
Indexes of Large Genome Collections on a PC
Agnieszka Danek1, Sebastian Deorowicz1*, Szymon Grabowski2

1 Institute of Informatics, Silesian University of Technology, Gliwice, Poland, 2 Institute of Applied Computer Science, Lodz University of Technology, Łódź, Poland

Abstract

The availability of thousands of individual genomes of one species should boost rapid progress in personalized medicine or
understanding of the interaction between genotype and phenotype, to name a few applications. A key operation useful in
such analyses is aligning sequencing reads against a collection of genomes, which is costly with the use of existing
algorithms due to their large memory requirements. We present MuGI, Multiple Genome Index, which reports all
occurrences of a given pattern, in exact and approximate matching model, against a collection of thousand(s) genomes. Its
unique feature is the small index size, which is customisable. It fits in a standard computer with 16–32 GB, or even 8 GB, of
RAM, for the 1000GP collection of 1092 diploid human genomes. The solution is also fast. For example, the exact matching
queries (of average length 150 bp) are handled in average time of 39 ms and with up to 3 mismatches in 373 ms on the test
PC with the index size of 13.4 GB. For a smaller index, occupying 7.4 GB in memory, the respective times grow to 76 ms and
917 ms. Software is available at http://sun.aei.polsl.pl/mugi under a free license. Data S1 is available at PLOS One online.

Citation: Danek A, Deorowicz S, Grabowski S (2014) Indexes of Large Genome Collections on a PC. PLoS ONE 9(10): e109384. doi:10.1371/journal.pone.0109384

Editor: Stephen Moore, University of Queensland, Australia

Received June 26, 2014; Accepted September 7, 2014; Published October 7, 2014

Copyright: � 2014 Danek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The human reference sequence used can be

indexes used in the experiments are available at http://sun.aei.polsl.pl/mugi.

Funding: The work was supported by the Polish Ministry of Science and Higher Education under the project DEC-2013/09/B/ST6/03117 and European Social
Fund project UDA-POKL.04.01.01-00-106/09. The work was performed using the infrastructure supported by POIG.02.03.01-24-099/13 grant: ‘‘GeCONiI---Upper
Silesian Center for Computational Science and Engineering’’. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: sebastian.deorowicz@polsl.pl

Introduction

About a decade ago, thanks to breakthrough ideas in succinct

indexing data structures, it was made clear that a full mammalian-

sized genome can be stored and used in indexed form in main

memory of a commodity workstation (equipped with, e.g., 4 GB of

RAM). Probably the earliest such attempt, by Sadakane and

Shibuya [1], resulted in approximately 2 GB sized compressed

suffix array built for the April 2001 draft assembly by Human

Genome Project at UCSC. (Obtaining low construction space,

however, was more challenging, although later more memory

frugal, or disk-based, algorithms for building compressed indexes

appeared, see, e.g., [2] and references therein.). Yet around 2008,

only a few sequenced human genomes were available, so the

possibility to look for exact or approximate occurrences of a given

DNA string in a (single) genome was clearly useful. Nowadays,

when repositories with a thousand or more genomes are easily

available, the life scientists’ goals are also more ambitious, and it is

desirable to search for patterns in large genomic collections. One

application of such a solution could be simultaneous alignment of

sequencing reads against multiple genomes [3]. Other applications

are discussed in the last section.

Interestingly, this is a largely unexplored area yet. On one hand,

toward the end of the previous decade it was noticed that the

‘‘standard’’ compressed indexes (surveyed in [4]), e.g. from the FM

or CSA family, are rather inappropriate to handle large collections

of genomes of the same species, because they cannot exploit well

the specific repetitiveness. On a related note, standard compres-

sion methods were inefficient for a simpler problem of merely

compressing multiple genomes. Since around 2009 we can observe

a surge of interest in practical, multi-sequence oriented DNA

compressors [5–15], often coupled with random access capabilities

and sometimes also offering indexed search. The first algorithms

from 2009 were soon followed by more mature proposals, which

will be presented below, focusing on their indexing capabilities.

More information on genome data compressors and indexes can

be found in the recent surveys [16–18].

Mäkinen et al. [19] added index functionalities to compressed

DNA sequences: display (which can also be called the random

access functionality) returning the substring specified by its start

and end position, count telling the number of times the given

pattern occurs in the text, and locate listing the positions of the

pattern in the text. Although those operations are not new in full-

text indexes (possibly also compressed), the authors noticed that

the existing general solutions, paying no attention to long repeats

in the input, are not very effective here and they proposed novel

self-indexes for the considered problem.

Claude et al. [7] pointed out that the full-text indexes from [19],

albeit fast in counting, are rather slow in extracting the match

locations, a feature shared by all compressed indexes based on the

Burrows–Wheeler transform (BWT) [4]. They proposed two

schemes, one basically an inverted index on q-grams, the other

being a grammar-based self-index. The inverted index offers

interesting space-time tradeoffs (on real data, not in the worst

case), but can basically work with substrings of fixed length q. The

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e109384

found at the NCBI’s anonymous FTP server (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz). The VCF (Variant Call
Format) files can be downloaded from the NCBI’s anonymous FTP server. It can be either EBI (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
integrated_call_sets/) or NCBI (ftp://ftp.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/integrated_call_sets/) FTP site. The sequencing reads and sample

http://sun.aei.polsl.pl/mugi
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109384&domain=pdf
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz
ftp://ftp.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/integrated_call_sets/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/


grammar-based index is more elegant and can work with any

substring length, but uses significantly more space, is slower and

needs a large amount of RAM in the index build phase. None of

these solutions can scale to large collections of mammalian-sized

genomes, since even for 37 sequences of S. cerevisiae totaling 428

Mbases the index construction space is at least a few gigabytes.

While a few more indexes for repetitive data were proposed in

recent years (e.g., [20–23]), theoretically superior to the ones

presented above and often handling approximate matches, none of

them can be considered a breakthrough, at least for bioinfor-

matics, since none of them was demonstrated to run on multi-

gigabyte genomic data.

A more ambitious goal, of indexing 1092 human genomes, was

set by Wandelt et al. [24]. They obtained a data structure of size

115.7 GB, spending 54 hours on a powerful laptop. The index

(loaded to RAM for a single chromosome at a time), called RCSI,

allows to answer exact matching queries in about 250 ms, and in

up to 2 orders of magnitude longer time for k-approximate

matching queries, depending on the choice of k (up to 5).

Sirén et al. [25] extended the BWT transform of strings to

acyclic directed labeled graphs, to support path queries as an

extension to substring searching. This allows, e.g., for read

alignment on an extended BWT index of a graph representing a

pan-genome, i.e., reference genome and known variants of it. The

authors built an index over a reference genome and a subset of

variants from the dbSNP database, of size less than 4 GB and

allowing to match reads in less than 1 ms in the exact matching

mode. The structure, called GCSA, was built in chromosome-by-

chromosome manner, but unfortunately, they were unable to

finish the construction for a few ‘‘hard’’ chromosomes even in 1 TB

of RAM! We also note that a pan-genome contains less

information than a collection of genomes, since the knowledge

about variant occurrences in individual genomes is lost.

A somewhat related work, by Huang et al. [26], presents an

alignment tool, BWBBLE, working with a multi-genome (which is

basically synonymous with pan-genome in the terminology of

[25]). BWBBLE follows a more heuristic approach than GCSA

and can be constructed using much more humble resources. Its

memory use, however, is over 16n log2 n bits, where n is the

multi-genome length. This translates to more than 200 GB of

memory needed to build a multi-genome for a collection of 1092

human genomes. Both BWBBLE and GCSA need at least 10 ms

to find matches with up to 3 errors.

The recently proposed journaled string tree (JST) [27] takes a

different approach, providing an online scan over the reference

sequence, but also keeping track of coverages of variants falling

into the current window over the reference. Each individual is

represented as a journal string, that is, a referentially compressed

version of the original sequence; segments of journal strings,

together with helper data, are stored in a journal string tree. The

JST approach allows to generically speed up many sequential

pattern matching algorithms (for exact or approximate search)

when working on a collection of similar sequences. A drawback of

this approach is that search times are never better than of an

online scan over a single (reference) sequence.

