuscular volume (MCV) (a), mean corpuscular haemoglobin concentration (MCHC) (c), and mean corpuscular 
haemoglobin (MCH) (e) on days 0, 7, 14, 28 and 42 post-admission. Geometric means (filled circle) and standard deviations (bars) are shown. 
Number of samples (N) and statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) relative to day 42 are indicated along 
the top of each panel. Normal reference area is indicated by grey shading. Linear correlation of admission (day 0) and steady-state (day 42) data (b, 
d, f). Correlation between MCV, MCHC and MCH levels at admission (day 0) and at steady-state (day 42) (b, d, f). Individual data points (filled circle), 
and the associated linear regression line (with 95% confidence interval) are shown. The linear correlation coefficient  (R2), its statistical significance, 
and the number of data points are indicated in the panel margin
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MCV, MCHC and MCH all correlated poorly with ferri-
tin and are thus unlikely to be useful as markers of iron 
status in the absence of overt iron deficiency anaemia.

It could be argued that a further drop in ferritin may 
occur after day 42. The time to normalization of ferritin 
after a range of clinical conditions has varied from 1 to 
7  weeks, although this has not specifically been studied 
in malaria [30–33]. Forty-two days’ follow-up time was 
selected, which is the standard follow-up time used in 
studies of anti-malarial drug resistance. Although the 
curve had clearly flattened at day 42, the possibility of a 
longer lasting perturbation of ferritin following malaria 
cannot be ruled out, which would further question the 
use of ferritin as an indicator of iron deficiency in areas 
where malaria is endemic.

FGF23 is a bone-derived hormone involved in calcium-
phosphate homeostasis regulated by active vitamin D and 
phosphate, and more recently also noted to be stimulated 

by iron deficiency [34]. In The Gambia, a population 
study found that FGF23 was associated with iron status 
in children independently of inflammation (defined as 
elevated CRP) [20]. However, in the present study, FGF23 
was markedly elevated in acute malaria (Fig. 5). This find-
ing is in line with recent studies in humans [35] and in 
experimental malaria [36]. Moreover, even though FGF23 
levels normalized already on day 7, i.e., much earlier than 
ferritin levels, FGF23 levels correlated poorly with day-42 
plasma ferritin. Hence, it does not seem promising to fur-
ther explore the possibility of using FGF23 as an inflam-
mation-independent indicator of iron status.

Among the other iron markers tested in this study 
(day 0 values), transferrin showed the best correlation 
with ferritin on day 42 [R = − 0.45 (P = 0.001)]. However, 
transferrin was also markedly affected by inflammation, 
and the correlation between transferrin day 42 levels with 
plasma ferritin levels on day 42 was modest. In the pilot 

Fig. 7 Additional iron markers. Plasma levels of hepcidin (a), iron (Fe) (b), transferrin (c), and transferrin saturation (d) on days 0, 7, 14, 28, and 
42 post-admission. Geometric means (filled circle) and standard deviations (bars) are shown. Number of samples (N) and statistically significant 
differences (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) relative to day 42 are indicated along the top of each panel. Normal reference area is 
indicated by grey shading
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study, sTfR levels were also evaluated. This biomarker is 
less affected by inflammation than ferritin but increases 
in haemolytic anaemia [37, 38]. Levels of sTfR are also 
directly associated with parasitaemia, and its usefulness 
in acute malaria studies has therefore been questioned 
[39]. The present study data supports this concern. The 
wide variation among values obtained with different sTfR 
test kits are also of concern [17]. The ratio of soluble 
transferrin receptor to log ferritin concentrations (sTfR/
log ferritin index) has been suggested as a more precise 
iron marker, applying the reciprocal relationship between 
ferritin and sTfR [40], but the index suffers from the dis-
advantages of its parameters, i.e., their dependence of 
inflammation (ferritin) and erythropoiesis (sTfR).

The possibility that artemisinin-associated haemoly-
sis might have enhanced perturbations of markers of 
erythropoiesis in the follow-up period was also consid-
ered. This condition is associated with hyperparasitaemia 
at the initiation of treatment [41]. In the present study, 
only 5 of 98 patients had over 250,000 malaria parasites/
µL on admission, and they all had higher concentrations 
of LDH on admission than at any time in the follow-up 
period, while haptoglobin remained below the detection 
threshold until day 42. Hence, artemisinin-associated 
haemolysis is unlikely to have affected the overall results.

The lack of an inflammation-independent marker of 
iron deficiency may restrict the possibility to develop 
innovative strategies for iron supplementation in 
malaria-endemic areas. Experimental studies suggest 
that the increased susceptibility to malaria in the course 
of iron supplementation is temporary [42]. In order to 
shorten a possible window of vulnerability, rapid recon-
stitution of iron stores with the use of intravenous fer-
ric carboxymaltose has previously been suggested [43]. 
This approach is supported by recent studies indicating 
that iron deficiency increases malaria mortality in mice 
and that intravenous iron given during acute malaria 
improves survival [36]. However, intravenous iron can 
cause iron overload, which is a safety hazard. Conse-
quently, safe administration of intravenous iron requires 
targeting of patients with iron deficiency, and this would 
require an inflammation-independent marker for it to be 
used in children at risk of malaria.

The observed temporal changes in hepcidin levels are 
in line with previous studies [44]. During the acute phase 
of malaria, hepcidin was raised, indicating that inflam-
matory stimuli outweighed signals from the haemolytic 
anaemia of malaria. The drop in hepcidin levels day 7 
(Fig. 7a) coincided with signs of increased erythropoiesis 
(Fig. 2c) and increased levels of plasma iron (Fig. 7b), and 
hepcidin remained low throughout the follow-up period. 
The low levels of hepcidin on day 7 indicate that oral iron 
supplementation would be effective shortly after recovery 

Fig. 8 The three iron markers with best day 0 correlations to 
ferritin levels on day 42. Linear regression plots of log-transformed 
values of transferrin (a), transferrin saturation (b) and ferritin (c) on 
admission (day 0) vs log-transformed ferritin levels at steady-state 
(day 42). Individual data points (filled circle), and the associated linear 
regression line (with 95% confidence interval) are shown. The linear 
correlation coefficient  (R2), its statistical significance, and the number 
of data points are indicated in the panel margin
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from malaria [45] and supports using hepcidin levels to 
guide iron therapy [17], although it cannot be used as a 
stand-alone marker of iron levels.

Conclusion
Better biomarkers for iron stores in acute malaria are still 
needed to improve the understanding of the interplay 
between iron status and malaria and to develop safe strat-
egies for iron supplementation in areas where malaria is 
endemic.
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