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Abstract Embryogenesis is a multiscale process during which developmental symmetry breaking 
transitions give rise to complex multicellular organisms. Recent advances in high-resolution live-cell 
microscopy provide unprecedented insights into the collective cell dynamics at various stages of 
embryonic development. This rapid experimental progress poses the theoretical challenge of trans-
lating high-dimensional imaging data into predictive low-dimensional models that capture the essen-
tial ordering principles governing developmental cell migration in complex geometries. Here, we 
combine mode decomposition ideas that have proved successful in condensed matter physics and 
turbulence theory with recent advances in sparse dynamical systems inference to realize a computa-
tional framework for learning quantitative continuum models from single-cell imaging data. Consid-
ering pan-embryo cell migration during early gastrulation in zebrafish as a widely studied example, 
we show how cell trajectory data on a curved surface can be coarse-grained and compressed with 
suitable harmonic basis functions. The resulting low-dimensional representation of the collective cell 
dynamics enables a compact characterization of developmental symmetry breaking and the direct 
inference of an interpretable hydrodynamic model, which reveals similarities between pan-embryo 
cell migration and active Brownian particle dynamics on curved surfaces. Due to its generic concep-
tual foundation, we expect that mode-based model learning can help advance the quantitative 
biophysical understanding of a wide range of developmental structure formation processes.

Editor's evaluation
This work proposes a method to obtain a reduced description of the collective dynamics of thou-
sands of cells moving together during zebrafish gastrulation as a few fundamental modes, and to 
derive effective dynamics for these modes. This well-written work enables a simplified picture of the 
key features of cellular collective motion, that will be useful to physicists and biologists looking for a 
quantitative understanding of morphogenesis.

Introduction
Embryogenesis, the development of a multicellular organism from a single fertilized egg cell, requires 
coordinated collective motions of thousands of cells across a wide range of length and time scales 
(Gilbert and Barresi, 2016; Solnica-Krezel, 2005). Understanding how a highly reproducible and 
robust tissue organization arises from the dynamics and interactions of individual cells presents a 
major interdisciplinary challenge (Collinet and Lecuit, 2021). Recent advances in high-resolution live 
imaging make it possible to track the internal biological states and physical movements of many 
individual cells on pan-embryonic scales throughout various stages of development (Stelzer, 2015; 
Power and Huisken, 2017; Hartmann et al., 2019; Shah et al., 2019). This unprecedented wealth 
of data poses two intertwined compression problems of equal practical and conceptual importance. 
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The first concerns the efficient reduction of high-dimensional tracking data without loss of relevant 
information; the second relates to inferring predictive low-dimensional models for the developmental 
dynamics. Mathematical solutions to the first problem are aided by taking into account the geom-
etry and symmetries of the developing embryo, which suggest suitable basis functions for a coarse-
grained and sparse mode representation of raw data (Levy, 2006). Efficient algorithmic approaches 
tackling the second problem appear within reach thanks to recent advances in the direct inference 
of dynamical systems equations from data (Brunton et al., 2016; Rackauckas et al., 2021). Building 
on these ideas, we construct and demonstrate here a computational framework that translates devel-
opmental single-cell trajectory data on curved surfaces into quantitative models for the dominant 
hydrodynamic modes.

Widely applied in physics (Kac, 1966; Goldenfeld and Woese, 2011; Kantsler and Goldstein, 
2012; Bhaduri et al., 2020), engineering (Soong and Grigoriu, 1993; Heydari et al., 2021), and 
spectral computing (Driscoll et al., 2014; Burns et al., 2020; Fortunato et al., 2021), mode repre-
sentations (Schmid, 2010; Tu et al., 2014) provide a powerful tool to decompose and study system 
dynamics at and across different energetic, spatial and temporal scales. In quantum systems, for 
example, mode representations in the form of carefully constructed eigenstates are used to char-
acterize essential energetic system properties (Slater and Koster, 1954; Jaynes and Cummings, 
1963). Similarly, turbulence theory has seen significant progress by studying the coupling between 
Fourier modes that represent dynamics at different length scales. This approach enabled a better 
understanding of energy cascades (Kolmogorov, 1941; Wang et al., 2021) and provided insights 
into the nature of turbulence in non-living (Kraichnan and Montgomery, 1980; Pope, 2000) and 
in living (Dunkel et al., 2013; Bratanov et al., 2015; Ramaswamy and Jülicher, 2016; Alert et al., 
2020) systems. Additionally, the multi-scale nature of many biological processes make them particu-
larly amenable to a representation in terms of spatial and temporal modes (Marchetti et al., 2013). 
Despite this fact, however, mode representations are not yet widely used to characterize and compress 
cell tracking data, or to infer dynamic models from such data.

To demonstrate the practical potential of mode representations for the description of multicel-
lular developmental processes, we develop here a computational framework that takes cell tracking 
data as inputs, translates these data into a sparse mode representation by exploiting symmetries of 
the biological system, and utilizes recently developed ODE inference techniques (Rackauckas et al., 
2021) to infer a predictive dynamical model. The model will be specified in terms of a learned Green’s 
function that propagates initial cell density and flux data forward in time. To validate the approach, we 
demonstrate that it correctly recovers the hydrodynamic equations for active Brownian particle (ABP) 
dynamics on curved surfaces. Subsequently, as a first example application to experimental single-cell 
tracking data, we consider the pan-embryonic cell migration during early gastrulation in zebrafish 
(Shah et al., 2019), an important vertebrate model system for studying various morphogenetic events 
(Solnica-Krezel, 2005; Krieg et al., 2008; Morita et al., 2017). During gastrulation, complex migra-
tory cell movements organize several thousand initially undifferentiated cells into different germlayers 
that lay out the primary body plan (Rohde and Heisenberg, 2007). The underlying high-dimensional 
single-cell data make this process a prototypical test problem for illustrating how spatio-temporal 
information can be efficiently compressed to analyze and model biological structure formation.

Results
Broadly, our goal is to translate experimentally measured single-cell trajectories on a curved surface 
into a quantitative model of collective cell migration dynamics. As a specific example, we consider 
recently published lightsheet microscopy data that captures the individual movements of thou-
sands of cells during early zebrafish development from epiboly onset at 4  hours post-fertilization 
(hpf) to about 18 hpf (Shah et al., 2019). This developmental period is characterized by a collective 
symmetry breaking event during which cells collectively migrate over the yolk cell surface (Rohde and 
Heisenberg, 2007). Namely, they rearrange from an initial localization around the animal pole (AP) 
(Figure 1A, left) into a more elongated configuration that already indicates the basic geometry of the 
fully developed zebrafish larva (Figure 1A, right). Working with a two-dimensional (2D) sphere projec-
tion of the experimental data, we first describe a coarse-graining approach that faithfully captures 
cell-mass transport on a curved surface. We then construct a sparse mode representation of the 
resulting hydrodynamic fields in terms of scalar and vector spherical harmonic basis functions, discuss 
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Figure 1. From single-cell tracking data to sparse mode amplitude representations. (A) Microscopic imaging data of early zebrafish development 
(adapted from Figure 1b in Kobitski et al., 2015) shows cell migration from an initially homogeneous pole of cells (left) toward an elongated structure 
that indicates the head-tail axis of the fully developed organism. Scale bar, ‍100µm‍. (B) Experimental single-cell tracking data from Shah et al., 2019 
(blue dots) during similar developmental time points (±20 min) as in A. ‍t = 0‍ min for the indicated time points in B corresponds to a developmental time 

Figure 1 continued on next page
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mode signatures of morphogenetic symmetry breaking events, and connect them to the dynamics 
of topological defects in the cellular flux. We validate this mode representation framework and the 
subsequent model inference using synthetic data of ABPs on a sphere, for which coarse-grained 
fields and learned models can be directly compared against analytical predictions. Finally, we infer a 
linear model for the mode dynamics of the experimental zebrafish data, which enables us to study the 
characteristics of cell interactions through kernels that couple cell density and flux and compare their 
features with the hydrodynamic mean-field signatures of ABPs on a sphere.

Coarse-graining of cellular dynamics on a spherical surface
The experimentally observed cell motions are approximately two-dimensional (2D): The radius of the 
yolk cell surface on which the dynamics takes place is much larger than the average height changes of 
the evolving cell mass (Shah et al., 2019). We therefore adopt a thin film approximation, in which the 
cellular motion is represented on an effective spherical mid-surface (gray surface in Figure 1B); refined 
future models should aim to account for the full 3D dynamics. Focusing here on the in-plane dynamics, 
we project all cell positions and velocities onto a spherical mid-surface ‍S‍ of radius ‍Rs = 300µm‍. On 
this spherical surface, each cell ‍α = 1, 2, ..., N ‍ has a position ‍rα(t)‍ and in-plane velocity ‍vα(t) = drα/dt‍.

As a second processing step, a coarse-grained representation of the single-cell dynamics on a 
spherical surface is determined. To facilitate the 
applicability of our framework to a wide range 
of experimental inputs, we propose a coarse-
graining approach that can flexibly integrate cell 
number variations stemming from cell divisions, 
but also those from experimental uncertainties 
in cell imaging and tracking. Consequently, we 
first consider an idealized scenario in which the 
total cell number is approximately constant. In 
this case, mass conservation informs the construc-
tion of self-consistent coarse-graining kernels on 
a spherical surface. In a second step, we describe 
how this approach generalizes when there are 
variations in the total cell number.

Consistent coarse-graining of ideal-
ized microscopic data
Our specific aim is to translate microscopic cell 
positions ‍rα(t)‍ and velocities ‍vα(t)‍ into a contin-
uous cell surface density ‍ρ(r, t)‍ and an associ-
ated flux ‍J(r, t)‍ at any point ‍r‍ of the spherical 
mid-surface. For an approximately constant total 
number of cells, the fields ‍ρ‍ and ‍J‍ are related by 
the mass conservation equation

of 4 hours post fertilization. The ‍z‍-axis points from the ventral pole (VP) to the animal pole (AP). (C) Coarse-grained relative cell density ‍ρ(r, t)‍ (color) 
and associated coarse-grained flux ‍J(r, t)‍ (streamlines) determined from single cell positions and velocities from data in B via Equation 2a. Thickness 
of streamlines is proportional to the logarithm of the spatial average of ‍|J|‍ (see Video 1). (D) Dynamic harmonic mode representation of the relative 
density ‍ρ(r, t)‍ (Equation 4, left panel) and of the flux ‍J(r, t)‍ (Equation 5, middle and right panel) for fields shown in C. The modes ‍j

(1)
lm ‍ correspond to 

compressible, divergent cell motion, the modes ‍j
(2)
lm ‍ describe incompressible, rotational cell motion. Mode amplitudes become negligible for ‍l ≥ 5‍ 

(Video 2). For all panels, horizontal black lines delineate blocks of constant harmonic mode number ‍l‍ and black triangles denote the end of epiboly 
phase.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Convergence of spectral representation.

Figure 1 continued

Video 1. Time evolution of the pre-processed cell 
tracking data (point cloud, see Materials and methods), 
and of the density field ‍ρ(r, t)‍ (colormap) and 
associated flux ‍J(r, t)‍ (streamlines) corresponding to 

the harmonic modes ‍{ρlm, j(1)
lm , j(2)

lm }‍ shown in Figure 1D. 

