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Abstract: Human identification (ID) is a biometric task, comparing single input sample to many stored
templates to identify an individual in a reference database. This paper aims to present the perspectives
of personalized heartbeat pattern for reliable ECG-based identification. The investigations are
using a database with 460 pairs of 12-lead resting electrocardiograms (ECG) with 10-s durations
recorded at time-instants T1 and T2 > T1 + 1 year. Intra-subject long-term ECG stability and
inter-subject variability of personalized PQRST (500 ms) and QRS (100 ms) patterns is quantified via
cross-correlation, amplitude ratio and pattern matching between T1 and T2 using 7 features× 12-leads.
Single and multi-lead ID models are trained on the first 230 ECG pairs. Their validation on
10, 20, ... 230 reference subjects (RS) from the remaining 230 ECG pairs shows: (i) two best
single-lead ID models using lead II for a small population RS = (10–140) with identification accuracy
AccID = (89.4–67.2)% and aVF for a large population RS = (140–230) with AccID = (67.2–63.9)%;
(ii) better performance of the 6-lead limb vs. The 6-lead chest ID model—(91.4–76.1)% vs. (90.9–70)%
for RS = (10–230); (iii) best performance of the 12-lead ID model—(98.4–87.4)% for RS = (10–230).
The tolerable reference database size, keeping AccID > 80%, is RS = 30 in the single-lead ID scenario (II);
RS = 50 (6 chest leads); RS = 100 (6 limb leads), RS > 230—maximal population in this study
(12-lead ECG).

Keywords: electrocardiogram; ECG based biometrics; person identification; correlation; template
matching; PQRST pattern; QRS pattern

1. Introduction

Biometric identity recognition systems using human body measurement data are vital for the
security of financial transactions, access control, travel, etc. The various biometrics that are currently
being adopted in identity recognition scenarios such as fingerprint, iris, face and speech recognition
have operational trade-offs in terms of performance, measurability, circumvention and liveness
detection [1]. These limitations have led to the development of smart solutions such as: (i) improving
voice recognition by sophisticated pre-processing, followed by heuristical selection of significant
features in time and frequency domains [2]; (ii) integrating face- and body-related soft biometric
traits [3]; (iii) providing security and flexibility by simultaneous application of numeric password data
and biometric fingerprint information [4]; (iv) assuring liveness detection via optical sensors, which
establish the presence of pulse, the variations of optical characteristics caused by pressure changes and
skin reaction to illumination with different wavelengths [5].

For more than a decade the electrocardiogram (ECG) has been intensively investigated in the
context of biometric applications. The attention is attracted by its ability to provide an unambiguous
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sign of liveness and to exhibit several personalized traits, reflecting the underlying physiological
properties of the heart such as relative timings of the P, QRS, T waves and differences in beat geometry.
An additional precondition for the use of biomedical data for identification purposes is the rapid
development of multidimensional sensors making it possible to efficiently acquire such data [6,7].
Recently, the strategic application of biometric systems has been extended towards:

- remote healthcare monitoring [8,9] with biosensors integrated into mobile devices [10];
- secure wireless body area sensor networks [11,12];
- continuous authentication applications with adaptive strategies to follow individual beat

variations in 24 h ECG recordings [13];
- continuous human recognition in driving settings [14].

Similar to any other biometric system, the operation of those, embedding ECG analysis, could be
spitted into two phases [15]:

- Enrolment or registration phase, when a reference database from subjects with known identity
is collected;

- Matching phase with two possible scenarios:

• Person verification, when the system accepts or rejects someone’s identity based on a single
comparison to the data for a given ID in the reference database (one-to-one scenario);

• Person identification, when the system is finding the identity of an individual based on
a search in a reference database for the subject whose data best matches the input data
(one-to-many scenario).

In terms of feature extraction methods, identification techniques based on ECG analysis could be
assigned into three categories:

- Fiducial based approaches, which analyse:

• Temporal, amplitude, area and angle features over single lead [9] or 12-lead ECG [16];
• Only temporal features measured in a single lead that are hypothesized to be invariant to

sensor placement [12,17,18].

The accuracy of these methods strongly depends on the correct localization of the waves’
boundaries within the P-QRS-T segment.

- Non-fiducial methods based on calculation of:

• Autocorrelation functions and their post-processing via discrete cosine transform [14,19];
• Linear discriminant analysis [20] for feature space reduction and further identification;
• Assessment of correlation coefficients between beats with known and unknown identity [21–23];
• Pattern matching and estimation of normalized Euclidian distance between the tested and

the target heartbeat [24];
• Features describing the dynamic characteristics and chaotic behaviour in the ECG time

series [25].

- Hybrid human identification methods combining both fiducial and non-fiducial strategies,
which include:

• Hierarchical identification scheme for temporal and amplitude measurements based on
fiducial points detection and estimation of waveforms‘ similarity via Euclidean distance [26];

• Fiducial-based measurements for reduction of the matching candidates’ number followed
by wavelet transform and application of the coefficients for template matching [8].
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Numerous studies are focused on general-purpose practical applications limited to the use of a
single ECG lead, usually from the limbs [10,17,18,23,24]. Others aim at effective channel combination
schemes by involving 12-lead ECG [16,20–22] into the analysis in view of feasible applications in
healthcare scenarios. The merit of multi-lead ECG is controversial, considering: on the one hand the
identification accuracy improvement by increasing the analysed ECG leads in a fiducial independent
application [22] and on the other hand the same level of identification accuracy for all 12 leads, only
limb, only chest and only lead I in a fiducial-based application [16].

Despite that the majority of the studies have used public [9,10,19,20,23,26] or proprietary [10,16–18,21–24]
clinical databases, some authors have addressed the application of different non-invasive portable
single-channel ECG sensors which support the acquisition of ECG signals for human identification
purposes. The reported identification accuracies are:

- ~99% for 30 ECG signals acquired from the individual via a biosensor integrated into mobile
devices [10];

- ~90% for 30 ECG test patterns acquired from the palms of 9 subjects via a two poles self-developed
ECG signal acquisition system [25];

- ~94% achieved for ECG recordings acquired from the fingers of 16 individuals via self-developed
ECG sensor [27].

The use of such ECG sensors facilitates the practical application of ECG biometrics in areas such
as cyber-security [25,27], cloud data security or remote healthcare systems [10].

The majority of the cited methods report high identification accuracy. However, certain limitations
are observed such as:

- Small population size (<30 individuals) [16–22,25–27] with ECG recordings acquired in a very
short temporal interval [16,21,22] or even during the same session [9,17,18,20,26];

- Application of one and the same database for both training and testing.

This is far from the realm of biometrics. Significant accuracy degradation could be expected [28]
with these methods, due to the influence of different unpredictable factors such as long-term ECG
changes [13], noisy environment [14], electrode misplacement, overtraining of the identification
model, etc.

The aim of this paper is to present the 12-lead ECG as a biometric modality by describing
three methods for comparison between input-to-template waveforms of personalized beat patterns
based on cross-correlation, amplitude relations and a new method for binary pattern matching.
We further investigate their potential for human identification within an uncommonly large population
with one-year distant collection of the reference and test datasets. Unbiased statistical analysis on
independent validation set is presented for different perspectives of the human identification problem,
considering: (i) the choice of the optimal single and multi-lead ECG set; (ii) the influence of the
reference database size, providing evidence about the reasonable size of the population that could be
tolerated in ECG biometric studies.