Also recently, Durbin [28] presented an interesting data

structure dubbed Positional Burrows–Wheeler Transform

(PBWT), to find long matches between sequences within a given

collection, or between a new test sequence and sequences from the

collection. PBWT provides very compact representation of the

dataset being searched, yet its application is different to ours: only

binary information about variant occurrences are kept (not even

their position in a reference sequence), which means that handling

standard locate queries (given a string, report all its match

positions in the relevant sequences in the indexed collection) is

impossible in this way.

Aligning sequencing reads to a genome with possible variants

was also recently considered in theoretical works, under the

problem name of indexing text with wildcard positions [29,30],

where the wildcards represent SNPs. No experimental validation

of the results was presented in the cited papers.

Most of the listed approaches are traditional string data

structures, in the sense that they can work with arbitrary input

sequences. The nowadays practice, however, is to represent multi-

genome collections in repositories as basically a single reference

genome, plus a database of possible variants (e.g., SNPs), plus

information on which of the variants from the database actually

occur in each of the individual genomes. The popular VCF

(Variant Call Format) format allows to keep more information

about a sequenced genome than listed here, but this minimal

collection representation is enough to export each genome to its

FASTA form. Dealing with input stored in such compact form

should allow to build efficient indexes much more easily than

following the standard ‘‘universal’’ way, not to say about

tremendous resource savings in the index construction.

This modern approach was initiated in compression-only

oriented works [5,13,14], and now we propose to adapt it in

construction of a succinct and efficient index. According to our

knowledge, this is the first full-text index capable to work on a scale

of thousand(s) of human genomes on a PC, that is, a small

workstation equipped with 16–32 GB of RAM. What is more, for

a price of some slow-down the index can be used even on an 8 GB

machine. No matter the end of the space-time tradeoff we are, the

index is capable of handling also approximate matching queries,

that is, reporting patterns locations in particular genomes from the

collection with tolerance for up to 5 mismatches. As said, the index

is not only compact, but also fast. For example, if up to 3 errors are

allowed, the queries are handled in average time of 373 ms on the

test PC and the index takes 13.4 GB of memory, or in 917 ms
when the index is of size 7.4 GB. The current version of our index

requires more resources (from 38 GB to 47 GB of RAM,

depending on the index settings) in the construction phase; a

drawback which may be eliminated in a future work, as discussed

in the last section of this paper.

Materials and Methods

Datasets
We are indexing large collection of genomes of the same species,

which are represented as the reference genome in FASTA format

together with the VCF [31] file, describing all possible reference

sequence variations and the genotype information for each of the

genome in the dataset. We are only interested in details allowing

for the recovery of the DNA sequences, all non-essential fields are

ignored. Therefore, the data included in the VCFmin format, used

in [14], are sufficient. Each line describes a possible variant that

may be a single nucleotide polymorphism (SNP), a deletion (DEL),

an insertion (INS) or a structural variation (SV), which is typically

a combination of a very long deletion and an insertion. The

genotype of each genome is specified in one designated column

with information if each of the variant is found in this genome. In

case of diploid and phased genotypes this information concerns

two basic, haploid chromosome sets for each genome and treats

them independently. Thus for any phased diploid genome, its

DNA sequence is twice the size the reference sequence.

In our experiments we used the data available from Phase 1 of

the 1000 Genomes Project [32] describing the collection of 1092

phased human genomes. We concatenated the available 24 VCF

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e109384



files (one for each chromosome), to get one combined VCF file,

which—together with the reference sequence—is the input of our

algorithm building the index.

The general idea
Our tool, Multiple Genome Index (MuGI), performs fast

approximate search for input patterns in an indexed collection

of genomes of the same species. The searched patterns can be

provided in a text file (one pattern per line), or in FASTA or

FASTQ format. The index is built based on the reference genome

and the VCF file describing the set. The search answers the locate

query—the result consists of all positions of the pattern with

respect to the reference genome along with the list of all

individuals in which it can be found.

The basic search regime is exact matching. Its enhanced version

allows for searching with mismatches. Both modes use the seed-

and-extend scheme. The general mechanism is to quickly find a

substring of the pattern and then extend this seed to verify if it

answers the query.

The index has one construction-time parameter, k, which is the

maximum possible length of the seed. The match can be found

directly in the reference genome and/or in its modified form, with

some of the variations introduced. To find the seed we build an

array of all possible k-length sequences (k-mers) occurring in all

genome sequences. In the space-efficient version only a part of the

array is kept. The extension step is done using the reference and

the available database of variants, checking which combination of

possible variations introduced, if any, allows to find the full

pattern.

To know individuals in which the match can be found, we have

to identify all variants whose occurrence, or absence of, have

impact on the match, and list only the genomes with such

combination of variants.

Building the index
To build the index, we process the input data to create the

following main substructures, described in detail in the successive

paragraphs:

N the reference sequence (REF),

N the Variant Database (VD),

N the Bit Vectors (BVs) with information about variants in all

genomes,

N the k-Mer Array (kMA) for all unique k-length sequences in

the set.

REF is stored in compact form, where 4 bits are used to

(conveniently) encode a single character.

VD contains details about all possible variations. For each

variant, the following items are stored: type (1 byte), preceding

position (4 bytes) and alternative information (4 bytes). (Note that

we keep the preceding positions to be able to manage the variants

INSs, DELs and SVs, as this convention conforms to their

description in VCF files.) The last item indicates alternative

character in case of SNP, length of the deletion in case of DEL and

position in the additional arrays of bytes (VD-aux) in case of INS

and SV. VD-aux holds insertion length (4 bytes) and all inserted

characters (1 byte each), if any, for every INS and SV. For SV it

also stores length of the deletion (4 bytes). The variants are ordered

by the preceding position and a lookup table is created to

accelerate search for a variant by its location. VD together with

REF can be used to decode the modified sequence from some

given position to the right, by introducing certain variants. To be

able to decode the sequence to the left, an additional list of all

deletions (SVs and DELs), ordered by the resulting position, is

created. The list, VD-invDel, stores for each variant its number in

the main VD (4 bytes) and the resulting position, that is, the

position in the reference after the deletion (4 bytes).

There is one BV for each variant, each of size of the number of

genomes in the collection (2 times the number of genomes for

diploid organisms). Value 1 at some j th position in this vector

means that the current variant is found in the j th haploid genome.

To reduce the required size, while preserving random access, we

keep the collection of these vectors in compressed form, making

use of the fact that spatially close variant configurations are often

shared across different individuals. The compression algorithm

makes use of a dictionary of all possible unique 192-bit chunks (the

size chosen experimentally). Each BV is thus represented as a

concatenation of qno haploid genomes=192r 4-byte tokens (vo-

cabulary IDs).

kMA keeps information about each k-length sequence (k-mer)

occurring in the whole collection of genomes. The k-mer sequence

itself is not kept. Instead, only the minimum information needed to

retrieve it with help of REF and VD is stored. Based on the

amount of details necessary to keep, we partition k-mers into four

groups, each stored in one of the four subarrays of kMA: kMA0,

kMA1, kMA2 or kMA3. The entries in each subarray are sorted

according to the lexicographical order of k-mers they represent.

All k-mers beginning with the unknown character (i.e., N or n) are

filtered out.

All k-mers found in REF are kept in kMA0. Only the preceding

position Spos ref T (4 bytes) is stored for each such k-mer, as it is

enough (using REF) to retrieve its sequence. These k-mers are

present in all genomes with no variants introduced in the

corresponding segment.

The k-mers that are obtained by applying some variant to the

reference sequence are stored in kMA1/kMA2/kMA3. They are

produced with going through the reference genome and checking

for each position p if there is any possible variant with the

preceding position in the range from p to pzk{1. If the check is

positive, we decode the k-mer. The decoding process takes into

account all possible paths. By path we understand any combination

of occurrence of subsequent variants, influencing the decoded

sequence. For example, if SNP is possible at current position (i.e.,

it is listed in VD), two paths are considered: when it is found and

when it is absent, resulting in two decoded sequences, differing in

the last inspected character. Thus, starting from a single preceding

position, many resulting sequences may be obtained. To decode

most k-mers, it is enough to store the preceding position plus flags

about the presence/absence of following variants. This evidence

list (evList) is stored as a bit vector, where 1 means that the

corresponding variant is present. For any k-mer starting inside an

insertion (INS or SV) it is also necessary to store the gap from the

beginning of the inserted string to the first character of the k-mer.