This mode representation was determined by the 
coarse-graining and projection procedure described 
in the main text. Streamline thickness is proportional 
to the logarithm of the average flux amplitude ‍⟨|J|⟩s‍. 
For visualization purposes, cell distances to the origin 
were rescaled by a factor of ‍1.2Rs/⟨R(t)⟩‍, where ‍⟨R(t)⟩‍ 
is the average cell distance from center at time ‍t‍ and 

‍Rs = 300µm‍ is the mid-surface radius.

https://elifesciences.org/articles/68679/figures#video1
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	﻿‍
∂ρ
∂t + ∇S · J = 0.‍� (1)

Here, ‍∇S · J‍ denotes the in-plane divergence of the cell number flux. To convert cell position ‍rα(t)‍ and 
velocities ‍vα(t)‍ into a normalized cell surface density ‍ρ(r, t)‍ and an associated normalized flux ‍J(r, t)‍, we 
consider a kernel coarse-graining of the form (Appendix 1)

	﻿‍
ρ(r, t) = 1

N

N∑
α=1

K
[
r, rα(t)

]
‍�

(2a)

	﻿‍
J(r, t) = 1

N

N∑
α=1

K
[
r, rα(t)

]
· v̄α,

‍�
(2b)

where ‍N ‍ is the total number of cells and ‍̄vα = vα/|rα|‍ is the angular velocity of a given cell on a refer-
ence unit sphere (Appendix 1). The kernels ‍K(r, r′)‍ and ‍K(r, r′)‍ are given by a scalar and a matrix-
valued function, respectively. The matrix kernel ‍K(r, r′)‍ takes into account contributions of a particle 
with velocity ‍vα‍ at ‍r′ = rα‍ to nearby points ‍r‍ on the sphere, which involves an additional projection 
to ensure that ‍J(r, t)‍ is everywhere tangent to the spherical surface (Appendix 1). Importantly, the 
mass conservation Equation 1 implies a non-trivial consistency relation between the kernels ‍K(r, r′)‍ 
and ‍K(r, r′)‍ in Equation 2a, Equation 2b. The kernels that obey this condition represent different 
coarse-graining length scales (Appendix 1—figure 2). Throughout, we fix an intermediate coarse-
graining length scale to enable a sparse representation of the experimental data, while ensuring that 
spatial details of the dynamics remain sufficiently well resolved. The final surface density ‍ρ(r, t)‍ and the 
associated normalized flux ‍J(r, t)‍, computed from Equation 2a and Equation 2b using a kernel with 
an effective great-circle coarse-graining width of ‍∼ 70µm‍, are shown in Figure 1C (see also Video 1).

Consequences of cell number variations in experimental data
Because cell divisions are essential to most developmental processes, total cell numbers will in many 
cases – including early zebrafish gastrulation (Kobitski et al., 2015) – vary over time. True cell numbers 
and cell number changes are often difficult to measure due to experimental uncertainties arising from 
single-cell imaging and tracking within dense cellular aggregates. We therefore merely assume here 
that single cells are tracked in a representative fashion so that local relative surface densities found 
from Equation 2a reflect the probability that cells are present at a given point ‍r‍. In the absence of 
further information on cell deaths and cell divisions, we additionally make the more restrictive assump-
tion that cell appearances or disappearances are everywhere proportional to the local cell density. 
With these assumptions, we can define a cell number surface density ‍̃ρ(r, t) = N(t)ρ(r, t)‍, where ‍N(t)‍ is 
the cell number at time ‍t‍ and ‍ρ(r, t)‍ is the normalized surface density given in Equation 2a. Similarly, 
a cell number flux is given by ‍̃J(r, t) = N(t)J(r, t)‍, where the flux ‍J(r, t)‍ is computed from the data as 
described by Equation 2b. Using these definitions in Equation 1, we find that the fields ‍̃ρ(r, t)‍ and 

‍̃J(r, t)‍ obey a continuity equation

	﻿‍
∂ρ̃
∂t + ∇S · J̃ = k(t)ρ̃,‍� (3)

where ‍k(t) = Ṅ(t)/N(t)‍ denotes a time-dependent effective growth rate. Importantly, under the two 
above assumptions, Equation 3 encodes for any time-dependent total cell number ‍N(t) > 0‍ the same 
information as Equation 1 for coarse-grained normalized surface density ‍ρ(r, t)‍ and associated flux 

‍J(r, t)‍ given by Equation 2a and Equation 2b, respectively. In the following analysis, we hence focus 
on these normalized fields.

Spatial mode representation on a spherical surface
To obtain a sparse mode representation of the hydrodynamic fields ‍ρ(r, t)‍ and ‍J(r, t)‍ on the spher-
ical surface, we expand them in terms of scalar and vector spherical harmonics (SHs) (Arfken et al., 
2013; Sandberg, 1978) (Appendix 2.A). SHs are defined on points ‍̂r = r/Rs‍ of the unit sphere, where 
‍Rs = 300‍ μm is the mid-surface radius. In this basis, the scalar density field is represented as

	﻿‍
ρ(r, t) =

lmax∑
l=0

l∑
m=−1

ρlm(t)Ylm(r̂),
‍�

(4)

https://doi.org/10.7554/eLife.68679
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which conveniently separates the time- and space-
dependence of ‍ρ(r, t)‍ into mode amplitudes ‍ρlm(t)‍ 
and scalar harmonic functions ‍Ylm(r̂)‍, respectively. 
The maximal mode number ‍lmax‍ is a proxy for the 
maximal spatial resolution at which ‍ρ(r, t)‍ is faith-
fully represented. Similarly, the vector-valued flux 

‍J(r, t)‍ can be decomposed into time-dependent 
mode amplitudes ‍j

(1)
lm (t)‍ and ‍j

(2)
lm (t)‍, while its 

spatial dependence is described by vector SHs 

‍Ψlm(r̂)‍ and ‍Φlm(r̂)‍ (Sandberg, 1978) (Appendix 2, 
Video 2).

	
‍
J(r, t) =

∑lmax
l=1

∑l
m=−l

(
j(1)
lm (t)Ψlm(r̂) + j(2)

lm (t)Φlm(r̂)
)

.
‍

� (5)

Besides the in-plane divergence ‍∇S · J‍ that 
leads to local density changes (see Equation 
1), the cell number flux ‍J(r, t)‍ also contains an 
in-plane curl component ‍∇S × J‍ that is asso-
ciated with locally rotational cell flux. The two 
sets of vector SHs ‍{Ψlm}‍ and ‍{Φlm}‍ conve-

niently decompose the flux into these contributions: Because ‍∇S ·Φlm = ∇S ×Ψlm = 0‍, and 

‍̂r ·
(
∇S ×Φlm

)
= ∇S ·Ψlm = −l(l + 1)Ylm/Rs‍ (Sandberg, 1978), we see from Equation 5 that ‍j

(1)
lm (t)‍ 

corresponds to modes that drive density changes and ‍j
(2)
lm (t)‍ represents modes of local rotational cell 

motion that change relative cell positions but do not change local density. Indeed, using harmonic 
mode representations of the cell number density Equation 4 and the cell number flux Equation 5 
directly in the continuity Equation 1, we find a set of ordinary differential equation in mode space

	﻿‍
d
dtρlm(t) = l(l+1)

Rs
j(1)
lm (t),‍� (6)

where ‍l = 0, 1, ..., lmax‍ and for each value of ‍l‍, ‍m = −l,−l + 1, ..., l − 1, l‍. Equation 6 offers an alterna-
tive way of determining the modes ‍j

(1)
lm (t)‍ directly from the modes ‍ρlm(t)‍ of the coarse-grained cell 

number density (see Equation 4 and Equation 2a), while ensuring that the resulting fields obey mass 
conservation exactly. In practice, the modes ‍j

(1)
lm (t)‍ found from a vector harmonic representation of 

the coarse-grained cell number flux (Equation 2b) will often deviate from modes ‍j
(1)
lm (t)‍ determined 

from Equation 6, even if cell numbers are expected to be conserved. This can be, for example, due 
to limited accuracy in determining velocities ‍vα(t)‍ from noisy single-cell trajectories ‍rα(t)‍, or due to 
spatially inhomogeneous appearances and disappearances of cells in tracking data. Consistent with 
our simplifying assumption that cell number changes in the data can be sufficiently well approximated 
by a globally homogeneous growth rate (compare Equation 1 with Equation 3), the subsequent 
analysis uses the modes ‍j

(1)
lm (t)‍ as determined from the density modes ‍ρlm(t)‍ via Equation 6, together 

with modes ‍j
(2)
lm (t)‍ from the explicit velocity coarse-graining Equation 2b. The complete construction 

is detailed in Appendix 2 and the full coarse-grained dynamics is shown in Video 1.
The representation of ‍ρ(r, t)‍ and ‍J(r, t)‍ in terms of spherical harmonic modes with ‍l ≤ lmax‍ leads 

in total to ‍3(lmax + 1)2
‍ mode amplitude trajectories, displaying only a few dominant contributions 

(Figure 1D) with almost no signal remaining for ‍l ≥ 5‍ (Figure 1—figure supplement 1, Video 2). This 
demonstrates that the underlying coarse-grained experimental data is sufficiently smooth and implies 
that a spectral representations is indeed meaningful. Thus, the coarse-graining approach outlined 
above provides a sparse spectral representation of high-dimensional microscopic single-cell data. 
The associated harmonic basis functions and vectors have an intuitive physical meaning, convenient 
algebraic properties and, as we will see, encode information about the length scales and symmetries 
of the collective dynamics.

Video 2. Reconstruction of the hydrodynamics fields 
in real space by adding consecutive scalar and vector 
spherical harmonic modes of progressively higher order 
‍l‍. Surface coloring depicts the density field ‍ρ(r, t)‍, 
the associated flux ‍J(r, t)‍ is indicated by streamlines. 
Streamline thickness is proportional to the logarithm 
of the average flux amplitude ‍⟨|J|⟩s‍. The shown fields 
correspond to the time point ‍t = 420‍ min in Video 1.

https://elifesciences.org/articles/68679/figures#video2
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Temporal mode representation
We further compress the dynamical information by representing the time series of the modes in terms 
of Chebyshev polynomial basis functions ‍Tn(t)‍ (Driscoll et al., 2014; Mason and Handscomb, 2002). 

To simplify notation, we define a dynamic mode vector ‍a(t) = [ρlm(t), j(1)
lm (t), j(2)

lm (t)]⊤‍ that collects all the 
modes up to ‍l = lmax‍ determined in the previous section and consider an expansion

	﻿‍
a(t) =

nmax∑
n=0

Tn(t) ân
‍�

(7)

in terms of the spatio-temporal mode coefficients ‍̂an‍ with temporal mode number ‍n‍ (Appendix 2). This 
compression allows us to accurately evaluate time derivatives of the mode amplitudes (Supekar et al., 

2021), an important step when using Equation 6 to determine flux modes ‍j
(1)
lm (t)‍ directly from density 

modes ‍ρlm‍. Fixing ‍lmax = 4‍ and ‍nmax = 30‍ in the remainder, the initial single-cell data set of about 
1.4 million recorded cell position entries, or 4.2 million degrees of freedom, has thus been reduced to 
2250 mode coefficients, corresponding to a compression ratio ‍≳ 1800‍.

Characterization of the developmental mode dynamics
A harmonic mode decomposition naturally integrates the geometry of the underlying domain and 
simultaneously provides useful insights into spatial scales and symmetries of the dynamics. For each 
mode ‍(lm)‍ in the sets of SHs ‍{Ylm}‍, ‍{Ψlm}‍ and ‍{Φlm}‍, the integer index ‍l‍ indicates the spatial scale 
of the harmonic, with ‍l = 0‍ being a constant and larger ‍l‍ indicating progressively finer spatial scales. 
The second index ‍m ∈ {−l,−l + 1, . . . , l}‍ provides additional information about the orientation of the 
harmonic scalar function or vector field. The modes ‍l = 1‍ and ‍l = 2‍ are particularly useful for char-
acterizing the symmetry of spatial patterns on a spherical surface (Mietke et  al., 2019; Scholich 
et al., 2020): Modes with ‍l = 1‍ indicate patterns with a global polar symmetry, whereas modes with 
‍l = 2‍ represent spatial patterns with a global nematic symmetry. We now exploit these features for a 
detailed characterization of the symmetry breaking that takes place during cellular rearrangements 
and to study the properties of the cellular flux in more detail. To this end, we discuss spatial averages

	﻿‍ ⟨O⟩s(t) = 1
As

´
S dAs O(r, t)‍� (8)

of different real-space observables ‍O(r, t)‍ over the mid-surface ‍S‍.

Mode signatures of developmental symmetry breaking
To study how different developmental stages and their associated symmetry breaking events are 
reflected in the mode representation, we first consider the average cell surface density fluctuations

	﻿‍

⟨(
ρ− ⟨ρ⟩s

)2
⟩

s
=

lmax∑
l=1

l∑
m=−l

ρ2
lm(t).