2. Materials and Methods

2.1. ECG Database

The study is using a proprietary clinical ECG database (Schiller AG, Baar, Switzerland) provided
for research purposes and for the investigation of ECG’s potential for human biometrics on a large
population observed over time. It contains two 10-s sessions of standard 12-lead resting ECGs from 460
non-cardiac patients (235/225 male/female, 18–106 years old) admitted in the emergency department
of the Basel University Hospital between 2004 and 2009. The ECGs were recorded via a commercial
ECG device (SCHILLER AT-110 (500 Hz, 2.5 µV/LSB, 0.05 Hz–150 Hz bandwidth), Schiller AG, Baar,
Switzerland) at different time-points, i.e. reference point T1, corresponding to the enrolment phase of
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the authentication task and remote point T2 > T1 + 1 year, corresponding to the matching/login phase.
The 460 ECG couples were equally divided into two datasets from non-overlapping populations for
independent training and validation of the designed human identification models:

- Training dataset, including the ECG couples from 1 to 230;
- Validation dataset, including the ECG couples from 231 to 460.

2.2. Methods

The identification concept (Figure 1) is based on a comparison between a tested subject with an
unknown identity (IDT) from dataset (T2) and a set of N subjects from a previously recorded reference
dataset (T1) with known identities (IDR). The purpose in the identification task is to answer the
question: “Who is this person?”
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Figure 1. Identification concept scheme illustrating the comparison of the tested recording (IDTX) in T2
to all reference recordings in T1 (from IDR1 to IDRN).

The identification accuracy (AccID) is calculated as follows:

AccID = 100.
TrueID

NSubjects
(%) (1)

where the true identifications (TrueID) consider the number of all correctly decided cases for which the
identity of IDT(T2) exactly corresponds to the identity of IDR(T1) and NSubjects is the number of tested
subjects in the reference database.

The block-diagram of the module designed for human identification is presented in Figure 2.
The ECG pre-processing and the methods for cross-correlation and amplitude features extraction
are inherited from our recent study on ECG-based human verification [29]. The novelty in this
identification model is generally in the designed brand-new method for QRS pattern matching and the
decision making, based on features’ common similarity index. We further describe the methods in
detail to facilitate their reproduction.
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Figure 2. Block-diagram of the identification process representing ECG pre-processing for the extraction
of personalized 12-lead average PQRST pattern, features calculation and decision making.

2.2.1. ECG pre-processing

All ECG recordings are processed by a certified commercial ECG measurement and interpretation
module (ETM, Schiller AG, Baar, Switzerland) for the extraction of a 12-lead average PQRST pattern
with duration of 500 ms. This pattern, further referred as personalized pattern, provides higher
signal-to-noise ratio and greater robustness against respiration-induced morphology changes in ECG
as compared to single heartbeats.

Inter-subject standardization of 12-lead PQRST patterns is applied by:

- Detrending (removal of DC offset and linear trend);
- Synchronization of the cardiac depolarization process by time-alignment of the personalized

PQRST pattern to a reference pattern by maximal cross-correlation in lead aVR. The reference
pattern was selected at the beginning of the identification study. It represents PQRST segment in
lead aVR with normal morphology (negative P, R, T waves) belonging to a healthy subject from
the reference database (T1).

- Extraction of QRS pattern (100 ms), synchronously in all 12 leads within a window of 30 ms before
and 70 ms after the fiducial point, aligned to the R-peak of the reference pattern. The additional
investigations of this short pattern are motivated by the findings in our previous study [30] which
highlight the biometric potential of the R and S-waves and reject the verification capability of the
P, ST, T parts due to their low intra-subject reproducibility and low inter-subject variability.

- Calculation of heart rate corrected ST-T interval by means of Bazett’s formula QTc = QT/
√

RR,
where QTc is the corrected QT interval and RR is the RR interval.

2.2.2. Features extraction

Comparison between the waveforms of the personalized PQRST and QRS patterns of a tested vs.
reference subject (IDT vs. IDR) is performed independently for each of the 12 leads by three feature
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extraction methods—cross-correlation analysis of QRS/PQRST and amplitude measurements over the
QRS (applied also in [29]) and a brand-new method for assessment of QRS pattern matching between
IDT and IDR.

(1) Cross-correlation analysis of QRS and PQRST patterns (COR-QRS and COR-PQRST) based on
the cross-correlation function r:

rIDT ,IDR(lag) =

PD
∑

i=1
PatternIDT (i)PatternIDR(i + lag)√

PD
∑

i=1
PatternIDT (i)

2 PD
∑

i=1
PatternIDR(i)

2

(2)

where Pattern denotes QRS or PQRST with pattern duration PD = 100 ms or 500 ms, respectively.
The lag value is changed in the range [−PD; PD].

Two correlation coefficients are calculated in the normalized scale [0; 100]%:
Maximum correlation r(max) is representative for the best matching of the waveforms:

r(max) = max
lag∈[−PD,PD]

rIDT ,IDR(lag) ∗ 100(%) (3)

Zero-lag correlation r(lag0) is representative for the non-synchronized similarity between the
ECG patterns:

r(lag0) = rIDT ,IDR(lag = 0) ∗ 100(%) (4)

Reduced values of both correlation coefficients are expected for subjects with different
ID (IDT 6= IDR) due to the different spatio-temporal dynamics of the cardiac vector between subjects.

(2) Amplitude measurements of the QRS patterns (AMP-QRS) estimating the feature:
Ratio of the minimal-to-maximal QRS amplitude representative of the peak-to-peak amplitude

equality between the QRS patterns in the studied lead, comparing IDT and IDR recordings.

ratioQRS =

min
ID=IDT ,IDR

QRSID

max
ID=IDT ,IDR

QRSID
∗ 100(%) (5)

A ratio close to 100% is expected for equal identity subjects IDT(T1) = IDR(T2) considering the same
recording conditions in T1 and T2 sessions (e.g. posture, electrode placement, recording ECG device, etc.)
and therefore similar QRS amplitudes.

(3) QRS pattern matching (MATCH-QRS) applying amplitude normalization; time-amplitude
approximation; and extraction of features for assessment of QRS pattern matching between
IDT and IDR.

Amplitude normalization

The amplitudes of the QRS patterns in any pair (IDT, IDR.) and any lead are linearly scaled to
fit in the range [−1; 1] in order to use one and the same computational range for all individuals and
all leads regardless of their signal amplitudes. This is achieved by dividing each sample of the QRS
patterns in a particular ECG lead to the maximal absolute amplitude observed in this lead among
QRSIDT and QRSIDR.

Time-amplitude approximation

The QRS waveforms of IDT and IDR are approximated by the following binary transform
(binQRSID), which converts the QRS pattern into a 2-dimensional matrix:

binQRSID(ti, aj) =

{
1 if A(aj) ∈ [ QRSID(ti)± 2∆a] or A(aj) ∈ [ QRSID(ti± ∆t)]
0 otherwise

(6)
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where

- ti = [1, 2, ... 100] is the index of the time scale T(ti) = [1, 1 + ∆t, 1 + 2∆t, . . . , 100] ms with resolution
∆t = 1 ms.