The k-mer with no gap and at most 32 evidences about

consecutive variants from VD in the evList is stored in kMA1,

where each entry is defined as Spos ref, evListT (4z4 bytes). If

there is also a gap involved, such k-mer goes to kMA2, defining

each entry as Spos ref, gap, evListT (4z4z4 bytes). All k-mers

with more than 32 evidences in the evList or with evidences about

nonconsecutive (with respect to VD) variants are kept in kMA3,

where each k-mer is represented by four fields:

Spos ref, gap, evSize, evListT (4z4z4zevSize|4 bytes). The

representative example of the latter case is a k-mer with SV

introduced and many variants in VD placed within the deleted

region. Keeping track of these variants, not altering the resulting

sequence, is pointless.

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109384



Any k-mer is kept in kMA only if there is at least one haploid

genome that includes it, that is, has the same combination of

occurring variants. It is checked with help of BV. Recall that the k-

mers in each subarray kMAi, i[f0,1,2,3g, are sorted lexicograph-

ically. To speed up the binary search (by narrowing down the

initial search interval), a lookup table, taking into account the first

12 characters, is created for each subarray.

The basic search algorithm
The pseudocode of the basic search algorithm is presented as

Algorithm 1 in Table 1. It looks for all exact occurrences of the

pattern P in the compressed collection, using the seed-and-extend

scheme. The undetermined nucleotides (i.e., N or n) occurring in

P are encoded differently than in REF, so they never match any

character in the collection. The seed S is chosen to be a substring

of P, precisely its first k characters, or the full pattern, if DPDvk
(lines 1–2).

The first step is to scan kMA for all k-mers whose prefixes (or

simply full sequences, if DSD~k) match S. It is done with binary

search in each subarray kMAi, i[f0,1,2,3g, separately (lines 3–4).

Next, each found seed is partly decoded and then extended (lines

5–7). The partial decoding, done by the partDecode function,

starts from pos ref of the current k-mer and move p~DSD
characters forward, according to the k-mer’s details (i.e., there

may be a need to introduce some found variant). Character-by-

character matching is not performed, as it is already known that

DSD-length prefix of the k-mer matches S. Function partDecode
returns the seed’s succeeding position (pos curr) and variant

(vt curr) in the reference, along with the list of encountered

variants (vtList) and the list of evidences about their presence or

absence (evList). The latter is a vector of 0 s in case of kMA0 and a

copy of k-mer’s evList (or its part) for other subarrays. The first

variant (the one with preceding position greater than or equal to

the preceding position of the k-mer) is found with binary search in

VD. It is not shown in the pseudocode, but for each seed also the

preceding SVs and DELs are taken into account when creating the

initial vtList and evList.

The seed S is recursively extended according to all possible

combinations of variants, that is, as long as succeeding characters

match the characters in P and found occurrences of P are

reported (line 7). The pseudocode of the algorithm extending the

seed and reporting the results is presented as Algorithm 2 in

Table 2. Maintained variables are: full pattern P, ch (number of

decoded characters), pre and pos (the preceding position of the

seed and the current position, both in relation to the reference),

and vt (next variant from VD). Also REF , BV , the current vtList
and evList are available. If position of vt (vt:pos) is greater than

pos (lines 2–5), no variant is introduced and the next character is

taken from REF. If it does not match the related character in P,

the extension is stopped, as the current path is not valid. If vt is

encountered at pos (lines 6–11), it is added to the vtList and two

paths are checked—when it is introduced (new bit in evList is set

to 1) and when it is not (new bit in evList is set to 0). The first path

is not taken if vt does not match P. It can happen for SNPs and

inserted characters (from INS or SV). If vt:pos is less than pos

Table 1. Pseudocode of the basic search algorithm.

Algorithm 1 exactSearch(P)

{kMA, vtList and evList are global variables}

1 p r min(|P|, k)

2 S r substring(P, 0, p 21) {Retrieving the seed S}

3 for i r 0 to 3 do

4 (,, r) r binSearch(kMAi, S) {Locating the seed S}

5 for j r , to r do

6 (vtList, evList, pos_curr, vt_curr) r partDecode(kMAi[j], p)

7 extend(P, p, kMAi[j].pos_ref, pos_curr, vt_curr) {Extending the seed S to find P locations}

doi:10.1371/journal.pone.0109384.t001

Table 2. Pseudocode of the algorithm extending the found
seed in the basic search.

Algorithm 2 extend(P, ch, pre, pos, vt)

{REF, BV, vtList and evList are global variables}

1 while ch , |P| do

2 if vt.pos . pos then {No variant at pos}

3 if REF[pos] = P[ch] then

4 pos r pos +1; ch r ch +1

5 else report false {Invalid path}

6 else if vt.pos = pos then

7 vtList.add(vt); evList.add(1);

8 if vt matches P then

9 new r pos + vt.delLen

10 extend(pre, new, ch + vt.len, vt +1)

11 evList.setLast(0); vt r vt +1

12 else {vt.pos , pos}

13 new r vt.pos + vt.delLen

14 if new . pos then

15 vtList.add(vt); evList.add(1);

16 if vt matches P then

17 extend(pre, new, ch + vt.len, vt +1)

18 evList.setLast(0)

19 vt r vt +1

20 R r 1noHaploidGenomes {a bit-vector of noHaploidGenomes bits 1}

21 for i r 1 to vtList.size do

22 if evList[i] then R r R & BV[i]

23 else R r R & ,BV[i]

24 if R = 0 then report false {Invalid path}

25 else report (pre, R) {P found}

doi:10.1371/journal.pone.0109384.t002

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e109384



(lines 12–19), it means vt is placed in region previously deleted by

other variant. The only possibility that vt is taken into account is if

it deletes characters beyond previous deletion. Otherwise it is

skipped.

When the extension reaches the end of the pattern P, it is

checked in which individuals, if in any, the relevant combination

of variants (track kept in vtList) is found (lines 20–25). The bit

vector R is initialized to be the size of the number of haploid

genomes. The value 1 at j th position means that j th haploid

genome contains the found sequence. The vector R is set to all 1 s

at the beginning, because if vtList is empty, the sequence is present

in all genomes. To check which genomes have the appropriate

combination of variants, the bitwise AND operations are

performed between all BVs related to variants from the vtList,

negating all BVs with 0s at the corresponding position in the

evList. If R contains any 1 s, pattern P is reported to be found

with the preceding position pre (in relation to the reference

genome) and vector R specifies genomes containing such

sequence.

The space-efficient version
To reduce the required space, while still being able to find all

occurrences of the pattern, we make use of the idea of sparse suffix

array [33]. This data structure stores only the suffixes with

preceding position being a multiple of s (sw1 is a construction-

time parameter). In our scheme, the two largest subarrays, kMA0

and kMA1, are kept in sparse form, based on preceding positions

of k-mers. For kMA1, it is also necessary to keep all k-mers that

begin with deletion or insertion (the first variant has the same

preceding position as the k-mer).

The search algorithm has to be slightly modified. Apart from

looking for the k-length prefix of the pattern (i.e., P½0 . . . k{1�) in

kMA, also k-length substrings starting at positions 1 . . . s{1 must

be looked for in kMA0, kMA1, and kMA3 (as some specific seeds

may be present only in kMA3). The substrings, if found in one of

mentioned subarrays, must be then decoded to the left, to check if

their prefix (from 1 to s{1 characters, depending on the starting

position) matches the pattern P. The VD-invDel substructure is

Figure 1. Average query times vs. index sizes. Simulated reads were used.
doi:10.1371/journal.pone.0109384.g001

Table 3. Index sizes.

Sparsity Size [GB]

k = 25 k = 30 k = 35 k = 40 k = 45

1 24.7 26.3 27.9 29.6 31.2

2 15.0 15.8 16.6 17.5 18.3

3 11.8 12.3 12.9 13.4 14.0

4 10.2 10.6 11.0 11.4 11.8

5 9.2 9.5 9.9 10.2 10.5

6 8.5 8.8 9.1 9.4 9.7

7 8.1 8.3 8.6 8.8 9.1

8 7.7 7.9 8.2 8.4 8.6

10 7.2 7.4 7.6 7.8 8.0

12 6.9 7.1 7.2 7.4 7.5

14 6.7 6.8 7.0 7.1 7.2

16 6.5 6.6 6.8 6.9 7.0

doi:10.1371/journal.pone.0109384.t003

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109384



T
a

b
le

4
.