‍�
(9)

For each mode ‍l‍, the power spectrum ‍Pρ,l(t) =
∑l

m=−l ρ
2
lm(t)‍ in Equation 9 provides a rotationally 

invariant quantity (Çetingül et al., 2012; Schwab et al., 2013) that can effectively serve as an order 
parameter to characterize the symmetry of cell density patterns on the spherical surface. The dynamics 
of the density fluctuations given in Equation 9 broken down into contributions ‍Pρ,l(t)‍ from each mode 

‍l ≤ lmax = 4‍ is shown in Figure  2B. Several features of this representation are particularly striking 
and can be directly related to specific developmental stages. First, patterns of cell surface density 
fluctuations evolve from a dominantly polar symmetry (‍l = 1‍) into density patterns with a prominent 
nematic symmetry (‍l = 2‍). These mode signatures intuitively reflect the essential symmetry breaking 
that takes place when cells collectively reorganize from an initially localized cell dome (Figure 1B, 52 
min) into an elongated shape that wraps in an open ring-like pattern around the yolk cell (Figure 1B, 
760 min). Second, during this transition at around 300  min (9 hpf) (black triangle in Figure 2B), the cell 
surface density is most homogeneous as fluctuations become minimal for all modes ‍l‍. Interestingly, 
this time point approximately marks the completion of epiboly, when the different cell layers have fully 
engulfed the yolk. Finally, although in a less pronounced manner, the power spectrum of the mode 
‍l = 4‍ also exhibits an increased amplitude towards later times, indicating the formation of structures 
at finer spatial scales as development progresses. We find that mode signatures of the symmetry 

https://doi.org/10.7554/eLife.68679
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Figure 2. Mode signatures of developmental symmetry breaking and topological defects in cellular flux. (A) Two-dimensional Mollweide projection 
of the compressed coarse-grained density field ‍ρ(r, t)‍ (colormap) and of the coarse-grained cell flux ‍J(r, t)‍ (streamlines) at different time points of 
zebrafish gastrulation.White circles depict topological defects of charge +1 in the flux vector field, red circles depict defects with charge -1. The total 
defect charge is 2 at all times. Defects are seen to ‘lead’ the large-scale motion of cells and later localize mostly along the curve defined by the forming 
spine. Animal pole (AP) and ventral pole (VP) are located at top and bottom, respectively. (B) Density fluctuations as a function of developmental time 
(see Equation 9), broken down in contributions from different harmonic modes ‍l‍. The underlying symmetry breaking is highlighted prominently by 
this representation: During the first 75% of epiboly (0–280  min) cells migrate away from, but are still mostly located near the animal pole, presenting 
a density pattern with polar symmetry (‍l = 1‍). During the following convergent extension phase cells converge towards a confined elongated region 
that is ‘wrapped’ around the yolk, corresponding to a density pattern with nematic symmetry (‍l = 2‍). Black triangles indicate transition from epiboly to 
convergent extension. (C) Comparison of surface averaged divergence ‍∇S · J‍ and curl ‍∇S × J‍ of the cellular flux computed via Equation 10a and 
Equation 10b, respectively (top). A relative curl amplitude ‍Scurl‍ computed from these quantities via Equation 11 correlates with the appearance of an 
increased number of topological defects in the cell flux (bottom), suggesting that incompressible, rotational cell flux is associated with the formation of 
defects.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Analysis of the harmonic mode representation for a second experimental dataset.

Figure supplement 2. Validation of automated defect tracking.

Figure supplement 3. Analysis of fluxes and defects for different coarse-graining length scales (Sample 1).

Figure supplement 4. Analysis of fluxes and defects for different coarse-graining length scales (Sample 2).

https://doi.org/10.7554/eLife.68679
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breaking and progression through developmental stages are robust (Figure 2—figure supplement 
1B, D), illustrating that mode-based analysis can provide a systematic and meaningful characterization 
of developmental symmetry breaking events.

Mode signatures of emergent topological defects in cellular flux
The vectorial nature of the cell number flux ‍J(r, t)‍ on a spherical surface implies the presence of topo-
logical defects (colored circles in Figure 2A, see Materials and methods) (Kamien, 2002). Several 
recent experimental results pertaining to the self-organization of multicellular systems suggest an 
important role of such topological defects in organizing morphogenetic events (Doostmohammadi 
et al., 2016; Saw et al., 2017; Guillamat et al., 2020; Copenhagen et al., 2020; Meacock et al., 
2020; Maroudas-Sacks et al., 2020). We therefore analyze how defects within the cell number flux 

‍J(r, t)‍ are dynamically organized during early zebrafish gastrulation and if signatures of defect forma-
tion and annihilation are present in the mode representation Equation 5. We first consider the average 
squared divergence and curl of the cell number flux given by

	﻿‍

⟨(
∇S · J

)2
⟩

s
=

lmax∑
l=1

m∑
m=−l

[
l(l + 1)

Rs
j(1)
lm (t)

]2
,
‍�

(10a)

	﻿‍

⟨(
∇S × J

)2
⟩

s
=

lmax∑
l=1

m∑
m=−l

[
l(l + 1)

Rs
j(2)
lm (t)

]2
,
‍�

(10b)

which are shown in Figure 2C (top). The two contributions to the collective cellular dynamics – locally 
compressible, divergent flux quantified by the divergence ‍∇S · J‍ and locally incompressible, rota-
tional cell motion characterized by the curl ‍∇S × J‍ – are independently determined by the modes 

‍j
(1)
lm (t)‍ and ‍j

(2)
lm (t)‍. Therefore, each contribution can be evaluated conveniently and with high accuracy 

from a representation of ‍J(r, t)‍ in terms of vector SHs. From Figure 2C (top), we see that the most 
significant divergent flux (blue curve) occurs around 300  min at the transition from epiboly towards 
the convergence and extension stage. A quantification of the incompressible rotational flux relative to 
the total cell number flux is shown in Figure 2C (bottom), where we plotted the relative curl amplitude

	﻿‍
Scurl(t) =

∑
l,m

[
j(2)
lm (t)

]2

∑
l,m

[
j(1)
l,m(t)

]2
+
∑

l,m

[
j(2)
l,m(t)

]2 .
‍�

(11)

This measure suggests a correlation between incompressible rotational cell motion and the occur-
rence of topological defects (circles in Figure 2A) in the cell flux ‍J(r, t)‍. The total number of topo-
logical defects present at any time point is depicted in Figure 2C (bottom, blue curve). Because the 
vector-valued flux is defined on a sphere, we observe that the total topological charge always sums 
to +2 (Kamien, 2002), while additional defect pairs with opposite charge (red +1 and white -1 circles 
in Figure 2A) can be created, resulting in total defect numbers greater than two (see Figure 2C, 
bottom). Interestingly, the relative curl amplitude ‍Scurl‍ defined in Equation 11 indicates that increased 
contributions from incompressible rotational flux are associated with the formation of topological 
defects in the cell number flux, a feature that is robustly identified by our framework (Figure 2—figure 
supplement 1A, C, Figure 2—figure supplement 3, Figure 2—figure supplement 4). The appear-
ance of additional defects at the end of epiboly, when the developing embryo begins to extrude more 
significantly in the radial direction, suggests that topological defects in the 2D projected cellular flux 
fields could signal the start of the formation of more complex structures in three dimensions.

Learning a linear hydrodynamic model of the developmental mode 
dynamics
The results in Figure 2 confirm that a low-dimensional mode representation can capture essential 
characteristics of developmental symmetry breaking processes. The mode representation therefore 
provides a natural starting point for the inference of hydrodynamic models from coarse-grained cell-
tracking data. For a given time-dependent mode vector ‍a(t) = [ρlm(t), j(1)

lm (t), j(2)
lm (t)]⊤‍ that contains all 

modes up to ‍l = lmax‍, the simplest hydrodynamic model corresponds to the linear dynamical equation

https://doi.org/10.7554/eLife.68679
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	﻿‍
da(t)

dt = M · a(t),‍� (12)

where the constant coefficient matrix ‍M ‍ encodes the couplings between different modes. Intuitively, 
Equation 12 aims to describe an experimentally observed density and flux dynamics in terms of a 
relaxation process, starting from inhomogeneous initial conditions represented by ‍a(0)‍. The mathe-
matical learning problem is then to find a coefficient matrix ‍M ‍ such that the linear model Equation 12 
holds for the mode vector time series ‍a(t)‍ that was determined from the coarse-graining procedure 
described in the previous sections.

Validation of the learning framework using active Brownian particle dynamics
Before applying the combined coarse-graining and inference framework to experimental data, we 
illustrate and validate the learning approach on synthetic data for which coarse-graining results and 
hydrodynamic mean-field equations are analytically tractable. To this end, we consider the stochastic 
dynamics of non-interacting active Brownian particles (ABPs) on the unit sphere of radius ‍R0 = 1‍ 
(Sknepnek and Henkes, 2015; Fily et al., 2016; Castro-Villarreal and Sevilla, 2018). Similar to a 
migrating cell, an ABP at position ‍x(t)‍ moves across the unit sphere at constant speed v0 in the direc-
tion of its fluctuating orientation unit vector ‍u(t)‍. The strength of the orientational Gaussian white 
noise is characterized by a rotational diffusion constant ‍Dr‍ (Figure 3A, Appendix 3).

Compared with conventional passive Brownian motion, self-propulsion of an ABP along its orienta-
tion direction ‍u‍ introduces a persistence to the particle’s motion that is reduced as rotational noise ‍Dr‍ 
is increased. Additionally, the topology of the spherical surface implies that in the low-noise regime, 

‍R0Dr/v0 < 1‍, particles are expected to return to the vicinity of their starting points after a duration 

‍∆t ≈ 2πR0/v0‍. The conjunction of persistent motion and topology then leads to oscillatory dynamics 
in the positional correlation ‍⟨x(t) · x(0)⟩‍ (blue dots in Figure 3B, Appendix 3). Comparing correlations 
from stochastic ABP simulations in different noise regimes with theoretical predictions (solid lines in 
Figure 3B) validates our numerical ABP simulation scheme.

To generate a test data set for our coarse-graining and inference framework, we simulated non-
interacting ABPs in both the low-noise (‍R0Dr/v0 < 1‍) and the high-noise (‍R0Dr/v0 > 1‍) regime with 
initial positions drawn from the experimental data shown in Figure 1. Specifically, at each cell position 
present in the data, we generated 60 particles with random orientation, amounting to approximately 
‍1.2 × 105‍ particles in total, and simulated their dynamics on a unit sphere. The resulting trajectory 
data were coarse-grained following the procedure outlined in the previous sections, yielding dynamic 
density fields ‍ρ(r, t)‍ and fluxes ‍J(r, t)‍ (Video 3), together with their mode representations ‍ρlm(t), j(1)

lm (t)‍ 
and ‍j

(2)
lm (t)‍.

In the second ‘learning’ step, we infer a sparse mode coupling matrix ‍M ‍ that approximates the 
dynamics Equation 12 for the dynamical mode vectors ‍a(t) = [ρlm, j(1)

lm , j(2)
lm ]⊤‍ obtained from the coarse-

grained simulated ABP data. Our inference algorithm combines adjoint techniques (Rackauckas 
et al., 2021) and a multi-step sequential thresholding approach inspired by the Sparse Identification 
of Nonlinear Dynamics (SINDy) algorithm introduced by Brunton et al., 2016. The full algorithm is 
detailed in Appendix 4 and illustrated in the summary flowchart Appendix 4—figure 1. Importantly, 
we perform the sparse regression using dynamical mode vectors ‍a(t)‍ rescaled by their median abso-
lute deviation (MAD) to compensate for substantial scale variations between different modes. The 
final output matrix ‍M ‍ of this learning algorithm is shown in the right panel of Figure 3C and can be 
compared against the analytically coarse-grained dynamics of ABPs on curved surfaces (Fily et al., 
2016; Castro-Villarreal and Sevilla, 2018). Under suitable closure assumptions (Appendix 3), the 
mean-field dynamics of ABPs on a unit sphere is given in harmonic mode space by

	﻿‍

dρlm
dt

= l(l + 1)
R0

j(1)
lm ‍�

(13a)

	﻿‍

dj(1)
lm

dt
= − v2

0
2R0

ρlm − Drj(1)
lm ‍�

(13b)

	﻿‍
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= −Drj(2)
lm ‍�

(13c)
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from which we can read off the mode coupling matrix ‍M ‍ shown in the left panel of Figure 3C. A direct 
comparison between the theoretical and the inferred matrices shows that our framework recovers 
both the structure and the quantitative values of ‍M ‍ with good accuracy. Due to the finite number of 
ABPs used to determine the coarse-grained fields, we do not expect that the theoretically predicted 
coupling matrix is recovered perfectly from the data. Instead, some mode couplings suggested by 
Equation 13a may not be present or modified in the particular realization of the ABP dynamics that 
was coarse-grained. Indeed, direct simulation of the learned model projected in real space (Figure 3E) 
reveals a density and flux dynamics that agrees very well with the dynamics of the the coarse-grained 

x
(t

)
·x

(0
)

t

= 0.5Dr

= 10Dr

u(t)