- aj = [1, 2, . . . 80] is the index of the normalized amplitude scale A(aj) = [−1,−1+ ∆a,−1 + 2∆a, . . . , 1]
with resolution ∆a = 0.025.

The introduced tolerances ti ± 1 ms and A(aj) ± 0.05 manage small intra- and inter-subject
variations of the cardiac depolarization process. Larger values of ∆t and ∆a would lead to a rougher
approximation of the QRS patterns and potential loss of waveform details while smaller values support
finer approximation at the cost of increased computational resources.

Extraction of pattern matching features

Two MATCH-QRS features are calculated for the couple (IDT, IDR), normalized in the scale
[0; 100]%:

Measure of the equality in the time scale (EQUT) representing the time of overlapping of both QRS
patterns after binary element-wise multiplication (AND operation):

EQUT =
∆t

100ms

100

∑
ti=1

binQRSIDT
(ti, aj) ∧ binQRSIDR

(ti, aj) ∗ 100(%) for aj = (180) (7)

EQUT ranges between 0% (null time coincidence, i.e. patterns do not overlap for any binQRS
entry over the complete pattern length) and 100% (full-time coincidence, i.e. patterns overlap for all
entries over the complete pattern length). The largest EQUT values are expected for equal identity
subjects IDT = IDR.

Measurement of the equality in the amplitude scale (EQUA):

EQUA = 100− DIFA(%) (8)

where DIFA (difference in the amplitude scale) represents the area enclosed between the
non-overlapping amplitudes of both QRS patterns after binary element-wise multiplication and
inversion (NAND operation):

DIFA =
∆t

100ms
∆a

100

∑
ti=1

amax

∑
aj=amin

binQRSIDT (ti, aj)∧binQRSIDR
(ti, aj) ∗ 100(%) (9)

The integration interval in the amplitude scale is enclosed between the minimal and maximal
QRS amplitudes among IDT and IDR patterns measured at each specific time index ti, i.e.,
[amin(ti) = min

ID=IDR ,IDT
binQRSID(ti); [amax(ti) = max

ID=IDR ,IDT
binQRSID(ti)]. DIFA ranges between

0% (full-amplitude coincidence, i.e., patterns overlap for all binQRS entries over the complete pattern
length) and 100% (null amplitude coincidence, corresponding to the largest pattern differences that
cover the full amplitude range). Therefore, minimal DIFA and inversely maximal EQUA values are
expected for equal identity subjects IDT = IDR.

The redundant input feature space is a matrix FEAT{Fi, Li}, where:

- Fi = (1–7) is the index in the feature vector {r(max)PQRST, r(lag0)PQRST, r(max)QRS, r(lag0)QRS,
ratioQRS, EQUT, EQUA}, including the option to enable/disable any feature from analysis and
thus to test ECG identification scenarios with different feature sets.

- Li = (1–12) is the index of the lead including the option to enable/disable any lead from analysis
and thus to test different single- and multi-lead configurations for ECG identification.
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2.2.3. Decision Making

For the purpose of human identification, the best matching between IDT and IDR is found by
maximization of the similarity index:

IDix = average
Fi,Li

FEAT{Fi, Li} (10)

Optimal identification (ID) models with non-redundant features are trained by forward stepwise
feature selection until maximization of accuracy AccID on the training dataset. The observed
accuracy on the independent validation set could be considered as unbiased assessment of the human
identification models.

The software package Matlab (The Mathworks Inc., Natick, MA, USA) was used for the
management of the signal processing and statistical study. This includes training and validation
of the forward stepwise ID models (reported as mean ± confidence interval (CI)) as well as for
comparison of continuous feature distributions (represented as mean ± standard deviation (std)) via
paired Student’s T-Test. A value of p ≤ 0.05 is considered statistically significant.

3. Results

An example of a real human identification scenario based on 12-lead ECG is presented in Figure 3.
In all leads we observe close matching between the personalized PQRST and QRS patterns of the same
individual at two different time points (red vs. blue trace). In contrast, apparent deviances of the
waveforms across different subjects are visible (red vs. grey traces) regardless of the overlapping of
certain waveforms. Further in section Results we have presented the training and validation of ID
models which deal with inter-subject waveform differences and long-term intra-subject waveform
stability in 12-lead ECGs of a large population.
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Figure 3. Example of personalized 12-lead PQRST patterns analysed during the ID process. The identity
of the tested subject IDT (red line) is examined via comparison to a reference subject IDR with the same
identity (1st and 3rd columns, blue line) and 15 different identities (2nd and 4th columns, grey traces).
The vertical dotted lines enclose the extracted QRS pattern (100 ms) which is used for the calculation of
COR-QRS, AMP-QRS and MATCH-QRS features. COR-PQRST features are estimated over the entire
500 ms segment.

3.1. Statistical Study

The distributions of all features are estimated on the training dataset for 230 equal (IDT = IDR) and
230 × 229 = 52670 different (IDT 6= IDR) identity pairs (Table 1). They prove the biometric potential of
all features with significantly higher mean values for the groups of equal vs. different subjects (82–96%
vs. 60–86%, p < 0.0001). This is a precondition to expect distinguishable similarity index IDix involving
all or a selected set of features used in the next phase of training of optimal ID models.

Table 1. Statistical distributions (Mean ± std) of the features’ values averaged for 12-lead ECG in the
groups of equal (IDT = IDR) and different (IDT 6= IDR) individuals. Statistically significant differences
are observed for all features.

Feature Extraction Method Feature IDT = IDR (%) IDT 6= IDR (%) p-Value
r(max) 93.81 ± 2.92 81.10 ± 5.93 <0.0001

COR-PQRST r(lag0) 92.2 ± 3.69 70.01 ± 10.74 <0.0001
r(max) 96.14 ± 2.28 85.99 ± 6.05 <0.0001

COR-QRS r(lag0) 93.77 ± 3.90 72.0 ± 12.59 <0.0001
AMP-QRS ratioQRS 83.44 ± 4.87 70.25 ± 7.62 <0.0001

EQUT 82.26 ± 5.54 59.54 ± 7.73 <0.0001
MATCH-QRS EQUA 92.74 ± 2.49 80.59 ± 4.22 <0.0001

3.2. Training of ID Models on 230 Subjects (ID = 1 to 230)

In order to assess the intrinsic identification capability of each feature, the simplest ID models
involve one feature in one lead (FEAT{Fi, Li}, where Fi = {1}, {2}, ..., {7}; Li = {1}, {2}, ..., {12}). The results
in Table 2 indicate poor AccID if only one feature is included in the ID model (not exceeding 41%).
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The best identification capability is observed for COR-PQRST and COR-QRS single features in limb
leads, while the worst performance (<1%) is observed for AMP-QRS features in all leads.

Table 2. Training AccID (%) of each feature in each lead. The colour map distinguishes five AccID levels
for visual ranking of the feature’s ability for human identification: the worst ≤5%, is given in in red;
[5–15)%, in orange; [15–25)%, in yellow; [25–35)%, in light green; and the highest, >35%, in dark green.