Q
u

e
ry

ti
m

e
s

fo
r

va
ri

o
u

s
va

ri
an

ts
o

f
in

d
e

xe
s

fo
r

si
m

u
la

te
d

d
at

a.

k
sp

ar
si

ty
si

z
e

M
a

x
.

a
ll

o
w

e
d

m
is

m
a

tc
h

e
s

[G
B

]
0

1
2

3
4

5

2
5

1
2

4
.7

2
1

4
.2

4
5

0
.8

6
9

9
.5

9
7

1
.5

1
,4

3
8

.3
2

,9
7

6
.8

2
5

3
1

1
.8

2
2

5
.0

4
8

1
.2

7
5

1
.6

1
,0

2
4

.3
1

,5
9

9
.9

3
,6

4
7

.1

2
5

4
1

0
.2

2
2

9
.8

4
9

3
.1

7
5

4
.0

1
,0

5
0

.9
1

,6
7

6
.4

4
,0

0
4

.2

2
5

8
7

.7
2

4
3

.1
5

2
8

.3
8

1
4

.6
1

,1
5

8
.5

2
,3

4
1

.4
6

,7
9

0
.4

2
5

1
2

6
.9

2
5

7
.2

5
5

8
.3

8
6

8
.0

1
,3

3
7

.8

2
5

1
6

6
.5

2
6

8
.8

5
8

8
.6

9
1

6
.6

1
,7

8
7

.9

3
0

1
2

6
.3

8
5

.4
1

9
3

.4
3

0
3

.0
4

5
6

.0
1

,0
3

6
.4

3
,0

0
4

.6

3
0

3
1

2
.3

9
5

.7
2

2
0

.8
3

4
0

.6
5

2
0

.4
1

,2
5

8
.0

3
,7

1
6

.2

3
0

4
1

0
.6

1
0

0
.4

2
2

7
.8

3
5

1
.5

5
4

4
.0

1
,3

7
6

.5
4

,1
0

4
.5

3
0

8
7

.9
1

2
1

.8
2

6
7

.0
4

1
4

.5
7

1
3

.6
2

,2
1

5
.2

6
,9

9
4

.5

3
0

1
2

7
.1

1
3

4
.0

2
9

1
.4

4
5

6
.4

9
5

9
.4

3
0

1
6

6
.6

1
4

9
.2

3
1

9
.3

5
0

6
.8

1
,4

9
0

.4

3
5

1
2

7
.9

4
1

.4
9

8
.0

1
5

2
.0

3
0

1
.8

1
,0

3
3

.4
3

,1
1

4
.6

3
5

3
1

2
.9

5
3

.6
1

2
1

.2
1

9
3

.0
3

8
0

.4
1

,2
8

0
.8

3
,8

6
1

.2

3
5

4
1

1
.0

5
8

.6
1

3
0

.2
2

0
6

.3
4

1
9

.2
1

,4
1

1
.7

4
,2

7
7

.6

3
5

8
8

.2
7

7
.2

1
6

6
.1

2
6

0
.3

6
0

8
.3

2
,2

2
4

.4
7

,1
2

0
.4

3
5

1
2

7
.2

9
3

.3
1

9
6

.2
3

1
4

.6
9

0
5

.3

3
5

1
6

6
.8

1
0

7
.0

2
2

2
.2

3
8

2
.4

1
,5

0
6

.4

4
0

1
2

9
.6

2
8

.8
6

5
.2

1
0

2
.3

2
9

1
.0

1
,1

0
9

.9
3

,3
4

8
.8

4
0

3
1

3
.4

3
9

.4
8

5
.5

1
3

6
.1

3
7

2
.5

1
,3

3
4

.0
4

,0
2

1
.0

4
0

4
1

1
.4

4
3

.4
9

4
.4

1
5

1
.4

4
1

2
.2

1
,4

7
1

.1
4

,4
6

1
.1

4
0

8
8

.4
6

1
.0

1
2

8
.9

2
1

0
.3

6
1

5
.4

2
,2

9
7

.9
7

,3
5

0
.3

4
0

1
2

7
.4

7
6

.3
1

6
0

.0
2

7
1

.8
9

1
7

.0

4
0

1
6

6
.9

9
0

.4
1

8
4

.4
3

4
4

.3
1

,5
1

4
.1

4
5

2
1

8
.3

2
5

.9
5

6
.2

9
7

.9
3

2
9

.6
1

,2
0

7
.0

3
,6

8
7

.2

4
5

3
1

4
.0

3
1

.3
6

7
.7

1
1

6
.5

3
7

5
.5

1
,3

5
3

.3
4

,1
1

5
.0

4
5

4
1

1
.8

3
6

.3
7

7
.2

1
3

2
.6

4
2

1
.2

1
,4

9
0

.9
4

,5
2

5
.3

4
5

8
8

.6
5

4
.2

1
1

2
.4

1
9

6
.2

6
2

5
.8

2
,3

9
4

.4
7

,5
2

3
.9

4
5

1
2

7
.5

7
0

.4
1

4
2

.9
2

6
2

.5
9

4
2

.0

4
5

1
6

7
.0

8
2

.1
1

6
8

.4
3

4
2

.3
1

,5
3

1
.9

G
EM

m
ap

p
e

r
5

.0
2

4
.0

5
0

.6
6

4
.9

8
6

.4
1

3
1

.0
2

1
7

.3

A
ll

ti
m

e
s

in
ms

.W
e

d
o

n
o

t
p

ro
vi

d
e

ti
m

e
s

fo
r

la
rg

e
sp

ar
si

ti
e

s
an

d
m

o
re

e
rr

o
rs

th
an

3
,s

in
ce

in
su

ch
ca

se
s

th
e

in
te

rn
al

q
u

e
ri

e
s

w
o

u
ld

b
e

fo
r

ve
ry

sh
o

rt
se

q
u

e
n

ce
s

an
d

in
tu

rn
re

su
lt

in
n

u
m

e
ro

u
s

m
at

ch
e

s
an

d
si

g
n

if
ic

an
t

ti
m

e
s;

th
u

s,
w

e
d

o
n

o
t

re
co

m
m

e
n

d
to

u
se

M
u

G
I

in
su

ch
p

ar
am

e
te

r
co

n
fi

g
u

ra
ti

o
n

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
9

3
8

4
.t

0
0

4

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e109384



used for the process. The rest of search is the same as in the basic

search algorithm.

The approximate search algorithm
The approximate search algorithm looks for all occurrences of

the given pattern with some maximum allowed number of

mismatches. According to the well-known property, for any

sequence of length ‘ with m mismatches at least one of the

consecutive substrings of length q~t ‘

mz1s is the same as in the

original sequence. Therefore, the approximate search begins with

dividing the string to mz1 substrings of length q. Next, the exact

search algorithm is used to look for each of the substrings. If a

substring is found in the collection, it is further decoded to the

right and to the left, similarly as in the exact search, but allowing

for at most m differences between the decoded sequence and the

searched sequence. Expanding to the left is done with aid of the

same auxiliary substructure as in the space-efficient version (VD-

invDel). The list of genomes in which the found sequences are

present is obtained in the same way as in the exact searching.

Test data
To evaluate the algorithm, we first used a similar methodology

as the one in [24]. To this end, we generated a file with 100K

queries, where each pattern is a modified excerpt of length

‘~120 . . . 170 (uniformly random value) from a randomly selected

genome from the collection, starting at a randomly selected

position. Excerpts containing undetermined nucleotide (i.e., N)

were rejected. The modifications consisted in introducing random

nucleotides in place of x existing nucleotides, where x is a

randomly selected integer number from the ½0,0:05|‘) range.

Additionally, we use real reads from the 1000GP repository.

There are 140K reads chosen randomly in such a way that each of

14 human populations is represented with 10K reads. Their length

varies between 100 and 120 bp. Both data sets are available at

project home page.