ρmax(t)

t = t = t = t = 

ρlm lm lm
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ρlm j
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lm j
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Figure 3. Learning active Brownian particle (ABP) dynamics on a sphere. (A) ABPs move on a unit sphere (radius ‍R0 = 1‍) with angular speed ‍v0 = 1‍ 
along a tangential unit vector ‍u(t)‍ that is subject to stochastic in-plane fluctuations (see Appendix 3 for further details). Example single-particle 
trajectories are shown in the high-noise (orange, ‍Dr = 10‍ in units of ‍R0v0‍) and in the low-noise regime (blue, ‍Dr = 0.5‍). Time ‍t‍ is measured in units 
of ‍R0/v0‍ in all panels. (B) Position correlation function ‍⟨x(t) · x(0)⟩‍ averaged over ‍3 × 104‍ independent ABP trajectories show distinct oscillations 
of period ‍≈ 2π‍ in the low-noise regime, as ABPs orbit the spherical surface more persistently (see Video 3). Standard error of the mean is smaller 
than symbol size. (C) Analytically predicted (left) and inferred (right) dynamical matrices ‍M ‍ (see Equation 12) describing the mean-field dynamics of 
a large collection of non-interacting ABPs (see Equation 13a, Equation 13b, Equation 13c and Appendix 3) show good quantitative agreement. 
(D) Mollweide projections of coarse-grained ABP simulations with ‍v0 = 1‍ and ‍Dr = 0.5‍ using cell positions from the first time point in the zebrafish 
data (Figure 1) as the initial condition: At each position 60 particles with random orientation were generated and their ABP dynamics simulated, 
amounting to approximately ‍1.2 × 105‍ particles in total. The density fields homogenize over time, where the maximum density at ‍t = 12.3‍ has decayed 
to about 5% of the maximum density at ‍t = 1.02‍. Blue lines and arrows indicate streamlines of the cell flux ‍J(r, t)‍. (E) Simulation of the learned linear 
model, Equation 12 with ‍M ‍ shown in (C) (right), for the same initial condition as in D. Marked time points indicate intervals of learning, validation and 
prediction phases of the model inference (see Appendix 4).

https://doi.org/10.7554/eLife.68679
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input data (Figure 3D). Altogether, these results 
demonstrate that the proposed inference frame-
work enables us to to faithfully recover expected 
mean-field dynamics from coarse-grained fields of 
noisy particle-based data.

Learning developmental mode 
dynamics from experimental data
The same inference framework can now be directly 
applied to the coarse-grained experimental 
zebrafish embryo data shown in Figure 1C and D, 
yielding a sparse coefficient matrix ‍M ‍ (Figure 4A 
and B) that encodes the dynamics of the develop-
mental mode vector ‍a(t) = [ρlm(t), j(1)

lm (t), j(2)
lm (t)]⊤‍ 

according to Equation 12. The inferred coupling 
between the time derivative of density modes 

‍ρlm‍ and flux modes ‍j
(1)
lm ‍ faithfully recovers mass 

conservation (Figure 4C; see Equation 6). Overall, 
the learned matrix ‍M ‍ has 395 non-zero elements, 
effectively providing further compression of the 
experimental data, which required 2,250 spatio-
temporal mode coefficients collected in ‍̂an‍ (see 
Equation 7) for its representation. Using the 
mode vector ‍a(t = 0)‍ of the first experimental time 
point as the initial condition, the inferred minimal 
model Equation 12 with ‍M ‍ shown in (Figure 4A 

and B) faithfully recovers both the mode and real-space dynamics seen in the coarse-grained fields of 
the experimental input data (Figure 4E–G, Video 4).

It is instructive to analyze the inferred matrix ‍M ‍ and the linear model it encodes in more detail. 
Comparing the MAD-rescaled matrix (see Appendix 4) learned for the experimental zebrafish data 
(Figure 4B) with the non-dimensionalized matrix learned for the active Brownian particle dynamics 
(Figure 3C), we find similar patterns of prominent diagonal and block-diagonal couplings. Consis-
tent with the analysis of single cell trajectories (Shah et  al., 2019), this suggests that a random, 
but persistent movement of cells akin to ABPs moving on a sphere partially contributes to the early 
gastrulation process in zebrafish. This is complemented in the minimal model of the experimental 
dynamics by significant off-diagonal contributions (Figure 4B), which are absent in the non-interacting 
ABP model. Such off-diagonal contributions represent effective linear approximations of cell-cell 
interactions, environmental influences or other external stimuli reflected in the experimental time-
series data. Ultimately, such contributions to the mode coupling matrix ‍M ‍ help realize the symmetry 
breaking process observed in the underlying experimental data (Figure 2).

The inferred mode coupling matrix ‍M ‍ shown in Figure 4B together with Equation 12 provides a 
highly robust minimal model. Specifically, despite being linear, it is numerically stable over a period 
approximately four times as long as the input data from which the matrix ‍M ‍ was learned. Further-
more, simulations with modified initial conditions (see Figure 4—figure supplement 1) still exhibit 
a characteristic symmetry breaking and lead to the emergence of density and flux patterns similar to 
those seen in Figure 4F and G. For example, simulating Equation 12 using the initial condition of a 
different experimental data set (Figure 2—figure supplement 1) leads to final patterns with the same 
symmetry as in the original training data, further corroborating that the observed symmetry breaking 
is directly encoded in the interactions represented by the matrix ‍M ‍. A similar robustness is observed 
under moderate perturbations of the initial condition, such as a rotation of initial cell density patterns 
relative to the coordinate system in which ‍M ‍ was inferred, or a local depletion of the initial density, 
emulating a partial removal of cells as experimentally realized in Morita et al., 2017. Taken together, 
these numerical experiments demonstrate that the inferred mode coupling matrix ‍M ‍ meaningfully 
captures the dynamics and interactions of cells that facilitate the symmetry breaking observed during 
early zebrafish development.

Video 3. Coarse-grained dynamics of active 
Brownian particles on the unit sphere in the low-noise 
(‍Dr = 0.5‍) and high-noise (‍Dr = 10‍) regime. Data 
from ‍N = 3 × 104‍ independent ABP simulations was 
coarse-grained using the kernels ‍fk(ω)‍ and ‍gk(ω)‍ 
(‍k = 6‍) described in Appendix 1. Initial ABP positions 
were sampled from an axisymmetric distribution with 

‍p(θ) ∝ cos θ 1{θ<π/2}‍. Mollweide projections in the 
left and right column are color-coded for density and 
flux magnitude ‍|J(r, t)|‍, respectively. Colormaps are 
normalized by the maximum values of density and flux 
magnitude fields across all time points.

https://elifesciences.org/articles/68679/figures#video3
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https://elifesciences.org/articles/68679/figures#video3


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Romeo, Hastewell, et al. eLife 2021;10:e68679. DOI: https://doi.org/10.7554/eLife.68679 � 13 of 36

ρmax(t)

j(1)lm

j(2)lm

ρlm

l

l(l + 1)

(d
ρ̂
lm
/d

t,
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Figure 4. Model learning for experimental data of collective cell motion during early zebrafish development. (A) Visualization of the constant 
mode coupling matrix ‍M ‍ that was learned from experimental data (see Appendix 4) and describes the dynamics of the mode vector 

‍a = [ρlm(t), j(1)
lm (t), j(2)

lm (t)]T
‍ via Equation 12. Dimensionless fields are defined by ‍̂ρlm = R2

sρlm‍ and ‍ĵ
(i)
lm = Rs∆tj(i)lm‍ (‍i = 1, 2‍) with ‍Rs = 300µm‍ and 

‍∆t = 2‍ min. (B) Scaling the learned matrix ‍M ‍ by the Mean Absolute Deviation (MAD) of the modes (see Appendix 4) reveals structures reminiscent 
of the mode coupling matrix learned for ABPs (Figure 3C). (C) The learned model recovers mass conservation in mode space (Equation 6). (D) 
Comparison of theoretical and inferred real-space kernels (see Equation 14 and Appendix 4) for the ABP dynamics and for the experimental data of 
collective cell motion. The trace of the non-dimensional kernel ‍M̂J(r, r′)‍ (the only non-zero eigenvalue, Appendix 4—figure 2) indicates a localized 
flux-flux coupling with a similar profile among both systems. The oscillating magnitude of the non-dimensionalized density-flux kernel ‍|m̂ρ(r, r′)|‍ (insets) 
in the ABP system indicates a gradient-like coupling and is consequence of the persistent ABP motion. In the experimental data, a first peak around 
‍ω = π/4‍ is also visible, but less pronounced. All kernel properties were computed by averaging over pairs of positions ‍r, r′‍ that are separated by the 
same angular distance ‍ω = arccos(r · r′) ∈ [0,π]‍. Solid lines indicate mean, shaded areas indicate standard deviation. (E) Comparison of experimental 

Figure 4 continued on next page
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Green’s function representation of learned models in real space
To characterize the inferred spatial interactions in more detail, we can analyze the real-space represen-
tation of the learned mode coupling matrix ‍M ‍. While the density dynamics represented by ‍M ‍ (the first 
row in Figure 4AB) simply reflects mass conservation Equation 1 in real space, the dynamics of the 
flux (the second and third row in Figure 4A and B) corresponds in real space to the integral equation 
(Appendix 4)

	﻿‍
∂
∂t J(r, t) =

´
dΩ′

[
mρ(r, r′)ρ(r′, t) + MJ(r, r′) · J(r′, t)

]
,
‍� (14)

where ‍dΩ′ = sin θ′dθ′dϕ′
‍ is the spherical surface area element. The vector-valued kernel ‍mρ(r, r′)‍ in 

Equation 14 connects the distribution of cell density ‍ρ‍ across the surface to dynamic changes of the 
flux ‍J‍ at a given point ‍r‍. Similarly, the matrix-valued kernel ‍MJ(r, r′)‍ describes how the distribution of 
cell fluxes at ‍r′‍ affects temporal changes of the flux at ‍r‍.

To analyze the spatial range of interactions between points ‍r‍ and ‍r′‍, we use the fact that the matrix-
valued kernel ‍MJ(r, r′)‍ has only one non-zero eigenvalue (Appendix 4—figure 2). Consequently, the 
trace ‍tr(MJ)‍ serves as a proxy for the distance-dependent interaction strength mediated by ‍MJ ‍. Aver-
ages of ‍tr(MJ)‍ over point-pairs with the same angular distance ‍ω = acos(r · r′)‍ are shown for the ABP 
dynamics and for the minimal model inferred from experimental data in Figure 4D. Note that to 
make the models amenable to comparison, we compute ‍MJ(r, r′)‍ from the known mean-field model 
of ABPs (Equation 13a) using the same finite number of modes as used to represent the ABP and the 
zebrafish data (‍lmax = 4‍). In theory, one expects for the ABP dynamics a highly localized, homogeneous 
kernel ‍tr(MJ) ∼ δ(r − r′)‍, so that an exact spectral representation would require an infinite number 

of modes (see Appendix 4). In practice, using a 
finite number of modes leads to a wider kernel 
range (Figure 4D ’ABP theory’) and introduces an 
apparent spatial inhomogeneity, as indicated by 
the non-zero standard deviation of ‍tr(MJ)‍ at fixed 
distance ‍ω‍ (blue shades). Both the quantitative 
profile of ‍tr(MJ)‍ and its variation are successfully 
recovered by applying the inference framework 
to stochastic simulations of ABPs (Figure 4D ’ABP 
simulation’) where ‍MJ(r, r′)‍ was computed from 
the learned mode coupling matrix ‍M ‍ shown in 
Figure 3C. For the inferred minimal model of the 
cell dynamics (Figure 4D ’Zebrafish experiment’), 
we find a similar short-ranged flux-flux coupling 
mediated by ‍MJ ‍. However, the increased vari-
ability of ‍tr(MJ)‍ at fixed distances ‍ω‍ indicates 
more substantial spatial inhomogeneities of the 
corresponding interactions. These inhomoge-
neities are absent in a non-interacting system of 
ABPs and represent an interpretable real-space 
signature of the symmetry-breaking mechanisms 
built into the underlying mode coupling matrix ‍M ‍.