COR-PQRST COR-QRS AMP-QRS MATCH-QRS
Lead r(max) r(lag0) r(max) r(lag0) ratioQRS EQUT EQUA

I 20 25.7 15.2 23.0 <1 10.0 23.9
II 23.5 29.6 18.7 24.3 <1 11.3 24.3
III 27.0 37.4 25.2 34.8 <1 5.7 22.2

aVR 15.2 13.0 10.9 12.2 <1 4.3 10.0
aVL 34.8 40.9 31.7 34.8 <1 4.8 24.8
aVF 33.0 39.1 23.5 38.3 <1 8.7 26.5
V1 15.7 21.3 13.0 13.9 <1 1.3 16.1
V2 16.5 20.4 11.7 19.6 <1 6.5 17.8
V3 12.6 19.6 7.0 11.7 <1 1.7 13.9
V4 14.3 20 7.4 12.2 <1 2.6 12.6
V5 11.7 15.7 7.4 8.3 <1 1.7 10.0
V6 13.0 13.5 5.2 7.4 <1 <1 6.5

More complex ID models involve all features from the same feature extraction method
(FEAT{Fi,Li}, where Fi = {1, 2}, {3, 4}, {5}, {6, 7}; Li = {1, 2, . . . , 12}), to compare the identification
capability of COR-PQRST, COR-QRS, AMP-QRS, MATCH-QRS. Table 3 indicates the best identification
capability for MATCH-QRS with 15 features (83%), followed by COR-PQRST with 18 features (77%),
COR-QRS with 9 features (74%) and the worst AMP-QRS with 7 features (24%). The non-redundant
feature sets in the ID models include features that are equally selected from limb and chest leads.

Table 3. Optimal ID models for different feature extraction methods using 12-lead ECG.
The non-redundant features and leads included in each model are marked with ‘+’. The training
AccID (mean ± CI) of each model is reported in the last row. The applied colour map highlights the
features involved in a model and the achieved AccID as follows: light green for COR-PQRST model;
yellow for COR-QRS model; orange for AMP-QRS model and dark green for MATCH-QRS model.

COR-PQRST COR-QRS AMP-QRS MATCH-QRS
Lead r(max) r(lag0) r(max) r(lag0) ratioQRS EQUT EQUA

I + + + + + + +
II + + + + +
III + + +

aVR + + + +
aVL + + +
aVF + + + +
V1 + + + + + + +
V2 + + + +
V3 + + +
V4 + +
V5 + + + +
V6 + + +

AccID (%) 77.4 ± 5.5 73.5 ± 5.8 23.9 ± 5.5 83.5 ± 4.9

The next type of ID models involves all features in a single lead set (1 lead, 6 limb leads, 6 chest
leads, 12 leads, i.e. FEAT{Fi,Li}, where Fi = {1, 2, . . . , 7}; Li = {1}, {2}, ..., {12}, {1, 2, ... 6}, {7 , 8, ... 12},
{1, 2, . . . 12}). The purpose is to assess the intrinsic identification capability of that specific lead set
(Table 4). The identification capability of single limb leads is the lowest in III, aVR (about 47% with
up to 5 features) and the highest in I, II (about 57–58% with 5 features). It is increased by 20% when
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6 limb leads are used in the ID model (about 77% with 19 features). The identification capability of
single chest leads is the lowest in V3 (about 27% with 3 features) and the highest in V1 (about 44%
with 4 features). It is increased by 20% when 6 chest leads are used in the ID model (about 64% with
18 features). The most complex ID model with 12-leads and 27 features improves AccID to 91.3%,
which is about 14% and 27% points better than 6 limb and 6 chest leads, respectively.

Table 4. Optimal ID models for single- and multi-lead sets. The non-redundant features included in
the models are marked: ‘+’ for single leads, ‘*’ for limb leads, ‘o’ for chest leads, ‘#’ for 12-lead ECG.
Additionally, the last 3 rows belonging to the multi-lead models show the number of leads per feature,
involved in the model. The training AccID (mean ± CI) of each model is reported in the last column.
The following colour map is applied: the features involved in the single lead models and the achieved
AccID are highlighted in yellow; the features involved in the model using the 6 chest leads and the
respective AccID are highlighted in orange; the features involved in the model using the 6 limb leads
and its AccID are highlighted in light green; and the features involved in the 12-leads model and the
achieved AccID are highlighted in dark green.

COR-PQRST COR-QRS AMP-QRS MATCH-QRS
Lead Set r(max) r(lag0) r(max) r(lag0) ratioQRS EQUT EQUA AccID (%)

I * # + * # + * # + * # + * # + * # 57.8 ± 6.4
II + * # + * # + * # + * # * # + * 57.4 ± 6.4
III + + # + + + 46.5 ± 6.5

aVR + * # * + * + * + 47.0 ± 6.6
aVL + * # + * + 50.4 ± 6.5
aVF + + * + # + + 55.2 ± 6.5
V1 + o # o # + o + o + # o # 44.3 ± 6.4
V2 # + + o + + o 34.8 ± 6.2
V3 + + + # 27.4 ± 5.8
V4 o + + + + o # 30.0 ± 6.0
V5 o # + o + o # + o + # 34.8 ± 6.2
V6 + o # + o + o + o o # 37.4 ± 6.3

6 Limb 3 5 3 4 2 2 77.4 ± 5.5
6 Chest 4 3 4 3 4 63.9 ± 6.2
12-leads 7 5 4 2 3 6 91.3 ± 3.7

3.3. Validation of ID Models on 230 Subjects (ID = 231 to 460)

The identification accuracy strongly depends on the number of reference subjects, i.e. The more
the subjects there are, the higher the random match probability is, i.e. to find a subject with better
similarity than his own. Therefore, AccID worsening is expected for reference database with larger
size. We observe this trend for the independent validation set in order to find the number of reference
subjects that could be managed by the trained ID models within different AccID tolerance ranges.
For this purpose, we consider different number of reference subjects and test the ID models with
all possible combinations of 10, 20, 30, . . . , 210, 220, 230 subjects within the total validation set of
230 subjects.

Table 5 and Figure 4 compare the validation performance of the optimal ID models for different
feature extraction methods using 12-lead ECG. Accepting a confident AccID threshold (>90%), we
found that it is satisfied for 140, 90, 30, 20 reference subjects by the ID models based on all features,
MATCH-QRS, COR-QRS, COR-PQRST, respectively. The AMP-QRS model is limited to maximum
56% achieved just for 10 reference subjects.
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Table 5. Validation AccID (mean± CI) of the optimal ID models for different feature extraction methods
using 12-lead ECG (Table 3). AccID is evaluated for different number of reference subjects (10 to 230
subjects included in the validation set). The colour map is provided for visual identification of the
ID models’ ability to keep the mean AccID within different tolerance ranges: ≥90% in dark green,
[80–90)% in light green, [70–80)% in yellow, [50–70)% in orange, <50% in grey.