As the index construction costs are not that small (as mentioned

earlier), we provide an exemplary index over the 1000GP data at

our software page.

Results

All experiments were performed on a PC with Intel Core i7

4770 3.4 GHz CPU (4 cores with hyperthreading), equipped with

32 GB of RAM, running Windows 7 OS. The C++ sources were

compiled using GCC 4.7.1 compiler.

The index was built on another machine (2.4 GHz Quad-Core

AMD Opteron CPU with 128 GB RAM running Red Hat 4.1.2-

46) and required more RAM: from 38 GB (for k~25) to 47 GB

(for k~45). The corresponding build times were 15 hours and

72 hours, respectively. The index build phase was based on

parallel sort (using Intel TBB and OpenMP libraries), while all the

queries in our experiments were single-threaded. The correctness

of obtained query results, in exact and approximate matching

mode, was experimentally verified with a set of patterns, for which

a naı̈ve (sequential) scan over all the sequences was run.

From Table 3 we can see that the fastest index version (i.e., with

sparsity 1, which translates to standard k-mer arrays) may work on

the test machine even for the seed maximum length of 40 symbols.

Significant savings in the index size are however possible if sparsity

of 3 or more is set, making the index possible to operate on a

commodity PC with 16 GB of RAM. If one (e.g., a laptop user)

requires even less memory, then the sparsity set to 16 makes it

possible to run the index even in 8 GB of RAM. Naturally, using

Figure 2. Query time percentiles for exact and approximate
matching, for max error up to 5. For example, the 80th percentile
for 1 error equal to 0.52 ms means that 80% of the test patterns were
handled in time up to 0.52 ms each, allowing for 1 mismatch. Simulated
reads were used.
doi:10.1371/journal.pone.0109384.g002

Table 5. Query times for simulated data for k = 40 and sparsity = 3 (size 13.4 GB).

Percentile Max. allowed mismatches

0 1 2 3 4 5

10% 12.4 27.7 44.0 62.1 81.1 100.0

25% 15.4 32.2 50.3 69.9 90.7 111.8

50% 18.7 38.3 58.8 81.4 105.8 131.4

75% 23.8 48.5 73.5 103.7 141.9 199.5

90% 35.9 76.5 116.0 188.0 707.0 3,747.5

95% 57.0 112.7 182.9 718.1 4,972.8 17,619.4

average 39.4 85.5 136.1 372.5 1,334.0 4,021.0

All times in ms.
doi:10.1371/journal.pone.0109384.t005

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109384



T
a

b
le

6
.

Q
u

e
ry

ti
m

e
s

fo
r

va
ri

o
u

s
va

ri
an

ts
o

f
in

d
e

xe
s

fo
r

re
al

d
at

a.

k
sp

ar
si

ty
si

z
e

M
a

x
.

a
ll

o
w

e
d

m
is

m
a

tc
h

e
s

[G
B

]
0

1
2

3
4

2
5

1
2

4
.7

2
1

4
.1

4
8

3
.2

7
4

1
.6

1
,1

2
3

.3
3

,5
6

6
.8

2
5

3
1

1
.8

2
2

7
.6

5
0

9
.4

7
9

1
.1

1
,2

7
1

.6
4

,5
7

5
.3

2
5

4
1

0
.2

2
3

8
.8

5
2

0
.9

7
9

5
.0

1
,3

7
5

.8
5

,1
3

4
.4

2
5

8
7

.7
2

5
9

.1
5

6
9

.2
8

6
5

.3
2

,1
8

0
.1

9
,6

3
4

.0

2
5

1
2

6
.9

2
8

2
.0

6
0

5
.6

9
6

0
.4

4
,0

5
2

.4

2
5

1
6

6
.5

2
9

2
.6

6
4

4
.0

1
,2

6
4

.0
9

,8
8

8
.8

3
0

1
2

6
.3

9
3

.9
2

0
6

.2
3

4
2

.4
9

3
8

.8
3

,6
5

2
.4

3
0

3
1

2
.3

1
0

5
.8

2
3

4
.5

3
8

4
.8

1
,1

9
1

.8
4

,6
9

1
.9

3
0

4
1

0
.6

1
1

1
.2

2
4

1
.7

3
8

6
.8

1
,3

1
0

.5
5

,3
1

0
.1

3
0

8
7

.9
1

3
1

.3
2

8
3

.9
4

8
5

.4
2

,1
8

3
.5

9
,8

6
2

.3

3
0

1
2

7
.1

1
4

9
.2

3
1

6
.0

6
7

4
.2

4
,0

7
5

.0

3
0

1
6

6
.6

1
6

1
.1

3
4

3
.7

1
,0

5
1

.7
1

0
,1

2
8

.0

3
5

1
2

7
.9

5
1

.5
1

0
9

.5
2

0
0

.2
9

7
7

.1
3

,7
8

2
.0

3
5

3
1

2
.9

6
2

.6
1

3
2

.4
2

5
5

.7
1

,2
6

7
.1

5
,2

2
4

.2

3
5

4
1

1
.0

7
5

.2
1

5
6

.7
3

0
7

.5
1

,4
9

1
.0

5
,9

7
7

.3

3
5

8
8

.2
9

4
.3

1
9

3
.3

4
6

3
.7

2
,4

3
4

.8
9

,8
9

3
.8

3
5

1
2

7
.2

9
8

.9
2

0
6

.7
6

3
0

.0
4

,0
9

9
.5

3
5

1
6

6
.8

1
1

3
.2

2
3

0
.7

1
,0

1
8

.4
1

0
,2

6
7

.9

4
0

1
2

9
.6

3
4

.1
6

8
.1

1
9

1
.4

1
,0

0
4

.6
3

,7
9

3
.7

4
0

3
1

3
.4

4
3

.3
9

0
.6

2
5

0
.3

1
,2

4
8

.2
4

,8
7

8
.4

4
0

4
1

1
.4

4
9

.3
1

0
0

.2
2

8
0

.1
1

,3
7

5
.3

5
,4

9
1

.2

4
0

8
8

.4
6

7
.2

1
3

4
.4

4
2

6
.2

2
,2

8
2

.5
1

0
,2

3
6

.1

4
0

1
2

7
.4

8
0

.7
1

6
5

.3
6

4
5

.2
4

,2
4

0
.8

4
0

1
6

6
.9

9
5

.1
1

9
3

.3
1

,0
5

5
.9

1
0

,4
9

7
.4

4
5

2
1

8
.3

3
0

.0
6

1
.3

2
1

9
.2

1
,1

1
6

.7
4

,3
2

7
.8

4
5

3
1

4
.0

3
5

.5
7

2
.7

2
5

9
.0

1
,2

8
1

.7
4

,9
8

8
.0

4
5

4
1

1
.8

4
0

.7
8

2
.2

2
8

3
.5

1
,4

0
1

.1
5

,5
9

8
.8

4
5

8
8

.6
5

8
.3

1
1

8
.4

4
3

2
.1

2
,3

2
0

.6
1

0
,4

2
0

.5

4
5

1
2

7
.5

7
3

.4
1

4
9

.9
6

5
7

.3
4

,2
8

9
.5

4
5

1
6

7
.0

8
6

.4
1

8
2

.4
1

,0
7

2
.4

1
0

,6
4

7
.0

G
EM

m
ap

p
e

r
5

.0
2

2
.1

5
6

.5
7

8
.5

1
2

6
.2

2
2

1
.6

A
ll

ti
m

e
s

in
ms

.W
e

d
o

n
o

t
p

ro
vi

d
e

ti
m

e
s

fo
r

la
rg

e
sp

ar
si

ti
e

s
an

d
m

o
re

e
rr

o
rs

th
an

3
,s

in
ce

in
su

ch
ca

se
s

th
e

in
te

rn
al

q
u

e
ri

e
s

w
o

u
ld

b
e

fo
r

ve
ry

sh
o

rt
se

q
u

e
n

ce
s

an
d

in
tu

rn
re

su
lt

in
n

u
m

e
ro

u
s

m
at

ch
e

s
an

d
si

g
n

if
ic

an
t

ti
m

e
s;

th
u

s,
w

e
d

o
n

o
t

re
co

m
m

e
n

d
to

u
se

M
u

G
I

in
su

ch
p

ar
am

e
te

r
co

n
fi

g
u

ra
ti

o
n

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
9

3
8

4
.t

0
0

6

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109384



larger sparsities comes at a price of slower searches; in Fig. 1, each

series of results for a given value of k corresponds to sparsities from

f1,2, . . . ,8,10,12,14,16g (sparsities of 1 correspond to the right-

most points, with the exception of the case of k~45, for which the

sparsities start from 2). Still, this tradeoff is not very painful: even

the largest allowed sparsity value (16) slows down the fastest (for

sparsity of 1) queries by factor about 2 on average, in most cases.