A similar analysis can be performed for the 
kernel ‍mρ(r, r′)‍ that couples the density at posi-
tion ‍r′‍ to dynamics of fluxes at position ‍r‍ (see 

mode dynamics (circles) with numerical solution (solid line) of the minimal model Equation 12 for learned matrix ‍M ‍ visualized in A. For clarity, the 
comparison is shown for the two dominant modes of each set of harmonic modes ‍ρlm, j(1)

lm ‍ and ‍j
(2)
lm ‍. (F, G) Mollweide projections of the experimental 

data (F) and of the numerical solution of the learned model (G) show very good agreement (Video 4). Blue lines and arrows illustrate streamlines 
defined by the cell flux ‍J(r, t)‍, circles depict defects with topological charge +1 (white) and -1 (red).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Simulating the learned model with different initial conditions.

Figure 4 continued

Video 4. Comparison of dynamics of the experimental 
and learned density ‍ρ(r, t)‍ (colormap) and flux fields 

‍J(r, t)‍ (streamlines) represented in a Mollweide 
projection. White circles depict topological defects of 
charge +1 in the vector field ‍J(r, t)‍, red circles depict 
defects with charge -1. The total defect charge is 2 
at all times. Top row depicts the coarse-grained (see 
Equation 2a) and projected (see Equations 4–7) 
experimental data, snapshots in the bottom row are 
obtained by reintegrating the ordinary differential 
equation model Equation 12 using the learned matrix 
‍M ‍ (see Figure 4A). The colorbar is at each time point 
scaled to the interval [0, ‍maxrρ(r, t)‍].
https://elifesciences.org/articles/68679/figures#video4
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Equation 14), where we average the magnitude ‍|mρ(r, r′)|‍ over pairs (‍r‍, ‍r′‍) with the same angular 
distance ‍ω‍ (Figure 4D insets). Using a finite number of modes to compute this kernel in the different 
scenarios again introduces apparent spatial inhomogeneities in all cases. Additionally, all kernel profiles 
exhibit a distinct maximum at short range, indicating a coupling between density gradients and the 
flux dynamics that emerges microscopically from a persistent ABP and cell motion (see Appendix 3 
and 4) – an observations that is consistent with the similar block-diagonal structure of both inferred 
matrices ‍M ‍ (compare Figures 3C and 4B).

In conclusion, the real-space analysis and comparison of inferred interaction kernels further high-
lights potential ABP-like contributions to the collective cellular organization during early zebrafish 
development and reveals an effectively non-local coupling between density and flux dynamics. The 
latter could result, for example, from unresolved fast-evolving morphogens (Hannezo and Heisen-
berg, 2019), through mechanical interactions with the surrounding material (Münster et al., 2019) 
or due to other relevant degrees of freedom that are not explicitly captured in this linear hydrody-
namic model. More generally, a real-space representation of kernels provides an alternative interpre-
table way to study the interactions and symmetry-breaking mechanisms encoded by models directly 
learned in mode space.

Discussion
Leveraging a sparse mode representation of collective cellular dynamics on a curved surface, we have 
presented a learning framework that translates single-cell trajectories into quantitative hydrodynamic 
models. This work complements traditional approaches to find quantitative continuum models of 
complex multicellular processes (Etournay et al., 2015; Hannezo et al., 2015; Morita et al., 2017; 
Streichan et al., 2018; Münster et al., 2019) that match problem-specific constitutive relations of 
active materials in real-space with experimental observations. We have demonstrated here that length 
scales and symmetries associated with a mode representation can directly inform about the character 
of symmetry breaking transitions and topological features of collective cellular motion even before 
a model is specified. The successful applications to synthetic ABP simulation data and experimental 
zebrafish embryo data show that model learning in mode space provides a promising and computa-
tionally feasible approach to infer quantitative interpretable models in complex geometries.

The learned linear minimal model for cell migration during early zebrafish morphogenesis quanti-
tatively recapitulates the spatiotemporal dynamics of a complex developmental process (Figure 4F 
and G), and highlights similarities between collective cell migration and analytically tractable ABP 
dynamics on a curved surface. An extension to nonlinear mode-coupling models or an integration of 
additional, experimentally measured degrees of freedom, such as concentration fields of morphogens 
involved in mechanochemical feedbacks (Hannezo and Heisenberg, 2019), is in principle straight-
forward by including nonlinear terms in Equation 12. Furthermore, the above framework could be 
generalized to describe the dynamics within a spherical shell of finite height by complementing the 
surface vector SHs used in this work by their radial counterpart (Barrera et al., 1985).

To provide a concrete example, we focused here on applying the model learning framework to 
single-cell tracking data of early zebrafish morphogenesis. However, the essentially spherical organi-
zation of cells during gastrulation observed in zebrafish is shared by many species whose early devel-
opment occurs through a similar discoidal cleavage (Gilbert and Barresi, 2016), and the framework 
introduced here is directly applicable once tracking data becomes available for these systems. More 
generally, as novel imaging technologies are being developed (Keller et  al., 2010; Royer et  al., 
2016; Shah et al., 2019), we expect that even larger and more detailed imaging data will further facil-
itate the exploration of finer scales and length-scale bridging processes (Lenne et al., 2021) through 
learning approaches that directly built on mode-based data representations.

Materials and methods
Data pre-processing
We obtained two single-cell tracking data sets from the experiments described in Shah et al., 2019. 
These data consist of the Cartesian coordinates of each cell together with a tracking ID. Some of the 
data is accessible at https://idr.openmicroscopy.org with ID number idr0068. We first denoised each 

https://doi.org/10.7554/eLife.68679
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cell trajectory using MATLAB’s (Matlab, 2019) wavelet denoiser function wdenoise, and centered 
the cloud of cells by least-squares fitting a spherical surface through it and shifting the origin at each 
time to coincide with the center of this sphere. We then computed the velocity of each cell by using 
Tikhonov-regularized differentiation as described in Knowles and Renka, 2014 and implemented in 
the MATLAB third-party module rdiff (Wagner, 2020). After examination of the cells’ velocity distri-
bution, we further removed outlier cells whose speed is in the 95th percentile or above and verified 
that this operation only removes aberrant cells. Finally, we rotated the data to align the animal pole 
of the embryo with the ‍z‍-axis, as determined by the direction of the center of mass of the initial cell 
distribution. The resulting single cell data are shown as point clouds in Figure 1B and in Video 1.

Topological defect tracking
We have developed a defect tracker that identifies topological defects in vector fields tangent to 
a spherical surface via integration along suitable Burger circuits. The corresponding software is 
available at (https://github.com/NicoRomeo/surf-vec-defects; Romeo, 2022, copy archived at 
swh:1:rev:6dc742c376b0d085e19ece65f932ac6935342aba).
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Appendix 1
Consistent coarse-graining on curved surfaces
We describe the derivation of self-consistent coarse-graining kernels that are used in the main text to 
convert single cell information into a continuous density field and its associated fluxes on a spherical 
surface. We first motivate this problem for a flat surface and then proceed with a detailed derivation 
for the case of a spherical surface.

Kernel consistency in Euclidean space
It is instructive to first consider a set of particles ‍α = 1, 2, 3, ...‍ at positions ‍Xα(t)‍ moving with velocities 
‍Vα(t) = dXα/dt‍, where capitalized vectors indicate position and velocity in Euclidean space, e.g. 
particles move on a flat surface or within some three-dimensional volume. A coarse-grained density 
‍ρ(X, t)‍ and a mass flux ‍J(X, t)‍ can be defined from this microscopic information by

	﻿‍ ρ(X, t) =
∑

α Ke
[
X, Xα(t)

]
,‍� (15a)

	﻿‍ J(X, t) =
∑

α Ke
[
X, Xα(t)

]
· Vα(t),‍� (15b)

where ‍Ke
(
X, X′)

‍ and ‍Ke
(
X, X′)

‍ represent a scalar-valued and a matrix-valued kernel function, 
respectively. At the same time, in a system with a constant number of particles, mass conservation 
implies, in general,

	﻿‍ ∂tρ(X, t) + ∇X · J(X, t) = 0,‍� (16)

relating the density ‍ρ(X, t)‍ and the mass flux ‍J(X, t)‍ of particles. Using the coarse-graining prescriptions 
Equation 15a and Equation 15b directly in Equation 16 and assuming the resulting relation must 
hold for any set of particle trajectories, one finds a general kernel consistency relation

	﻿‍ ∇X′Ke(X, X′) + ∇X · Ke(X, X′) = 0.‍� (17)

This condition is automatically satisfied for any translationally invariant and isotropic pair of kernels 
‍Ke(X, X′) = Ke(X − X′)‍ and ‍Ke(X, X′) = Ke(X − X′)I‍, where ‍‍ is the unit matrix. Coarse-graining with 
such kernels is frequently employed in practice: Positions and velocities can be, for example, simply 
convolved with a Gaussian function of mean zero (Supekar et al., 2021).

Kernel consistency on a curved surface
For a surface parameterized by ‍r(s1, s2) ∈ R3

‍ with generalized coordinates ‍s1, s2‍, two tangential 
basis vectors are defined by ‍ei = ∂r/∂si

‍ (‍i = 1, 2‍). Partial derivatives are, in the following, denoted 
‍∂i := ∂/∂si

‍. The metric tensor is given by ‍gij = ei · ej‍. The mean curvature is defined by ‍Hn = −∇iei/2‍, 
where ‍n = e1 × e2/|e1 × e2|‍ denotes the unit surface normal and the Einstein summation convention 
is used. The covariant form of mass conservation Equation 1 (main text) on a curved surface reads

	﻿‍ ∂tρ + ∇iJi = 0,‍� (18)

with ‍Ji = ei · J‍ and ‍∇i‍ denotes the covariant derivative. In general, we are interested in describing 
an effective dynamics for cell positions and velocities that are projected onto a common reference 
sphere of radius ‍Rs‍. Such a description can be found by first formulating the coarse-graining 
approach for a unit sphere, on which particle positions and velocities are fully determined by angular 
coordinates and corresponding angular velocities, and finally rescaling the density and flux fields 
by suitable factors of ‍Rs‍. The corresponding coarse-graining Equation 2b (main text) of in-plane 
angular velocities ‍̄vα(t) = vα(t)/|rα(t)|‍ for particles ‍α‍ on a unit sphere reads covariantly

	﻿‍
Ji =

∑
α

K
(
r, rα

)i
j′ v̄j′

α,
‍�

(19)

where ‍̄vi
α = ei · v̄α‍ and we drop the dependence on time to simplify the notation. The two-point 

kernel tensor ‍K
(
r, r′

)
ij′‍ (a ‘bitensor’) is evaluated in the tangent space of ‍r‍ for its first index and in 

the tangent space of ‍r′‍ at the second, primed index (Appendix 1—figure 1). Mass conservation on 
a curved surface, Equation 18, together with the coarse-graining prescriptions Equation 2a (main 
text) and Equation 19 then implies a covariant kernel consistency relation

https://doi.org/10.7554/eLife.68679
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	﻿‍ ∂j′K(r, r′) + ∇iK(r, r′)i
j′ = 0.‍� (20)

v = ui (e
i · ej)ej

u = ui e
ir

r

r
r

e1

e2
e1

e2 ω
ω

Appendix 1—figure 1. Illustration of the action of the coarse-graining tensor kernel ‍K(r, r′)ij′‍ Equation 19. Left: 

‍Kij′‍ acts in the two tangent space at points ‍r‍ and ‍r′‍ that are separated by an angular distance ‍ω = acos(r · r′)‍. 
Each tangent plane has corresponding basis vectors,‍ei‍ ‍ei′‍ for ‍i = 1, 2‍. Right: The tensor kernel ‍Kij′ ∼ ei · ej′‍ 
projects vectors ‍u‍ in the tangent space of ‍r′‍ and generates a vector ‍v‍ tangent at ‍r‍.