Nb Subjects COR-PQRST COR-QRS AMP-QRS MATCH-QRS All Features
10 93.7 ± 2.1 94.1 ± 2.4 56.2 ± 4.7 98.0 ± 0.8 98.4 ± 0.8
20 90.4 ± 2.9 91.9 ± 2.9 44.5 ± 5.0 96.4 ± 1.4 97.2 ± 1.3
30 88.1 ± 3.3 90.3 ± 3.2 38.1 ± 4.9 95.1 ± 1.9 96.1 ± 1.7
40 86.3 ± 3.6 89.1 ± 3.4 33.7 ± 4.8 94.0 ± 2.2 95.3 ± 2.0
50 84.9 ± 3.9 88.0 ± 3.6 30.5 ± 4.8 93.0 ± 2.5 94.5 ± 2.2
60 83.7 ± 4.1 87.2 ± 3.8 28.0 ± 4.7 92.1 ± 2.7 93.8 ± 2.4
70 82.7 ± 4.2 86.5 ± 3.9 25.9 ± 4.7 91.3 ± 2.8 93.2 ± 2.6
80 81.8 ± 4.4 85.9 ± 4.1 24.2 ± 4.6 90.6 ± 3.0 92.7 ± 2.7
90 81.0 ± 4.5 85.3 ± 4.2 22.7 ± 4.6 90.0 ± 3.2 92.2 ± 2.9

100 80.2 ± 4.6 84.8 ± 4.3 21.5 ± 4.5 89.4 ± 3.3 91.7 ± 3.0
110 79.6 ± 4.7 84.4 ± 4.3 20.4 ± 4.5 88.8 ± 3.4 91.3 ± 3.1
120 78.9 ± 4.8 84.0 ± 4.4 19.5 ± 4.5 88.2 ± 3.6 90.9 ± 3.3
130 78.4 ± 4.9 83.6 ± 4.5 18.7 ± 4.5 87.7 ± 3.7 90.5 ± 3.4
140 77.8 ± 5.0 83.3 ± 4.6 18.0 ± 4.5 87.1 ± 3.8 90.1 ± 3.5
150 77.3 ± 5.1 82.9 ± 4.6 17.3 ± 4.5 86.6 ± 3.9 89.8 ± 3.6
160 76.8 ± 5.1 82.6 ± 4.7 16.7 ± 4.5 86.2 ± 4.0 89.4 ± 3.7
170 76.3 ± 5.2 82.4 ± 4.7 16.2 ± 4.4 85.7 ± 4.2 89.1 ± 3.8
180 75.9 ± 5.3 82.1 ± 4.8 15.7 ± 4.4 85.2 ± 4.3 88.8 ± 3.9
190 75.5 ± 5.4 81.8 ± 4.9 15.3 ± 4.4 84.8 ± 4.4 88.5 ± 3.9
200 75.0 ± 5.5 81.6 ± 4.9 14.9 ± 4.5 84.3 ± 4.5 88.2 ± 4.0
210 74.7 ± 5.5 81.3 ± 5.0 14.6 ± 4.5 83.9 ± 4.6 87.9 ± 4.1
220 74.3 ± 5.6 81.1 ± 5.0 14.2 ± 4.5 83.5 ± 4.7 87.7 ± 4.2
230 73.9 ± 5.7 80.9 ± 5.1 13.9 ± 4.5 83.0 ± 4.9 87.4 ± 4.3Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 
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Table 6 and Figure 5 compare the validation performance of the optimal ID models for different
lead sets. The accepted AccID threshold (>90%) is not satisfied for any single lead, even for just
10 reference subjects. The most prominent single limb and chest leads fulfil reduced requirements
for AccID thresholds. The top-ranked limb lead II achieves AccID > 80% for 30 reference subjects
and AccID > 70% for 100 reference subjects. The top-ranked chest lead V1 achieves only the minor
threshold AccID > 70% for 20 reference subjects. The multi-lead sets are more powerful and they satisfy
higher AccID requirements. Identification accuracy AccID > 90% is achieved for 10 reference subjects
using either 6 chest leads or 6 limb leads and 140 reference subjects when using 12-lead ECG. A lower
threshold of AccID > 80% is satisfied for 50 reference subjects using 6 chest leads, 100 reference subjects
using 6 limb leads and more than 230 reference subjects (maximal population in this study) using
12-lead ECG.
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Table 6. Validation AccID (mean ± CI, %) of the optimal ID models for single- and multi-lead sets (Table 4). AccID is evaluated for different number of reference
subjects (10 to 230 subjects included in the validation set). The colour map is provided for visual identification of the ID models’ ability to keep the mean AccID within
different tolerance ranges: ≥90% in dark green, [80–90)% in light green, [70–80)% in yellow, [50–70)% in orange, <50% in grey. The bolded values correspond to the top
ranked AccID across limb leads (II for 1–140 subjects, aVF for 140–230 subjects), chest leads (V1) and multi-lead sets (12-leads).

Nb Subjects I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Limb Chest 12-Leads
10 87.5 ± 3.1 89.4± 2.9 76.5 ± 4.5 85.8 ± 3.4 73.9 ± 4.9 86.4 ± 3.4 77.0± 4.5 66.7 ± 5.1 56.8 ± 5.3 66.4 ± 4.9 71.6 ± 4.6 67.7 ± 4.9 91.4 ± 2.8 90.9 ± 2.7 98.4± 0.8
20 82.0 ± 3.8 84.7± 3.6 70.5 ± 5.1 80.4 ± 4.1 69.0 ± 5.3 81.4 ± 4.1 71.0± 5.0 59.6 ± 5.5 48.5 ± 5.5 58.0 ± 5.4 63.7 ± 5.1 59.6 ± 5.3 87.9 ± 3.5 87.0 ± 3.5 97.2± 1.3
30 78.3 ± 4.3 81.4± 4.0 67.2 ± 5.4 77.0 ± 4.5 66.2 ± 5.5 78.3 ± 4.5 67.4± 5.2 55.6 ± 5.6 43.9 ± 5.5 53.4 ± 5.6 59.0 ± 5.4 54.9 ± 5.4 85.9 ± 3.9 84.4 ± 3.9 96.1± 1.7
40 75.5 ± 4.6 79.0± 4.3 64.9 ± 5.6 74.3 ± 4.7 64.2 ± 5.6 76.1 ± 4.8 64.8± 5.4 52.8 ± 5.7 40.8 ± 5.5 50.3 ± 5.7 55.8 ± 5.5 51.5 ± 5.5 84.4 ± 4.2 82.5 ± 4.2 95.3± 2.0
50 73.3 ± 4.8 77.0± 4.5 63.3 ± 5.7 72.2 ± 4.9 62.6 ± 5.7 74.5 ± 5.0 62.8± 5.5 50.7 ± 5.7 38.4 ± 5.5 48.0 ± 5.7 53.3 ± 5.6 48.9 ± 5.5 83.4 ± 4.3 81.0 ± 4.4 94.5± 2.2
60 71.4 ± 4.9 75.3± 4.7 62.0 ± 5.8 70.5 ± 5.1 61.4 ± 5.7 73.1 ± 5.1 61.1± 5.6 48.9 ± 5.8 36.5 ± 5.4 46.3 ± 5.8 51.3 ± 5.7 46.7 ± 5.5 82.5 ± 4.5 79.7 ± 4.5 93.8± 2.4
70 69.8 ± 5.1 73.9± 4.9 60.9 ± 5.8 69.0 ± 5.2 60.2 ± 5.8 72.0 ± 5.3 59.7± 5.7 47.5 ± 5.8 35.0 ± 5.4 44.8 ± 5.8 49.7 ± 5.7 44.9 ± 5.6 81.8 ± 4.6 78.7 ± 4.7 93.2± 2.6
80 68.4 ± 5.2 72.6± 5.0 60.0 ± 5.9 67.7 ± 5.3 59.3 ± 5.9 71.1 ± 5.4 58.6± 5.8 46.2 ± 5.8 33.6 ± 5.4 43.6 ± 5.8 48.2 ± 5.8 43.3 ± 5.6 81.2 ± 4.7 77.7 ± 4.8 92.7± 2.7
90 67.2 ± 5.3 71.5± 5.1 59.2 ± 5.9 66.5 ± 5.4 58.5 ± 5.9 70.3 ± 5.4 57.5± 5.9 45.1 ± 5.9 32.5 ± 5.4 42.5 ± 5.8 47 ± 5.8 41.9 ± 5.6 80.7 ± 4.7 76.9 ± 4.9 92.2± 2.9