Costlier, in terms of query times, is handling mismatches. In

particular, allowing 4 or 5 mismatches in the pattern requires at

least an order of magnitude longer query times than in the exact

matching mode. Yet, even for 5 allowed errors the average query

time was below 10 ms in all tests. This translates, for example, to

224 mapped reads per second allowing up to 5 mismatches and

10,593 mapped reads per second with up to 1 mismatch, at index

size of 11.4 GB (k~40, sparsity of 4, simulated reads; cf. Table 4).

Apart from the average case, one is often interested also in the

pessimistic scenario. Our search algorithms do not have interesting

worst-case time complexities, but fortunately pathological cases are

rather rare. To measure this, for each test scenario a histogram of

query times over 100K patterns was gathered, and the time

percentiles are shown in Fig. 2. Note that the easy cases dominate:

for all maximum errors allowed, for 90% test patterns the query

time is below the average. Yet, there are a few percent of test

patterns for which the times are several times longer, and even a

fraction of a percent of patterns with query times exceeding 100

ms (at least for approximate matching). More details exposing the

same phenomenon are presented in Table 5.

While we cannot directly compare our solution to RCSI by

Wandelt et al. [24], as their software is not public, we can show

some comparison. Their index was built over twice less data

(haploid human genomes vs. diploid genomes in our data). We

handle exact matches much faster (over 6 times shorter reported

average times, but considering the difference in test computers this

probably translates to factor about 4). Roughly similar differences

can be observed for the approximate matching scenario, but RCSI

handles the Levenshtein distance, while our scheme handles (so

far) only mismatches. Finally, and perhaps most importantly, our

index over 1092 diploid human genomes can be run on a standard

PC, equipped with 32 or 16 GB of RAM (or even 8 GB, for the

price of more slow-down), while RCSI requires a machine with

128 GB (unless searches are limited to one chromosome, when a

portion of the index may be loaded into memory).

We were are not able to run GCSA [25] or BWBBLE [26], due

to their large memory requirements in the construction phase.

We did, however, ran a preliminary comparison of MuGI

against GEM [34], one of the fastest single genome read mappers.

We ran it on 1 CPU core, for mismatches only, in the all-strata

mode, in which all matches with 0,1, . . . ,max mismatches errors

are reported, in arbitrary order. Table 4 contains a detailed

rundown of the results on simulated reads. For example, we can

see that GEM performed exact matching in 24.0 ms, found

matches with up to 1 mismatch in 50.6 ms, matches with up to 3

mismatches in 86.4 ms, and matches with up to 5 mismatches in

217.3 ms. The memory use was 5.0 GB. This means that,

depending on chosen options of our solution, GEM was only

about twice faster in the exact matching mode and 15–20 times

faster when 5 mismatches were allowed. On real reads (Table 6)

GEM is about 1.5–5 times faster with exact matching and about

10–20 times faster with 3 allowed mismatches. The major scenario

difference is however that GEM performs mapping to a single (i.e.,

our reference) genome, so to obtain the same mapping results

GEM would have to be run 2|1092 times, once per haploid

genome. We thus consider these preliminary comparative results

very promising.

T
a

b
le

7
.

C
o

m
p

ar
is

o
n

o
f

M
u

G
I

an
d

JS
T

o
n

si
m

u
la

te
d

an
d

re
al

d
at

a,
b

o
th

o
ve

r
1

0
9

2
in

d
iv

id
u

al
se

q
u

e
n

ce
s

o
f

ch
r1

.

A
lg

o
ri

th
m

M
a

x
.

a
ll

o
w

e
d

m
is

m
a

tc
h

e
s

R
A

M
u

sa
g

e

0
1

2
3

4
5

[G
B

]

S
im

u
la

te
d

d
a

ta

JS
T

-H
o

rs
p

o
o

l
8

.0
s

—
—

—
—

—
2

.5
8

JS
T

-M
ye

rs
2

2
.5

s
2

4
.0

s
2

3
.9

s
2

4
.3

s
2

4
.5

s
2

4
.9

s
2

.5
8

M
u

G
I,

k
=

3
0

,
sp

a
rs

it
y

=
1

8
.2

ms
1

4
.8

ms
2

2
.7

ms
3

3
.6

ms
6

9
.6

ms
1

7
6

.0
ms

1
.8

4

M
u

G
I,

k
=

3
0

,
sp

a
rs

it
y

=
3

1
0

.7
ms

2
1

.7
ms

3
2

.4
ms

4
7

.9
ms

9
0

.7
ms

2
3

9
.0

ms
0

.9
8

R
e

a
l

d
a

ta

JS
T

-H
o

rs
p

o
o

l
6

.9
s

—
—

—
—

—
2

.5
8

JS
T

-M
ye

rs
1

8
.4

s
1

9
.1

s
1

9
.2

s
2

0
.0

s
2

0
.3

s
2

0
.3

s
2

.5
8

M
u

G
I,

k
=

3
0

,
sp

a
rs

it
y

=
1

7
.6

ms
1

4
.3

ms
2

2
.1

ms
5

3
.4

ms
1

7
2

.3
ms

4
7

6
.5

ms
1

.8
4

M
u

G
I,

k
=

3
0

,
sp

a
rs

it
y

=
3

1
2

.3
ms

2
3

.1
ms

3
5

.3
ms

7
2

.0
ms

2
3

8
.2

ms
6

1
7

.9
ms

0
.9

8

M
u

G
I

w
as

e
xe

cu
te

d
fo

r
p

ar
am

e
te

rs
k

=
3

0
an

d
sp

ar
si

ti
e

s:
1

(i
n

d
e

x
si

ze
2

.0
G

B
),

3
(i

n
d

e
x

si
ze

1
.0

G
B

).
R

e
su

lt
s

fo
r

JS
T

ar
e

av
e

ra
g

e
s

fr
o

m
o

n
ly

1
0

0
q

u
e

ri
e

s
d

u
e

to
ve

ry
lo

n
g

ru
n

n
in

g
ti

m
e

s.
JS

T
ti

m
e

s
in

cl
u

d
e

b
lo

ck
g

e
n

e
ra

ti
o

n
(b

lo
ck

s
o

f
1

0
0

K
SN

P
s

w
e

re
u

se
d

),
b

u
t

in
o

u
r

e
xp

e
ri

m
e

n
ts

th
e

y
ar

e
at

le
as

t
an

o
rd

e
r

o
f

m
ag

n
it

u
d

e
lo

w
e

r
th

an
p

at
te

rn
se

ar
ch

in
g

.J
ST

-H
o

rs
p

o
o

lu
se

s
th

e
B

o
ye

r–
M

o
o

re
–

H
o

rs
p

o
o

le
xa

ct
m

at
ch

in
g

al
g

o
ri

th
m

,w
h

ile
JS

T
-M

ye
rs

u
se

s
M

ye
rs

’b
it

-p
ar

al
le

l
ap

p
ro

xi
m

at
e

m
at

ch
in

g
al

g
o

ri
th

m
,

h
an

d
lin

g
th

e
Le

ve
n

sh
te

in
d

is
ta

n
ce

(k
-d

if
fe

re
n

ce
s)

.
T

h
e

JS
T

in
d

e
x

si
ze

w
as

4
6

8
M

B
,

in
ad

d
it

io
n

to
th

e
2

5
3

M
B

o
f

th
e

re
fe

re
n

ce
se

q
u

e
n

ce
.