Solving the kernel consistency relation on a sphere
We solve Equation 20 in the following on the unit sphere, such that ‍r = n‍ corresponds to the surface 
normal. The final result can simply be rescaled to any spherical surface of radius ‍Rs‍. Furthermore, we 
note that the parameter

	﻿‍ x = r · r′‍� (21)

provides a measure for the great circle distance ‍ω(x) = acos(x)‍ between two points on a sphere. 
Hence, we consider an ansatz for the kernels in Equation 20 of the form

	﻿‍ K(r, r′) = f(x)‍� (22a)

	﻿‍ K(r, r′)ij′ = g(x)ei · ej′ ,‍� (22b)

with two unknown scalar functions ‍f(x)‍ and ‍g(x)‍. The relevant derivatives of the ansatz Equation 22a 
and Equation 22b can readily be evaluated to

	﻿‍
∂j′K(r, r′) = df(x)

dx
r · ej′‍�

(23a)

	﻿‍
∇iK(r, r′)i

j′ = dg(x)
dx

r′ ·
(

ei ⊗ ei
)
· ej′ − 2g(x) r · ej′ .‍� (23b)

Here, ⊗ denotes a dyadic product and we use ‍∂ix = r′ · ei‍ and ‍∂i′x = r · ei′‍, which follows from 
Equation 21, as well as ‍∇iei = −2r‍ in the second equation, which holds on a unit sphere and follows 
from the definition of the mean curvature. We then use the expansion of the identity matrix in ‍R3‍ 
on the spherical basis ‍I = ei ⊗ ei + n ⊗ n‍, such that in our case with ‍r = n‍ we have ‍ei ⊗ ei = I − r ⊗ r‍. 
Hence, Equation 23b becomes

	﻿‍ ∇iK(r, r′)i
j′ = − dg(x)

dx (r′ · r)(r · ej′ ) − 2g(x) r · ej′ .‍� (24)

Using Equation 24 and Equation 23a in the kernel consistency relation Equation 20 and dividing 
by ‍r · ej′‍ (at ‍r = r′‍, for which ‍r · ej′ = 0‍, Equation 20 is obeyed for any ‍f(x)‍, ‍g(x)‍), we find that the 
scalar functions in the kernel ansatz Equation 22a and Equation 22b have to obey

	﻿‍ x dg(x)
dx + 2g(x) = df(x)

dx .‍�

https://doi.org/10.7554/eLife.68679
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Hence, the general covariant consistency relation Equation 20 implies for the kernel ansatz Equation 
22a and Equation 22b that the weighting functions ‍g(x)‍ and ‍f(x)‍ must be related by

	﻿‍ g(x) = 1
x2

´ x
0 du u df(u)

du .‍� (25)

Kernel functions with compact support
In the last step, we determine a family of kernel functions ‍g(x)‍ and ‍f(x)‍ defined on the interval 
‍x ∈ [−1, 1]‍ that satisfy Equation 25, along with the requirements:

1.	 ‍f(x)‍ and ‍g(x)‍ must be ‍C1‍ regular on ‍[−1, 1]‍
2.	 ‍f ≥ 0‍ on ‍[−1, 1]‍
3.	 ‍f ‍ is normalized to one on the unit sphere.

Recalling ‍x = cos[ω(r, r′)]‍ with angular distance ‍ω‍ between ‍r‍ and ‍r′‍, a family of functions fulfilling 
these conditions is given by

	﻿‍
fk(ω) = k + 1

2π
(cosω)k1{cos ω>0}‍�

(26a)

	﻿‍
gk(ω) = k

2π
(cosω)k−11{cos ω>0},

‍�
(26b)

where ‍1{cos ω>0}‍ is an indicator function that is one if ‍cosω > 0‍ and vanishes otherwise (Appendix 1—
figure 2). In this work, we have chosen the kernels Equation 22a and Equation 22b with ‍f = fk‍ and 
‍g = gk‍ for ‍k = 6‍. For these kernels derived here, densities ‍ρ(r, t)‍ and associated fluxes ‍J(r, t)‍ that are 
coarse-grained on a unit sphere can be converted into effective densities and fluxes on a spherical 
surface of radius ‍Rs‍ through the rescaling ‍ρ → ρ/R2

s ‍ and ‍J → J/Rs‍. Equivalently, rescaled kernels 
‍K(r, r′) → K(r, r′)/R2

s ‍ and ‍K(r, r′)ij′ → K(r, r′)ij′ /Rs‍ can be used directly, as was done in Equation 2a 
and Equation 2b of the main text to generate the data shown in Figure 1 (main text).
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Appendix 1—figure 2. Family of kernel functions ‍fk(ω)‍ and ‍gk(ω)‍ given in Equation 26a. These functions 
represent weights of the coarse-graining kernels Equation 22a and Equation 22b that are defined such that the 
kernels satisfy the consistency relation Equation 19. ‍ω = acos(r · r′)‍ denotes angular distances between ‍r‍ and.‍r′‍ 
Coarse-graining of a conserved number of particles on a sphere to determine a density field ‍ρ‍ (Equation 2a, 
main text) requires a different weighting – ‍fk(ω)‍ – than the coarse-graining of an associated flux ‍J‍ (Equation 2b , 
main text), which requires a weighting ‍gk(ω)‍ instead to ensure that coarse-grained fields obey mass conservation 
Equation 18. A characteristic coarse-graining length scale associated with these kernels is the half-width at half-
maximum (HWHM), which is related to ‍k‍ by HWHM ‍= arccos(2−1/k)‍.

https://doi.org/10.7554/eLife.68679
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Appendix 2 

Spatio-temporal mode decomposition
In this section, we provide explicit expressions for the scalar and spherical harmonic basis functions 
(‘spatial modes’), as well as for the Chebyshev basis functions (‘temporal modes’) used in this work. 
Additionally, we describe a systematic approach to determine the minimal number of modes needed 
to describe the coarse-grained data, while preserving a high level of accuracy in the representation.

Spatial basis: spherical harmonics
In this work, we use the real spherical harmonics defined in spherical coordinates ‍(θ,ϕ)‍ by Arfken 
et al., 2013 as

	﻿‍
Ylm(θ,ϕ) =

√
2l+1
4π

(l−|m|)!
(l+|m|)! P|m|

l (cos θ)Nm(ϕ) ,
‍� (27)

where ‍P
|m|
l (x)‍ is the associated Legendre polynomial of degree ‍l‍ and order ‍|m|‍, and

	﻿‍

Nm(ϕ) =





√
2 cos(mϕ) if m > 0

1 if m = 0
√

2 sin(|m|ϕ) if m < 0

.

‍�

(28)

Vector spherical harmonics can be defined and expressed as vector fields in 3D or covariantly as 
(Sandberg, 1978; Mietke et al., 2019)

	﻿‍ Ψlm = ∇SYlm ⇔ Ψi
(lm) = gij∂jYlm‍� (29a)

	﻿‍ Φlm = r̂ ×Ψlm ⇔ Φi
(lm) = ϵji∂jYlm‍� (29b)

where ‍∇S = eθ∂θ + eϕ sin−1 θ∂ϕ‍ denotes the gradient operator an a unit sphere, ‍ϵij‍ is the covariant 
Levi-Civita tensor, and ‍gij‍ the metric tensor. Scalar harmonics ‍Ylm‍ and either vector harmonic 
‍Λlm ∈ {Ψlm,Φlm}‍ are orthogonal:

	﻿‍

ˆ
dΩ YlmYl′m′ = δll′δmm′

‍�
(30a)

	﻿‍

ˆ
dΩΛlm ·Λl′m′ = l(l + 1)δll′δmm′ ,

‍�
(30b)

where ‍dΩ = sin θdθdϕ‍. The increasing complexity of patterns and accuracy of reconstruction with 
larger ‍l‍ is illustrated in Appendix 2—figure 1 and Video 2.

Ψ

Φ

J

Datal ≤ 1 l ≤ 2 l ≤ 3 l ≤ 4

Appendix 2—figure 1. Sequentially adding vector spherical harmonics ‍Ψlm‍ and ‍Φlm‍ – equivalent to increasing 

‍lmax‍ in Equation 5 – resolves increasing levels of details present in experimental flux fields ("Data"). Main features 
of the data are captured already by a relatively small number of modes (‍lmax = 4‍ used throughout this work).
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Temporal basis: Chebyshev polynomials
Chebyshev polynomials of the first kind ‍Tn‍ are defined by Arfken et al., 2013.

	﻿‍ Tn(cos x) = cos(nx).‍� (31)

Chebyshev polynomials form an orthogonal basis of continuous functions on the interval ‍[−1, 1]‍, such 
that an expansion

	﻿‍
f(t) =

nmax∑
n=0

cnTn(t)
‍�

(32)

uniformly converges as ‍nmax → ∞‍ (Driscoll et al., 2014). This representation also allows computing 
derivatives spectrally from

	﻿‍
f′(t) =

nmax∑
n=0

cnT′
n(t).

‍�
(33)

Information loss through coarse-graining
Coarse-graining microscopic data into smooth fields is an irreversible operation, during which some 
of the original particle information is irretrievably lost. The choice of coarse-graining scale is thus 
dictated by a trade-off between smoothness and information content - choosing larger coarse-
graining scales leads to smoother fields but blurs finer scale structures which may be of interest. 
To inform our choice of coarse-graining scale, we quantify the loss of information incurred by the 
coarse-graining operation.

The measure we introduce to quantify information loss is based on the the well-known relationship 
between the smoothness of functions in real space and Fourier space (Stein and Shakarchi, 2011): 
A smooth function in real space should have a peaked, quickly decaying spectrum in Fourier space 
while a collection of point-like objects such as delta functions should have a uniform non-decaying 
spectrum. Specifically, we describe a uniformly sampled field as a ‍M × N ‍ matrix with components 
being the field values ‍Xi,j = X(θi,ϕj)‍. In our case, ‍Xi,j‍ represents either the density field ‍ρ‍ or any 
of the Cartesian components of the flux vector field ‍J‍ at a given time point. We find the complex 
discrete Fourier spectrum ‍X̂i,j‍ of this matrix using the two-dimensional fast Fourier transform. We 
then calculate the power spectral density (PSD) of the Fourier spectrum as ‍Ri,j = |X̂i,j|2‍ and interpret 
the normalized PSD.

	﻿‍
Pi,j =

Ri,j∑
a,b Ra,b ‍�

as a discrete probability distribution. The spectral entropy ‍S‍ characterizing the information content 
of the field ‍X ‍ is then defined by

	﻿‍
S(X) = − 1

log2 NM
∑

i,j
Pi,j log2 Pi,j.

‍�
(34)

Smooth fields are sharply peaked in Fourier space and have a low spectral entropy, whereas fields that 
resolve discrete single particle information are rather flat in Fourier space and have a large spectral 
entropy. The difference in entropy between particle data and smoothed fields then measures the 
information eliminated by the coarse-graining procedure. If we additionally normalize by the entropy 
of the spectral entropy ‍S0(X)‍ of the raw particle data, we finally obtain a relative measure of the 
information that is lost in the coarse-graining process. In general, a measure as given in Equation 
34 can be defined for any transform with the property that smoothness in real space leads to a fast 
decaying spectrum in transform space.

We compute the spectral entropy of density and flux component fields at a representative time 
point and for varying coarse-graining length scales (Appendix 2—figure 2). Specifically, we coarse-
grain density and flux through the procedure described in the main text and in Appendix 1 for 
different values of the kernel parameter ‍k‍ (see Equation 26a). Large values of ‍k‍ correspond to small 
coarse-graining length scales, with the effective half-width at half-maximum (HWHM) of the kernels 
given in Equation 22a and Equation 22b with weight functions Equation 26a and Equation 26b 
scaling as HWHM ‍= arccos(2−1/k)‍. Normalized spectral entropies ‍S(X)/S0(X)‍ with ‍X ∈

{
ρ, J

}
‍ are then 

computed using Equation 34. For the flux field, we define ‍S(J) := S(Jx) + S(Jy) + S(Jz)‍ ("Flux sum" in 
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Appendix 2—figure 2) and interpret the sum of these three contributions ("Flux x", "Flux y", "Flux 
z" in Appendix 2—figure 2) as the total information contained in the flux field. We find that the 
spectral entropies of all fields show similar features. In particular, an increasing coarse-graining width 
first results in a sharp loss of information as individual particle positions are blurred, followed by less 
steep information loss as continuous fields progressively lose details of finer structures. In this work, 
we use an intermediate value of the coarse-graining parameter ‍k = 6‍ (yellow data in Appendix 2—
figure 2).
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Appendix 2—figure 2. Normalized spectral entropy as a function of the coarse-graining kernel width (top) 
computed for density ‍ρ‍ and flux field ‍J‍ using Equation 34. To evaluate the spectral entropy for the vector-
valued flux, we define ‍S(J) := S(Jx) + S(Jy) + S(Jz)‍ (‘Flux sum’). The coarse-graining width – the half-width at 
half-maximum (HWHM) of the coarse-graining kernels Equation 22a and Equation 22b with weight functions 
Equation 26a – is varied by varying the kernel index ‍k‍, where ‍HWHM = arccos(2−1/k)‍ (see Appendix 1—figure 
2). The fields ‍ρ‍ and ‍|J|‍ are shown in the two bottom rows for different values of ‍k‍ i. ‍k = 5000‍ (blue, data used to 
compute the reference spectral entropies ‍S0(ρ)‍ and ‍S0(J)‍) ii. ‍k = 60‍ (brown) iii. ‍k = 6‍ (yellow, used in main text) iv. 
‍k = 2‍ (purple).