100 66.1 ± 5.4 70.5± 5.3 58.5 ± 6.0 65.5 ± 5.5 57.6 ± 6.0 69.5 ± 5.5 56.7± 6.0 44.2 ± 5.9 31.4 ± 5.4 41.5 ± 5.8 45.9 ± 5.8 40.6 ± 5.6 80.2 ± 4.8 76.1 ± 5.0 91.7± 3.0
110 65.0 ± 5.5 69.5± 5.4 57.9 ± 6.0 64.5 ± 5.6 56.9 ± 6.0 68.9 ± 5.6 55.9± 6.0 43.3 ± 5.9 30.5 ± 5.4 40.7 ± 5.9 44.9 ± 5.9 39.5 ± 5.7 79.7 ± 4.9 75.4 ± 5.1 91.3± 3.1
120 64.1 ± 5.6 68.7± 5.5 57.3 ± 6.1 63.7 ± 5.7 56.3 ± 6.0 68.3 ± 5.6 55.2± 6.1 42.6 ± 6.0 29.7 ± 5.4 39.9 ± 5.9 44.0 ± 5.9 38.5 ± 5.7 79.4 ± 4.9 74.8 ± 5.2 90.9± 3.3
130 63.2 ± 5.7 67.9± 5.5 56.8 ± 6.1 62.9 ± 5.7 55.7 ± 6.1 67.7 ± 5.7 54.6± 6.1 41.9 ± 6.0 28.9 ± 5.4 39.2 ± 5.9 43.2 ± 5.9 37.6 ± 5.7 79.0 ± 5.0 74.2 ± 5.3 90.5± 3.4
140 62.4 ± 5.7 67.2± 5.6 56.3 ± 6.2 62.2 ± 5.8 55.1 ± 6.1 67.2± 5.8 54.1± 6.2 41.3 ± 6.0 28.2 ± 5.4 38.6 ± 5.9 42.4 ± 6.0 36.7 ± 5.7 78.7 ± 5.0 73.7 ± 5.3 90.1± 3.5
150 61.6 ± 5.8 66.5 ± 5.7 55.9 ± 6.2 61.5 ± 5.9 54.6 ± 6.2 66.7± 5.8 53.6± 6.2 40.7 ± 6.0 27.6 ± 5.4 38.0 ± 5.9 41.8 ± 6.0 36.0 ± 5.8 78.3 ± 5.1 73.2 ± 5.4 89.8± 3.6
160 60.9 ± 5.9 65.9 ± 5.8 55.5 ± 6.2 60.8 ± 5.9 54.2 ± 6.2 66.3± 5.9 53.2± 6.3 40.2 ± 6.1 27.0 ± 5.4 37.4 ± 6.0 41.1 ± 6.0 35.2 ± 5.8 78.0 ± 5.1 72.7 ± 5.5 89.4± 3.7
170 60.2 ± 6.0 65.3 ± 5.9 55.1 ± 6.3 60.2 ± 6.0 53.8 ± 6.3 65.9± 5.9 52.8± 6.3 39.7 ± 6.1 26.5 ± 5.4 36.9 ± 6.0 40.6 ± 6.1 34.6 ± 5.8 77.7 ± 5.2 72.3 ± 5.5 89.1± 3.8
180 59.5 ± 6.0 64.8 ± 5.9 54.8 ± 6.3 59.6 ± 6.1 53.4 ± 6.3 65.5± 6.0 52.5± 6.3 39.3 ± 6.1 26.0 ± 5.4 36.4 ± 6.0 40.0 ± 6.1 33.9 ± 5.8 77.4 ± 5.3 71.9 ± 5.6 88.8± 3.9
190 58.9 ± 6.1 64.3 ± 6.0 54.5 ± 6.3 59.0 ± 6.1 53.0 ± 6.3 65.1± 6.0 52.2± 6.4 38.8 ± 6.1 25.5 ± 5.4 36.0 ± 6.0 39.5 ± 6.1 33.3 ± 5.9 77.1 ± 5.3 71.5 ± 5.7 88.5± 3.9
200 58.2 ± 6.2 63.8 ± 6.1 54.2 ± 6.4 58.5 ± 6.2 52.7 ± 6.4 64.8± 6.1 52.0± 6.4 38.4 ± 6.2 25.1 ± 5.5 35.5 ± 6.1 39.1 ± 6.2 32.8 ± 5.9 76.9 ± 5.4 71.1 ± 5.7 88.2± 4.0
210 57.7 ± 6.3 63.4 ± 6.1 53.9 ± 6.4 58.0 ± 6.3 52.3 ± 6.4 64.5± 6.1 51.7± 6.4 38.1 ± 6.2 24.7 ± 5.5 35.1 ± 6.1 38.6 ± 6.2 32.3 ± 5.9 76.6 ± 5.4 70.7 ± 5.8 87.9± 4.1
220 57.1 ± 6.3 63.0 ± 6.2 53.7 ± 6.4 57.5 ± 6.3 52.0 ± 6.4 64.2± 6.2 51.5± 6.4 37.7 ± 6.2 24.3 ± 5.5 34.7 ± 6.1 38.2 ± 6.2 31.8 ± 6.0 76.3 ± 5.5 70.3 ± 5.9 87.7± 4.2
230 56.5 ± 6.4 62.6 ± 6.3 53.5 ± 6.5 57.0 ± 6.4 51.7 ± 6.5 63.9± 6.2 51.3± 6.5 37.4 ± 6.3 23.9 ± 5.5 34.3 ± 6.2 37.8 ± 6.3 31.3 ± 6.0 76.1 ± 5.5 70.0 ± 5.9 87.4± 4.3
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4. Discussion

Although being a part of one general biometric task, the aims of human “identification” and
human “verification” are quite different, i.e. to recognize an individual in a database by comparing
a single input sample to many stored templates and to verify/reject person’s identity by comparing
a single input sample to a single stored template. The same features for comparison between
input-to-template waveforms could be used in both sub-tasks, however, the decision-making process
is different. Usually, the decision for “identification” is performed via the best similarity assessment
approach, while the “verification” relies on threshold based techniques. In our recent study [29]
we solve the “verification” problem via 6 cross-correlation and 2 amplitude features of QRS and
PQRST patterns, involved in a linear discriminant threshold decision function. In this study, we
use the same large population to solve the “identification” task adopting 4 cross-correlation and
1 amplitude features and adding 2 more QRS pattern features that measure the similarity in the time
and amplitude scales. They are calculated with a brand-new method for binary template matching
of short-duration QRS patterns (100 ms). The presented identification model applies a normalized
scale for representation of all 7 features (0–100%), where 0% corresponds to the least matching and
100% to the best matching between input and template waveforms. The optimization of the feature
selection scheme involved in the calculation of the common similarity index is presented by iterative
maximization of the identification accuracy AccID.