N
o

te
it

s
m

e
m

o
ry

u
se

d
u

ri
n

g
th

e
se

ar
ch

is
si

g
n

if
ic

an
tl

y
h

ig
h

e
r

th
an

th
e

in
d

e
x

si
ze

an
d

d
e

p
e

n
d

s
o

n
th

e
b

lo
ck

si
ze

(e
.g

.,
it

s
m

e
m

o
ry

u
se

g
ro

w
s

to
ab

o
u

t
1

3
G

B
w

it
h

b
lo

ck
s

o
f

1
M

SN
P

s)
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
3

8
4

.t
0

0
7

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109384



T
a

b
le

8
.

Si
ze

s
o

f
th

e
in

d
e

x
co

m
p

o
n

e
n

ts
.

k
sp

ar
si

ty
R

E
F

V
D

B
V

k
M

A
0

k
M

A
1

k
M

A
2

k
M

A
3

T
o

ta
l

2
5

1
1

,5
4

8
6

9
8

2
,7

0
4

1
1

,5
0

2
8

,0
2

1
8

4
1

2
3

2
4

,6
8

0

2
5

3
1

,5
4

8
6

9
8

2
,7

0
4

3
,8

7
9

2
,7

3
1

8
4

1
2

3
1

1
,7

6
7

2
5

4
1

,5
4

8
6

9
8

2
,7

0
4

2
,9

2
6

2
,0

7
0

8
4

1
2

3
1

0
,1

5
3

2
5

8
1

,5
4

8
6

9
8

2
,7

0
4

1
,4

9
6

1
,0

7
8

8
4

1
2

3
7

,7
3

2

2
5

1
2

1
,5

4
8

6
9

8
2

,7
0

4
1

,0
2

0
7

4
7

8
4

1
2

3
6

,9
2

5

2
5

1
6

1
,5

4
8

6
9

8
2

,7
0

4
7

8
2

5
8

2
8

4
1

2
3

6
,5

2
1

3
0

1
1

,5
4

8
6

9
8

2
,7

0
4

1
1

,5
0

2
9

,6
3

4
8

5
1

3
7

2
6

,3
0

7

3
0

3
1

,5
4

8
6

9
8

2
,7

0
4

3
,8

7
9

3
,2

7
0

8
5

1
3

7
1

2
,3

2
0

3
0

4
1

,5
4

8
6

9
8

2
,7

0
4

2
,9

2
6

2
,4

7
4

8
5

1
3

7
1

0
,5

7
1

3
0

8
1

,5
4

8
6

9
8

2
,7

0
4

1
,4

9
6

1
,2

8
1

8
5

1
3

7
7

,9
4

8

3
0

1
2

1
,5

4
8

6
9

8
2

,7
0

4
1

,0
2

0
8

8
3

8
5

1
3

7
7

,0
7

4

3
0

1
6

1
,5

4
8

6
9

8
2

,7
0

4
7

8
2

6
8

4
8

5
1

3
7

6
,6

3
7

3
5

1
1

,5
4

8
6

9
8

2
,7

0
4

1
1

,5
0

2
1

1
,2

5
4

8
5

1
5

1
2

7
,9

4
2

3
5

3
1

,5
4

8
6

9
8

2
,7

0
4

3
,8

7
9

3
,8

1
0

8
5

1
5

1
1

2
,8

7
5

3
5

4
1

,5
4

8
6

9
8

2
,7

0
4

2
,9

2
6

2
,8

8
0

8
5

1
5

1
1

0
,9

9
2

3
5

8
1

,5
4

8
6

9
8

2
,7

0
4

1
,4

9
6

1
,4

8
4

8
5

1
5

1
8

,1
6

7

3
5

1
2

1
,5

4
8

6
9

8
2

,7
0

4
1

,0
2

0
1

,0
1

9
8

5
1

5
1

7
,2

2
5

3
5

1
6

1
,5

4
8

6
9

8
2

,7
0

4
7

8
2

7
8

6
8

5
1

5
1

6
,7

5
4

4
0

1
1

,5
4

8
6

9
8

2
,7

0
4

1
1

,5
0

2
1

2
,8

8
1

8
6

1
6

6
2

9
,5

8
4

4
0

3
1

,5
4

8
6

9
8

2
,7

0
4

3
,8

7
9

4
,3

5
4

8
6

1
6

6
1

3
,4

3
4

4
0

4
1

,5
4

8
6

9
8

2
,7

0
4

2
,9

2
6

3
,2

8
8

8
6

1
6

6
1

1
,4

1
5

4
0

8
1

,5
4

8
6

9
8

2
,7

0
4

1
,4

9
6

1
,6

8
9

8
6

1
6

6
8

,3
8

7

4
0

1
2

1
,5

4
8

6
9

8
2

,7
0

4
1

,0
2

0
1

,1
5

6
8

6
1

6
6

7
,3

7
7

4
0

1
6

1
,5

4
8

6
9

8
2

,7
0

4
7

8
2

8
8

9
8

6
1

6
6

6
,8

7
2

4
5

1
1

,5
4

8
6

9
8

2
,7

0
4

1
1

,5
0

2
1

4
,5

1
5

8
6

1
8

1
3

1
,2

3
4

4
5

2
1

,5
4

8
6

9
8

2
,7

0
4

5
,7

8
4

7
,3

0
3

8
6

1
8

1
1

8
,3

0
5

4
5

4
1

,5
4

8
6

9
8

2
,7

0
4

2
,9

2
6

3
,6

9
7

8
6

1
8

1
1

1
,8

4
0

4
5

8
1

,5
4

8
6

9
8

2
,7

0
4

1
,4

9
6

1
,8

9
4

8
6

1
8

1
8

,6
0

8

4
5

1
2

1
,5

4
8

6
9

8
2

,7
0

4
1

,0
2

0
1

,2
9

3
8

6
1

8
1

7
,5

3
1

4
5

1
6

1
,5

4
8

6
9

8
2

,7
0

4
7

8
2

9
9

3
8

6
1

8
1

6
,9

9
2

A
ll

si
ze

s
in

M
B

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
9

3
8

4
.t

0
0

8

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e109384



Finally, in Table 7 we compare MuGI against a recent tool JST

by Rahn et al. [27]. As we can see, MuGI is usually 5–6 orders of

magnitude faster at somewhat less memory consumption. This

huge gap in performance can be explained with two different

search ‘‘philosophies’’: sequential scan over the reference sequence

in JST vs. fully indexed search in MuGI. As in this test we used

only chr1 data (1092 sequences), the performance gap would

probably be larger with the full human collection. On the other

hand, we admit that JST performance with growing k (the

maximum allowed number of errors) remains unchanged (which is

a property of Myers’ algorithm), therefore this scheme might be a

satisfactory choice for a collection of short and highly-varied

genomes.

Discussion

We presented an efficient index for exact and approximate

searching over large repetitive genomic collections, in particular:

multiple genomes of the same species. This has a natural

application in aligning sequencing reads against a collection of

genomes, with expected benefits for, e.g., personalized medicine

and deeper understanding of the interaction between genotype

and phenotype. Experiments show that the index built over a

collection of 2|1092 human genomes fits a PC machine with

16 GB of RAM, or even half less, for the price of some slow-down.

According to our knowledge, this is the first feat of this kind. The

obtained solution is capable of finding all pattern occurrences in

the collection in much below 1 ms in most use scenarios.

We point out that representing a ‘‘true’’ genome as a linear

sequence over the ACGT(N) alphabet is inherently imperfect,

since our knowledge about these sequences is (and will likely

remain in the near future) limited. Every sequencing technology

introduces its errors, therefore storing qualities (i.e., estimated
correctness probabilities) together with the DNA symbols would

convey more information useful for read mapping, yet we are

unable to imagine an index over large collections based on such

information not requiring huge amount of resources (especially

main memory) in its runtime and construction stages. Moreover,

large discrepancies between the reference and a given genome,

e.g., long indels, result in reads that cannot be usually mapped,

which implies incomplete variant information in the built VCF.

Basically for those reasons the application of MuGI (and related

software, like RCSI or BWBBLE) for mapping sequencing reads

trades some accuracy for performance and reasonable memory

use, yet with improving sequencing technologies the obtained

mapping results should also be more valuable.