Optimal compression in space and time
Spectral representations are exact in the limit of an infinite number of modes. In practice, we choose 
a maximal harmonic mode number ‍lmax‍ and maximal Chebyshev mode number ‍nmax‍. A too large 
value of ‍lmax‍ and ‍nmax‍ provides little compression benefit, while too small values suffer accuracy 
penalties. Hence, there is a compression-accuracy trade-off that we seek to optimize. To evaluate 
the trade-off quantitatively, we define a heuristic compression metric ‍C‍ by

	﻿‍ 1/C = nmax
Nt

+ (lmax+1)2

Ns
,‍� (35)

where ‍Nt‍ is the number of sampled time steps and ‍Ns‍ is the number of spatial grid points used for 
coarse-graining. Larger values of ‍C‍ correspond to a higher compression factor. To define accuracy 
metrics, we consider the norm

	﻿‍
∥f∥2 =

Nt∑
i=1

f(ti)2

‍�

where the sum runs over ‍Nt‍ regularly sampled time points ti. We denote a particular mode 
representation ‍{ρ̃lm(t), j̃(1)

lm (t), j̃(2)
lm (t)}‍ of the data that was coarse-grained via Equation 2a and Equation 
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2b (main text) for ‍l = 0, . . . , lref
max = 20‍ as the ‘uncompressed’ reference. A measure to characterize the 

accuracy of a mode-truncated ‘compressed’ data representation is then given by a relative average 
mode reconstruction error

	﻿‍
Emodes(nmax, lmax) = 1

2(lref
max+1)2

lmax∑
l=0

m=l∑
m=−l

(
∥ρlm−ρ̃lm∥2

∥ρ̃lm∥2 + ∥j(2)
lm −̃j(2)

lm∥
2

∥̃j(2)
lm∥

2

)1/2
.
‍�

(36)

This measure compares the compressed mode representation ‍{ρlm(t), j(2)
lm (t)}‍, truncated at maximal 

Chebychev mode number ‍nmax‍ (temporal representation Equation 32, Appendix 2) and maximal 
harmonic mode number ‍lmax‍ (spatial representation, Equations 4; 5, main text) with the reference 
modes ‍{ρ̃lm(t), j̃(2)

lm (t)}‍. To find a compromise between accuracy, characterized by ‍Emodes(nmax, lmax)‍, 
and compression ‍C‍ defined in Equation 35, the aim is to find a pair ‍(nmax, lmax)‍ on the Pareto front 
(Jin and Sendhoff, 2008) of ‍Emodes‍ vs. ‍1/C‍ (red dots in Appendix 2—figure 3).
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Appendix 2—figure 3. Relative average mode reconstruction error ‍Emodes(nmax, lmax)‍ Equation 36. As a 
function of the inverse of the compression ‍C‍ defined in Equation 35. Red points indicate the Pareto front (Jin 
and Sendhoff, 2008) of this compression-accuracy approximation trade-off. Orange circle indicates the final value 
used for our analysis.

Note that the modes ‍j̃
(1)
lm (t)‍ and ‍j

(1)
lm (t)‍ are so far omitted from this analysis, because the latter are 

in practice found directly from density modes via Equation 6 (main text). However, taking temporal 
derivatives of ‍ρlm(t)‍ using Equation 33 to determine ‍j

(1)
lm (t)‍ introduces undesirable oscillations for too 

large Chebychev cut-offs ‍nmax‍. This implies an additional trade-off between the need for accuracy 
(higher ‍nmax‍) and stability (lower ‍nmax‍). In practice, we wish to find values of ‍(nmax, lmax)‍ such that 
relative amplitudes of pairs ‍(̃j

(1)
lm , j̃(2)

lm )‍ and ‍(j
(1)
lm , j(2)

lm )‍ are preserved by the compression. This can be 
achieved by comparing the relative curl amplitude

	﻿‍
Scurl(t) =

∑
lm[j(2)

lm (t)]2
∑

lm[j(1)
lm (t)]2+[j(2)

lm (t)]2 ‍�

to the analog quantity ‍̃Scurl(t)‍ computed from the reference modes ‍{̃j(1)
lm (t), j̃(2)

lm (t)}‍ and analyzing the 
curl reconstruction error

	﻿‍
Ecurl = ∥Scurl−S̃curl∥

∥S̃curl∥ ‍� (37)

as a function of ‍nmax‍ and ‍lmax‍ (Appendix 2—figure 4). From this, we find a region of low error around 
‍lmax = 4, nmax = 30‍, which also is on the Pareto front of the accuracy vs. compression trade-off (orange 
circles in Appendix 2—figures 3 and 4) and represents the final values used throughout this work.
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Appendix 2—figure 4. ‍Scurl‍ reconstruction error landscape (log scale) as a function of ‍lmax‍ and ‍nmax‍. Black 
contour lines indicate iso-error lines (see Equation 37, ‍Ecurl =‍ const.), whereas white contour lines indicate iso-
compression levels (see Equation 35, ‍C =‍ const.). Orange circle indicates the final value used for our analysis.
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Appendix 3 

Active Brownian particles on the sphere
In this section, we describe the stochastic dynamics of non-interacting, active Brownian particles 
(ABPs) (Romanczuk et al., 2012) on curved surfaces and derive analytically coarse-grained mean-
field equations, as well as a kernel representation of ABP dynamics. These results are used in the 
main text to validate our coarse-graining and inference framework.

We consider active Brownian particles at position ‍x ∈ R3‍ that move with speed v0 on the surface of 
a unit sphere (radius ‍R0 = 1‍) in the direction of their unit orientation vector ‍u ∈ R3‍. Since ‍|x| = 1‍ at all 
times, we can interpret v0 as the particle’s angular speed on the unit sphere. The orientation vector 
is at all times tangential to the surface, but is subject to random in-plane fluctuations characterized 
by a rotational diffusion coefficient ‍Dr‍. The corresponding dynamics of ‍x(t)‍ and ‍u(t)‍ is given by the 
stochastic differential equations (in units ‍R0 = 1‍)

	﻿‍ dx = v0u dt‍� (38a)

	﻿‍ du = −v0xdt +
(
x × u

)√
2Dr ◦ dξ,‍� (38b)

where the stochastic differential Equation 38b is interpreted in the Stratonovich sense, as denoted 
by the symbol "o" (Braumann, 2007). It follows from Equation 38a that ‍x(t)‍ and ‍u(t)‍ are normalized 
at all times. In the absence of rotational diffusion (‍Dr = 0‍), the vectors ‍x‍ and ‍u‍ rotate over time by an 
angle ‍v0t‍ around the axis ‍u × x‍. Consequently, particle trajectories in the absence of noise trace out 
great circles in the plane defined by ‍(u × x)‍.

Spatial correlation of APBs on a sphere
‍C(t) = ⟨x(t) · x(0)⟩‍ To illustrate how ABPs on a sphere differ from ABPs in Euclidean space, we study 
first the correlation function , where the angled brackets denote a Gaussian white-noise average. To 
this end, we rewrite the ABP dynamics Equation 38a in their equivalent Itô form given by

	﻿‍ dx = v0u dt‍� (39a)

	﻿‍ du = −
(
v0x + Dru

)
dt +

√
2Dr

(
x × u

)
dξ.‍� (39b)

In the Itô formulation any smooth function ‍f(x, u)‍ obeys ‍⟨f(x, u)dξ⟩ = 0‍, such that (Winkler et al., 
2015)

	﻿‍
d
dt
⟨x(t) · x(0)⟩ = v0⟨u(t) · x(0)⟩

‍�

and

	﻿‍
d
dt
⟨u(t) · x(0)⟩ = −v0⟨x(t) · x(0)⟩ − Dr⟨u(t) · x(0)⟩,

‍�

which yields a damped harmonic oscillator equation for the correlation function

	﻿‍
d2

dt2 C(t) + Dr
d
dt C(t) + v2

0C(t) = 0.‍� (40)

Normalization and orthogonality of ‍x(t)‍ and ‍u(t)‍ imply the initial conditions ‍C = 1‍ and ‍dC/dt = 0‍ 
at ‍t = 0‍. The behavior of solutions of Equation 40 is a function of the rotational Péclet number 
‍Per := v0/Dr‍ that quantifies the ratio between active motion and orientational diffusion. For 
‍Per < 1‍, (‘high-noise regime’), the position correlation function ‍C(t) = ⟨x(t) · x(0)⟩‍ decays according 
to Equation 40 monotonically to zero. For ‍Per > 1‍, (‘low -noise regime’) position correlations exhibit 
damped oscillations. To validate our simulation method (described in the following section), analytic 
predictions for ‍C(t)‍ are in Figure 3B (main text) compared against the ensemble average ‍⟨x(t) · x(0)⟩‍ 
over ‍3 × 104‍ simulated ABPs.
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Stochastic simulation of active Brownian particles on the sphere
To ensure a numerically exact normalization of the particle’s position and orientation vectors on the 
unit sphere, we simulated the dynamics

	﻿‍
dx = v0

|u|

(
u − u · x

|x|2
x
)

dt
‍� (41a)

	﻿‍
du = −v0

x
|x|2

dt +
(
x × u

)
|x × u|

√
2Dr ◦ dξ.

‍�
(41b)

We numerically solve the Itô formulation of this system using the Euler-Mayurama scheme (Higham., 
2001), and confirm that this system reproduces the correlation dynamics predicted by Equation 40 
(Figure 3B, main text).

Fokker-Planck equation
To study the continuum dynamics of a large number of non-interacting ABPs on a sphere, we 
determine the dynamics of the probability density ‍p(x, u, t)‍ of particle positions ‍x‍ and orientations 
‍u‍ at time ‍t‍. To do so, it is convenient to express particle positions in terms of a parameterisation 
‍x(t) = x[x1(t), x2(t)]‍ that defines tangential basis vectors by ‍ei = ∂x/∂xi

‍ (‍i = 1, 2‍) and a metric tensor 

‍gij = ei · ej‍. By definition, we have ‍dx = eidxi
‍ and Equation 38a can be rewritten as

	﻿‍ dxi = v0uidt.‍� (42)

General tangential vectors on the surface can be written as ‍u = uiei‍ and on a unit sphere the surface 
normal can be identified with particle positions ‍n = e1 × e2/|e1 × e2| = x‍. Hence, on the unit sphere 
the Gauss-Weingarten relation reads ‍∂iej = −Cijx + Γk

ijek‍, where ‍Γ
k
ij‍ denote Christoffel symbols and 

‍Cij‍ is the curvature tensor. This implies together with Equation 42 the geometric relation

	﻿‍

du = eidui + ui(∂jei)dxj

= eidui − Cijuiujv0xdt + v0uiujΓk
ijekdt.‍�

Comparing this identity with the stochastic dynamics ‍du‍ in Equation 38b and using that 

‍Cijuiuj = gijuiuj = |u|2 = 1‍ for unit vectors ‍u‍ on the unit sphere, we find the covariant stochastic 
differential equation

	﻿‍ dui = −v0ujukΓi
jkdt + ϵi

kuk√2Dr ◦ dξ.‍� (43)

In Equation 43, ‍ϵij = x · (ei × ej)‍ denotes the Levi-Civita tensor on the unit sphere.
In this covariant basis, we define the scalar probability density

	﻿‍
p(x, u, t) =

⟨
1√
g(x)

∏
i δ[xi − xi(t)]δ[ui − ui(t)]

⟩
,
‍� (44)

where ‍δ(x)‍ denotes a Dirac function. Combining Equations 42; 43, standard methods (Fily et al., 
2016; Castro-Villarreal and Sevilla, 2018) allow us to obtain the Fokker-Planck equation for ‍p(x, u, t)‍ 
as

	﻿‍
∂
∂t p(x, u, t) = Dr

∂
∂ui

[
ϵi

kuk ∂
∂uj

(
ϵ

j
lu

lp
)]

−∇i(v0uip) + ∂
∂ui

(
v0ujukΓi

jkp
)
‍� (45)

Using the identity ‍ϵ
i
kϵ

j
l = gijgkl − δi

lδ
j
k‍, the dynamics of the probability density is finally given by

	﻿‍
∂
∂t p(x, u, t) = Dr

∂
∂ui

[
(gij − uiuj) ∂p

∂uj

]
− v0ui∇ip + ∂

∂ui

(
v0ujukΓi

jkp
)

,
‍� (46)

which agrees with the result in Castro-Villarreal and Sevilla, 2018.