The questions of greatest concern for the human identification task are: “Is there an individual
whose personalized beat pattern would be more similar to another than to his own in a long-term basis?”, “What
is the probability to find such an individual within an increasing population of reference subjects?”

A quantitative answer to these questions is presented in this study following a straightforward
list of training and validation tests which aim to reveal specific aspects of the current human
ID investigation.

(1) Is there a statistical justification for using the defined features for waveform similarity?

Table 1 presents the statistics of the features’ distributions in the training dataset, proving that all
of them exhibit significantly higher similarity of the waveforms measured across the same individuals
in a long-term basis (>1 year) than what can be seen between different individuals (mean value in the
range about 82–96% vs. 60–86%, p < 0.0001). This proves that the similarity index IDix defined for
finding the best match between subjects could include all features on the same basis.

(2) Which are the most reliable QRS and PQRST features for human ID?

This aspect is investigated by training optimal ID models with different configurations of features
using a large dataset with 230 individuals. The simplest model (one-feature in one-lead, Table 2)
distinguishes r(lag0) in leads (aVL, aVF, III) with maximal AccID in the range of 35 to 41%. It is
about 10% points better than the other distinguished feature r(max) where AccID ranges between
24 and 35%. The advance of both correlation coefficients is due to different spatial dynamics of the
cardiac vector between different subjects. This dissimilarity is enhanced in the zero-lag correlation
which additionally represents the temporal desynchronization of the depolarization-repolarization
process in different individuals. We suggest that the latter effect is compensated in aVR by using
this lead for synchronization of each subject’s average beat to the reference pattern and this explains
the remarkably low AccID in aVR (11–15%) in respect to the other limb leads. The joint analysis of
r(lag0) and r(max) in 12-lead ECG increases AccID by about 40% reaching 73.5% (COR-QRS) and 77.4%
(COR-PQRST)—see Table 3. These results indicate that the QRS pattern (100 ms) carry the essential
subject-specific information, while P and T waves in the PQRST pattern (500 ms) contribute only for a
slight ID accuracy improvement by about 4 percentage points.

The analysis of AMP-QRS shows definitively that the QRS peak-to-peak range across individuals
is an indistinguishable feature. It provides AccID < 1% for all single leads (Table 2), which increases up
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to 24% for the optimal ID model (Table 3) including the 7 ECG leads that are the most distinguishable
in amplitude (I, II, III, V1, V2, V3, V5).

The MATCH-QRS method is not powerful when its features are analysed in single leads (maximal
accuracy of 26.5% for EQUA in aVF, Table 2). This is suggested by the methodological approach
for QRS waveform approximation in binQRS matrix [100 × 80], which gives indistinguishably high
waveform similarity for many subjects whose QRS waveforms are matching within the pre-set time
and amplitude tolerances of ±1 ms and ±5%, respectively. The accumulated similarity over 12 leads,
however stays high for the same identity subjects and decreases for different identity subjects. Thus,
15 MATCH-QRS measures are selected in the best ID model (AccID = 83.5%, Table 3), which represents
the best similarity for 10 leads in the amplitude scale (I, II, III, avR, avF, V1, V2, V4, V5, V6) and for
5 leads in the time scale (I, aVR, aVL, V1, V3).

(3) Which are the most reliable leads for human ID?

This aspect is investigated by training optimal ID models with different configurations of leads
on a large dataset with 230 individuals (Table 4). In a single lead ID scenario, we highlight limb leads
I and II (maximal AccID of 58%) followed by aVF (55%) and aVL (50%) including 3 to 5 features from
all feature extraction methods. Compared to the best limb leads (I and II), the single chest leads are
from 14 to 30% less powerful for the purposes of human ID. They are ranked in the following order:
V1 (maximal AccID of 44%) followed by V6, V5, V2 (37–35%) and V3, V4 (27–30%). Such a drop in
accuracy, especially in anterior leads, could be explained by V1–V6 proximity to the heart, so that
small electrode misplacements across different recording sessions of the same individual result in
considerable ECG morphology changes seen in chest leads.

Multi-lead ID models gain considerable raise in accuracy (about 20%) comparing 6 limb leads
to the best II (77% vs. 58%) and 6 chest leads to the best V1 (64% vs. 44%). The optimal ID models
are built with a prevalent selection of features from leads I, II (6 features), V1, V6 (5 features), aVR,
V5 (4 features). The complete ID model, selecting features from all 12-leads, reaches maximal AccID of
91.3%. This is better than 6 limb, 6 chest leads and the best single lead (II) with about 14%, 27% and
33% points, respectively.

(4) What is the tolerated reference database size for searching human ID?

This question arises from our previous experience on human identification [23] showing that
the time elapsed between the collection of the reference and the test dataset as well as the number of
enrolled subjects in the reference dataset have a severe impact on the ID performance. There, AccID
has been found to drop by 15% (from 93% to 78%) while the population increases by 35 subjects
(from 14 to 49). The last is in agreement with [28], reporting AccID drop by 10% (from 99% to 89%) for
population increase by 40 subjects (from 10 to 50). Naturally, AccID worsening could be expected for
reference database with larger size, since the more the subjects there are, the higher the random match
probability is, i.e. to find a subject with better similarity than his own. According to a comparative
study [1], the majority of the published investigations on human ID have been conducted on small
populations (about a few dozens of subjects). Considering the missing research information about
the influence of the reference database size on the ID accuracy, we present consistent validation of
our optimal ID models on an independent dataset by increasing its size from 10 to 230 subjects. Our
validation results definitively confirm the expected trend for AccID drop with the increase of the
number of the reference subjects which however is non-linear and depends on the particular ID model
(Figures 4 and 5). We consider as good models those with higher AccID and lower AccID drop in
respect of the number of reference subjects.

The validation of the ID models applying different feature extraction methods (Table 5, Figure 4)
closely reproduces the AccID ranges on the training dataset with 230 reference subjects (Table 3).
The observed AccID differences (training vs. validation) are: COR-PQRST (77% vs. 74%), COR-QRS
(74% vs. 81%), AMP-QRS (24% vs. 14%), MATCH-QRS (84% vs. 83%), all features (91% vs. 87%).
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The differences are relatively small which is a sign of confident training of the ID models with 12-lead
ECG capable of adequately evaluating independent database without bias. We observed that the
minimal set of 2 MATCH-QRS features is capable of providing human ID with almost the same
accuracy (AccID > 90%) as the maximal set of all 7 features. However, this is valid for limited reference
datasets of up to 100 subjects. More subjects are best identified by the complete ID model including
all features which maintains relatively stable performance with a drop of 11% (from 98% to 87%) for
population increase by 220 subjects (from 10 to 230). These results outperform the cited in [23,28]
which report the same level of AccID drop (10–15%) for about 6 times smaller population increase
(35–40 subjects). The best performance of our complete ID model could be explained by the fact that
larger datasets increase the probability to find similar characteristics across different subjects and thus,
more and more robust features are required to distinguish their individuality.