On the other hand, we should stress that MuGI is an index

rather than a full-fledged read mapper. Aligning reads to multiple

genomes is one of its possible applications. Another example could

be searching for nullomers, that is, k-mers with no occurrences in

a given genome (or, in our scenario, genome collection). To apply

MuGI here, we may generate random strings of specified length

(e.g., 20) in a loop and check if they have any occurrence; we may

also force the mimimum distance to any 20-mer in the genome to

be 2 or 3, with running the MuGI engine in the approximate

matching mode, to minimize the impact of noisy data in a

genome, at still acceptable search speed. Also a closely related

problem of finding the minimal absent word was investigated in

the literature, and it can be solved with MuGI with a systematic

scan over its component structures. Nullomers/minimal absent

words can be used for studies of population genetics, drug

discovery and development, evolution studies, design of molecular

barcodes or specific adaptors for PCR primers [35,36]. Other (or

more general) areas for application of our algorithm may include

comparative genomics and personalized medicine.

Several aspects of the presented index require further develop-

ment. The current approximate matching model comprises

mismatches only; it is desirable to extend it to edit distance. The

pathological query times could be improved with extra heuristics

(even if it is almost irrelevant for large bulk queries). A more

practical speedup idea is to enhance the implementation with

multi-threading. Some tradeoffs in component data structures (cf.

Table 8) may be explored, e.g., the reference genome may be

encoded more compactly but at a cost of somewhat slower access.

A soft spot of the current implementation is the index construction

phase, which is rather naı̈ve and can be optimized especially

towards reduced memory requirements. We believe that existing

disk-based suffix array creation algorithms (e.g., [37]) can be

adapted for this purpose. Alternatively, we could build our

indexing data structure separately for each chromosome (with

memory use for the construction reduced by an order of

magnitude) and then merge those substructures, onto disk, using

little memory. The sparse suffix array may be replaced with a

sampled suffix array variant [38], for a hopefully faster search at a

similar space consumption. Finally, experiments on other collec-

tions should be interesting, particularly on highly-polymorphic

ones.

Supporting Information

Data S1 Supplementary material.

(PDF)

Author Contributions

Conceived and designed the experiments: AD SD SG. Performed the

experiments: AD SD. Analyzed the data: AD SD SG. Contributed

reagents/materials/analysis tools: AD SD. Wrote the paper: AD SD SG.

References

1. Sadakane K, Shibuya T (2001) Indexing huge genome sequences for solving

various problems. Genome Informatics Series 12: 175–183.

2. Hon WK, Sadakane K, Sung WK (2009) Breaking a time-and-space barrier in

constructing full-text indices. SIAM Journal of Computing 38: 2162–2178.

3. Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, et al. (2009)

Simultaneous alignment of short reads against multiple genomes. Genome

Biology 10: Article no.R98.

4. Navarro G, Mäkinen V (2007) Compressed full-text indexes. ACM Computing

Surveys 39: Article no.2.

5. Christley S, Lu Y, Li C, Xie X (2009) Human genomes as email attachments.

Binformatics 25: 274–275.

6. Brandon M, Wallace D, Baldi P (2009) Data structures and compression

algorithms for genomic sequence data. Bioinformatics 25: 1731–1738.

7. Claude F, Fariña A, Martı́nez-Pietro M, Navarro G (2010) Compressed q-gram

indexing for highly repetitive biological sequences. In: Proceedings of the 10th

IEEE Conference on Bioinformatics and Bioengineering. pp. 86–91.

8. Kuruppu S, Puglisi S, Zobel J (2010) Relative Lempel–Ziv compression of

genomes for large-scale storage and retrieval. LNCS 6393: 201–206.

9. Kuruppu S, Puglisi S, Zobel J (2011) Optimized relative Lempel–Ziv

compression of genomes. In: Proceedings of the ACSC Australasian Computer

Science Conference. pp. 91–98.

10. Deorowicz S, Grabowski S (2011) Robust relative compression of genomes with

random access. Bioinformatics 27: 2979–2986.

11. Kreft S, Navarro G (2013) On compressing and indexing repetitive sequences.

Theoretical Computer Science 483: 115–133.

12. Yang X, Wang B, Li C, Wang J, Xie X (2013) Efficient direct search on

compressed genomic data. In: Proceedings of the IEEE 29th International

Conference on Data Engineering. pp. 961–972.

13. Pavlichin D, Weissman T, Yona G (2013) The human genome contracts again.

Bioinformatics 29: 2199–2202.

14. Deorowicz S, Danek A, Grabowski S (2013) Genome compression: a novel

approach for large collections. Bioinformatics 29: 2572–2578.

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e109384



15. Wandelt S, Leser U (2014) FRESCO: Referential compression of highly-similar

sequences. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics 10: 1275–1288.

16. Vyverman M, De Baets B, Fack V, Dawyndt P (2012) Prospects and limitations

of full-text index structures in genome analysis. Nucleic Acids Research 40:
6993–7015.

17. Deorowicz S, Grabowski S (2013) Data compression for sequencing data.
Algorithms for Molecular Biology 8: Article no.25.

18. Giancarlo R, Rombo S, Utro F (2014) Compressive biological sequence analysis

and archival in the era of high-throughput sequencing technologies. Briefings in
Bioinformatics 15: 390–406.

19. Mäkinen V, Navarro G, Sirén J, Välimäki N (2010) Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology 17:

281–308.
20. Huang S, Lam T, Sung W, Tam S, Yiu S (2010) Indexing similar DNA

sequences. LNCS 6124: 180–190.

21. Gagie T, Gawrychowski P, Puglisi S (2011) Faster approximate pattern
matching in compressed repetitive texts. LNCS 7074: 653–662.

22. Do H, Jansson J, Sadakane K, Sung WK (2014) Fast relative Lempel-Ziv self-
index for similar sequences. Theoretical Computer Science 532: 14–30.

23. Ferrada H, Gagie T, Hirvola T, Puglisi S (2014) Hybrid indexes for repetitive

datasets. Philosophical Transactions of The Royal Society A 372: Article
no.2016.

24. Wandelt S, Starlinger J, Bux M, Leser U (2013) RCSI: Scalable similarity search
in thousand(s) of genomes. Proceedings of the VLDB Endowment 6: 1534–1545.

25. Sirén J, Välimäki N, Mäkinen V (2014) Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational

Biology and Bioinformatics 11: 375–388.

26. Huang L, Popic V, Batzoglou S (2013) Short read alignment with populations of

genomes. Bioinformatics 29: i361–i370.

27. Rahn R, Weese D, Reinert K (2014) Journaled string tree—a scalable data

structure for analyzing thousands of similar genomes on your laptop.

Bioinformatics : doi: 10.1093/bioinformatics/btu438.

28. Durbin R (2014) Efficient haplotype matching and storage using the Positional

Burrows–Wheeler transform (PBWT). Bioinformatics 30: 1266–1272.

29. Thachuk C (2013) Compressed indexes for text with wildcards. Theoretical

Computer Science 483: 22–35.

30. Hon WK, Ku TH, Shah R, Thankachan S, Vitter J (2013) Compressed text

indexing with wildcards. Journal of Discrete Algorithms 19: 23–29.

31. Danecek P, Auton A, Abecasis G, Albers C, Banks E, et al. (2011) The variant

call format and VCFtools. Bioinformatics 27: 2156–2158.

32. Consortium TGP (2012) An integrated map of genetic variation from 1,092

human genomes. Nature 491: 56–65.

33. Kärkkäinen J, Ukkonen E (1996) Sparse suffix trees. LNCS 1090: 219–230.

34. Marco-Sola S, Sammeth M, Guigó R, Ribeca P (2012) The GEM mapper: fast,

accurate and versatile alignment by filtration. Nature Methods 9: 1185–1188.

35. Hampikian G, Andersen T (2007) Absent sequences: nullomers and primes. In:

Pacific Symposium on Biocomputing. volume 12, pp. 355–366.

36. Garcia S, Pinho A, Rodrigues J, Bastos C, Ferreira P (2011) Minimal absent

words in prokaryotic and eukaryotic genomes. PloS ONE 6: e16065.

37. Kärkkäinen J (2007) Fast BWT in small space by blockwise suffix sorting.

Theoretical Computer Science 387: 249–257.

38. Grabowski S, Raniszewski M (2014) Sampling the suffix array with minimizers.

arXiv preprint http://arxivorg/abs/14062348.

Indexes of Large Genome Collections on a PC

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e109384

http://arxivorg/abs/14062348