In a single lead ID scenario (Figure 5, Table 6) we can distinguish two best ID models based
on analysis of lead II and aVF for small (10–140) and large (140–230) number of reference subjects,
respectively. Overall, even for the best limb leads (II, aVF), we observe a limited ID capability, not
exceeding 70% for more than 100 reference subjects and 80% for more than 30 reference subjects. Single
chest leads are not usable for human ID. The majority of them (V2–V6) do not exceed 50% for more
than 50 subjects. Only V1 can be distinguished with AccID above 70% for less than 20 subjects. We
recommend multi-lead ID scenarios for management of human search in large populations. Both ID
models based on 6 chest and 6 limb leads pass the AccID > 70% threshold for the maximal reference
dataset (230 subjects) and AccID > 80% for up to 100 subjects (limb leads) and up to 50 subjects
(chest leads). As expected, 12-lead ECG provides the most robust beat patterns for human ID with
AccID > 90% for up to 140 subjects, reaching 98.4% for 10 subjects.

The performance of our best ID model (12-leads, 27 features, trained in Table 4, validated in
Tables 5 and 6; Figures 4 and 5) is compared to other published studies on human identification
(Table 7, Figure 6).

All published studies do not report training and validation of their ID models on independent
datasets (as used in this study), therefore biased AccID is probable due to overtraining. For example,
such an effect is suspected for studies with accuracy close to 100%, especially on small sized
databases [9,16,18–20,26]. Overall, the ID studies with enrolment and test phase in a single day
report higher AccID [9,10,18,26,28]. However, they could not consider longitudinal ECG morphology
changes due to physiological or technical sources (e.g. electrode displacement across different sessions).
There are two ID studies using multiple sessions in different days on large populations with 74 [24]
and 89 subjects [10] that report less than 5 percentage points better performance than our model. This
might be due either to superior model algorithm or to the lack of independent validation, considering
that the differences between our training and validation accuracies are in the same range. Figure 6
illustrates validation results of this study which extends the knowledge on the ID model performance
over the largest span from 10 to 230 reference subjects. The observed decrease of AccID could be
explained with the appearance of new subjects in the reference dataset who present PQRST waveforms
similar to already existing ones. Thus, some of the subjects that match exactly their own pattern in
the reference dataset of e.g. 100 subjects show higher correlation and pattern matching with different
subject in the reference dataset that contains 230 individuals. This could be due to time-related ECG
changes and possible small differences in the electrode placement during the acquisition of the test
dataset. Possible approach to keep high AccID for larger reference datasets is to include additional
robust features in the identification model. However, this should be done very carefully and the
designed models should be validated on independent dataset in order to avoid overtraining. Another
option to prevent from the assignment of wrong identity to the tested subject is to keep the size of the
reference dataset as small as possible for the particular application and to update it with actual PQRST
patterns on a regular basis.
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Table 7. Comparative study of AccID for our best ID model (validation results) and the results reported
by other authors over databases with different number of subjects (the databases’ abbreviations are
cited according to their reference in the source publication). The information about single or multiple
recordings per patient (srpp or mrpp) and the interval between T1 and T2 (in case of mrpp) is provided.

No Study Database (DB) Nb Subjects Recording Sessions AccID (%)

1 [9]
PTB DB: Test set 1 14 single day (mrpp) 100
PTB DB: Test set 2 6 different days (mrpp, several months) 83.3

2 [10]

Physionet human-ID 89 mrpp, 16 months 96
MIT-BIH (NSR) 18 srpp 95

MIT-BIH (Arrhythmia) 47 srpp 98.5
Own DB (Mobile phone) 30 srpp 99

3 [16] Own DB 20 different days (mrpp, 6 weeks) 100
4 [17] Own DB 9 mrpp, single day 87.9 *
5 [18] Own DB 29 mrpp, single day 100
6 [19] PTB DB 14 mrpp, from single day to several months 100
7 [20] PTB DB 14 mrpp, from single day to several months 100
8 [21] Own DB 14 mrpp, 16 months 94
9 [22] Own DB 11 mrpp, 16 months 91.4

10 [23]
ILSA DB 49 mrpp, 5 years 77.6
PTB DB 14 mrpp, from single day to several months 92.9

11 [24] Own DB 74 mrpp, 16 months 98.1
12 [25] Own DB 9 srpp 90

13 [26]
MIT-BIH 18 srpp 100
PTB DB 13 mrpp, from single day to several months 100

14 [27] Own DB 16 srpp 94.3

15 [28]
MIT-BIH 89 srpp 100
Own DB 50 srpp 89

16
This

study Own DB

10 mrpp, 1 to 2 years 98.4
20 mrpp, 1 to 2 years 97.2
50 mrpp, 1 to 2 years 94.5

100 mrpp, 1 to 2 years 91.7
230 mrpp, 1 to 2 years 87.4

* Note: AccID is originally reported as the proportion of beats correctly assigned to the respective patient, in the
range between 76.1% and 99.6%. The mean value is used for comparison.Sensors 2018, 18, x FOR PEER REVIEW  19 of 21 
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Figure 6. Illustration of the comparative results presented in Table 7. The published studies (from No = 1
to No = 15 in Table 7) are presented in two groups, according to the time distance between the recording
sessions, representative for ECG changes in a short (single day) or long-term (different days) basis.
For the purpose of adequate comparison, the identification accuracy of our method is illustrated for
different number of reference subjects (from 10 to 230 subjects included in the validation set).

5. Conclusions

This paper presents a methodology for evaluation of the biometric potential of PQRST pattern
waveforms in 12-lead ECG. The focus is on reliable human identification in a large-population database
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containing two ECGs per patient recorded between 1 to 2 years apart. The benefits from the use of
such database are its representativeness for physiologically related long-term ECG changes and effects
of possible multi-session technical differences. The investigations demonstrate the identification ability
of cross-correlation, amplitude and pattern matching, applied on a personalized heartbeat pattern in
single and multi-lead ECG scenarios. The detailed analysis of the identification accuracy highlights the
ID model based on cross-correlation and pattern matching of 12-lead ECG as the best one, providing
91.3% identification accuracy over a large training dataset of 230 subjects. The independent validation
of this ID model on datasets with different sizes (10–230 subjects) confirms its reliability for human
identification with accuracy between 98.4% and 87.4% and extends the knowledge on the ID model
performance over a large span of reference subjects.

6. Future Work

Up to this moment, our experience in human verification/identification involves the application
of fiducial-based and fiducial independent approaches with databases collected with clinical ECG
devices. Our future work would revolve around the design of hybrid methods for human
verification/identification and their implementation in an identification ECG device prototype,
working with a pre-selected minimal lead set.
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