Hydrodynamic expansion
To connect the Fokker-Planck dynamics given in Equation 46 to hydrodynamic fields, we define 
(probability) density and fluxes by ‍ρ(x, t) =

´
d2u p(x, u, t)‍, and ‍J

i(x, t) = v0
´

d2u uip(x, u, t)‍. Their 
dynamics on the unit sphere is given by Castro-Villarreal and Sevilla, 2018.
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	﻿‍
∂ρ

∂t
= −∇iJi

‍�
(47a)

	﻿‍
∂Ji

∂t
= −v2

0
2
∇iρ− DrJi,

‍�
(47b)

where couplings to higher order fields are neglected, as they vanish at shorter time-scales due to 
the presence of rotational noise. Expressing Equation 47a and Equation 47b in terms of scalar 
and vector spherical harmonics (see Appendix 2) for an arbitrary sphere radius R0 yields the mode 
dynamics Equation 13a, Equation 13b and Equation 13c the main text.
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Appendix 4 

Learning and interpreting the linear model
We describe details about the inference procedure used to learn the linear ordinary differential 
equation (ODE) model considered in the main text. We then discuss how the matrix ‍M ‍ found by 
this procedure can be further studied in terms of its real-space kernel representation and derive this 
kernel for the ABP dynamics introduced in Appendix 4.

Inference of the dynamical mode coupling matrix M
Given a dynamical mode vector 

‍
a(t) =

[
ρlm(t), j(1)

lm (t), j(2)
lm (t)

]⊤
‍
, the goal is to learn a linear minimal 

model

	﻿‍
da(t)

dt = M · a(t)‍� (48)

of the mode dynamics. Here, ‍M ‍ is an unknown ‍n × n‍ mode coupling matrix, where generally 
‍n = 3(lmax + 1)2 − 2‍. In systems with global mass conservation, as considered in this work, one can 
additionally use that the mode ‍ρ00‍ is constant and eliminate the corresponding couplings from ‍M ‍.

To describe the algorithm that was used to infer the mode coupling matrix ‍M ‍, we parameterize 
‍M ‍ by a vector ‍p‍ that contains all non-zero entries and introduce a function ‍M‍ that represents the 
underlying matrix structure. Together, they generate the explicit form ‍M = M(p)‍ of the mode 
coupling matrix. Imposing structure on the matrix, such as rank constraints, or sparsity leads to a 
shorter vector ‍p‍ and modifies the definition of ‍M‍ accordingly. Denoting ‍A(t;M, p, a0)‍ as the result 
of numerically integrating the system of ODEs Equation 48 up to time ‍t‍ from initial condition ‍a0‍ with 

‍M = M(p)‍, we define the loss function

	﻿‍
L(p; M, tI, tN) = 1

N−I

N∑
i=I

∥a(ti) − A(ti;M, p, a(tI))∥2
2,

‍�
(49)

where the ti are time points in an interval ‍[tI, tN]‍ at which the data and the ODE solution are sampled. 
Using the ODE solvers and optimization functions provided by the Julia modules ​Diff​eren​tial​Equa​
tions.​jl and ​DiffEqFlux.​jl (Rackauckas et al., 2021), we can differentiate through the ODE solver to 
calculate derivatives of the loss function Equation 49 with respect to parameters ‍p‍ and subsequently 
apply gradient-based optimization algorithms. The loss function is minimized using the ADAM 
algorithm (Kingma and Ba, 2017), followed by the Broyden-Fletcher-Goldfarb-Shannon (BFGS) 
algorithm (Nocedal and Wright, 2006). To increase the robustness of the optimization and promote 
sparsity, we use a sequentially thresholded algorithm (Supekar et al., 2021; Brunton et al., 2016; 
Reinbold, 2020). A complete overview of this procedure is shown in Appendix 4—figure 1 and the 
details of the specific design decisions made in the algorithm are discussed in the following:

1. To account for the variation in scale between the different modes in the data ‍a(t)‍, each mode 
is normalized by its median absolute deviation (MAD) across the full time-span in which the data are 
available. Specifically, we scale each mode by

	﻿‍ mad(ai) = mediank (|ai(tk) − āi|).‍� (50)

where ‍̄ai = mediank[ai(tk)]‍ and the median is taken over all time-points, giving rise to a scaled mode 
vector ‍̃a(t)‍. Losses analogous to Equation 49 that are computed using scaled data are denoted in 
the following by ‍̃L‍.

2. To prevent over-fitting, we divide the data into two regions, a learning region from ‍tI ‍ to ‍tN ‍ and 
a validation region from ‍tN ‍ to ‍tF‍. Only data from the learning region is used in the optimization of 
the loss function Equation 49. However, the model is integrated into the validation region, and a 
corresponding validation loss using only the data in the validation region is calculated. During each 
optimization run, we choose the model with the lowest loss in the validation region, lowering the 
likelihood of over-fitting to the specific data in the learning region.

3. To prevent the optimization from getting stuck in local minima, we incrementally increase the 
time-span of the data included in the optimization objective (blue box in Appendix 4—figure 1). 
We increase the time window backward from a fixed endpoint ‍t1 = tF‍, choosing each iteration an 
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earlier initial condition at time ‍ti < ti−1‍. The advantage of stepping backward rather than forward 
from a fixed initial condition is twofold: first, the validation region stays unchanged throughout the 
optimization, making comparisons of the validation loss easy. Second, because the initial condition 
changes with each run, the learned matrix tends to be more robust to fluctuations in the initial 
condition.

4. After the optimization step, sparsity is promoted by thresholding the elements in the matrix 
(Brunton et al., 2016), removing small magnitude elements that do not noticeably contribute to 
the mode dynamics (purple box in Appendix  4—figure 1). The optimization procedure is then 
repeated until the thresholding converges. The threshold is chosen to generate a sparse matrix that 
still reproduces the dynamics faithfully.

5. Once the sparsity pattern is obtained from the sequential thresholding and optimization 
procedure a final run of the optimization is performed on the unscaled mode data to find the final 
dynamical matrix ‍M ‍, which removes any potential slight bias the MAD scaling might have introduced 
in the parameter values ‍p‍.

Finally, the numerical stability of the model can be checked by examining the eigenvalues of 
the learned matrix. For the ABP test data, we learn a matrix ‍M ‍ for which the largest real part of its 
eigenvalues is at machine precision. For the experimental data, the largest real part in the eigenvalues 
is ‍7.4 × 10−4‍, which corresponds to a time scale of around 675 mins. While the corresponding 
dynamics will eventually become unstable, solutions remain bound over a period of approximately 
45 hours, which is four times as long as the input data from which the mode coupling matrix was 
learned.

Learning and validation regions used in this work
For the ABP data, the first 15 frames are excluded, so that – consistent with coarse-graining 
assumptions (see Appendix 3, Equation 47a, Equation 47b) any remnants of higher orientational 
order introduced by the initial conditions have decayed. The subsequent 140 frames are used as 
the learning region, followed by a validation region of 20 frames. Each frame corresponds to a time 
interval of approximately 0.06 in units of ‍R0/v0 = 1‍. We exclude the first and last 10 frames of the 
experimental zebrafish data and split the remaining data into a learning region of 360 frames, with 
the remaining 40 frames used for validation. Each frame corresponds to a time interval of 2 min.

https://doi.org/10.7554/eLife.68679
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Appendix 4—figure 1. Initially the data is rescaled using the median absolute deviation (MAD) defined in 
Equation 50 to account for variation in scales across the modes. Scaled variables are denoted by tildes. To 
avoid local minima of the optimization function, we iteratively feed more data into the cost function. Next we 
sequentially threshold the small terms in the matrix until convergence is reached. These procedures are repeated 
until the sparsity pattern converges. Finally the scaling is undone and the parameters are optimized on the 
unscaled data to produce the final matrix. Schematic of the learning procedure. 

Green’s function representation of the learned matrix
The learned matrix ‍M ‍ consists of 9 blocks each with ‍[(lmax + 1)2 − 1] × [(lmax + 1)2 − 1]‍ entries. Each 
block relates a mode family to time derivatives of another and we write

	﻿‍

M=




Mρρ Mρ1 Mρ2

M1ρ M11 M12

M2ρ M21 M22


 .

‍�

We denote the components of each block by ‍
(
Mm1m2

)
lm,l′m′ ≡ Mm1m2

αβ ‍, where ‍m1, m2 ∈ {ρ, 1, 2}‍, and 
‍α‍, ‍β‍ are multi-indices that represent the harmonic modes ‍(lm)‍. Using the mode representation 
Equation 5 and the form of the linear minimal model Equation 48, we find

	﻿‍

∂

∂t
J(r, t) =

∑
α=lm

(
dj(1)

α (t)
dt Ψα(r̂) + dj(2)

α (t)
dt Φα(r̂)

)

=
∑

α=lm
∑

β=l′m′

[
M1ρ

αβρβ(t) + M11
αβ j(1)

β (t) + M12
αβ j(2)

β (t)
]
Ψα(r̂)

+
[
M2ρ

αβρβ(t) + M21
αβ j(1)

β (t) + M22
αβ j(2)

β (t)
]
Φα(r̂).

‍� (51)
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Using Equation 30a, Equation 51 can be cast into the dynamic kernel Equation 14 given in the 
main text, where we defined the vector kernel

	﻿‍ mρ(r, r′) =
∑

α=lm
∑

β=l′m′ M1ρ
αβΨα(r̂)Yβ(r̂′) + M2ρ

αβΦα(r̂)Yβ(r̂′)‍� (52)

and the matrix kernel

	﻿‍

MJ(r, r′) =
∑

α=lm
∑

β=l′m′
1

l(l+1)

[
M11

αβΨα(r̂) ⊗Ψβ(r̂′)

+M12
αβΨα(r̂) ⊗Φβ(r̂′) + M21

αβΦα(r̂) ⊗Ψβ(r̂′)

+M22
αβΦα(r̂) ⊗Φβ(r̂′)

]
,

‍�

(53)

where ⊗ denotes a dyadic product. The matrix ‍MJ(r, r′)‍ has a 0 eigenvalue with right eigenvector ‍̂r′‍ 
and left eigenvector ‍̂r‍, which implies 

‍
det

(
MJ

)
= 0

‍
. Numerical analysis of the matrix invariants shows 

that a second eigenvalue is 0 (Appendix 4—figure 2), leaving only a single non-zero eigenvalue that 

can be conveniently found from 
‍
tr
[
MJ(r, r′)

]
‍
 and is shown in Figure 4D (main text).

Real-space kernels of active Brownian particle dynamics
In the following we determine a real-space kernel representation in the form Equation 14 for the 
flux dynamics of ABPs given in Equation 47b. We can read off the kernel coefficients in Equation 52 
and in Equation 53 from the coarse-grained ABP dynamics in mode space, given in Equation 13b 

and Equation 13c. For the kernel ‍mρ(r, r′)‍, we have ‍M
1ρ
αβ = − v2

0
2 δαβ‍ and ‍M

2ρ
αβ = 0‍ (‍α,β = (lm)‍), such 

that Equation 52 becomes

	﻿‍ mρ(r, r′) = − v2
0

2 ∇S
∑

α=lm Yα(r̂)Yα(r̂′) = − v2
0

2 ∇Sδ(r − r′).‍� (54)

Here, we have used in the first step the definition of ‍Ψlm(r̂)‍ given in Equation 29a and in 
the second step the completeness of the spherical harmonic basis functions ‍Ylm(r̂)‍, where 
‍δ(r − r′) = δ(ϕ− ϕ′)δ(cos θ − cos θ′)‍ denotes the delta function on a sphere. Note that a unit sphere 
was considered throughout this analysis, such that ‍r = r̂‍. Similarly, Equation 13b and Equation 13c 
imply for the kernel coefficients in Equation 53 that ‍M

11
αβ = M22

αβ = −Drδαβ‍ and ‍M
12
αβ = M21

αβ = 0‍. 
Consequently, we have

	﻿‍ MJ(r, r′) = −Dr
∑

α=lm
1

l(l+1)
[
Ψα(r̂) ⊗Ψα(r̂′) + Φα(r̂) ⊗Φα(r̂′)

]
= −Drδ(r − r′)P∥,‍� (55)

where ‍P∥ = I − r ⊗ r‍ is the tangential projector on the unit sphere. The hydrodynamic flux Equation 
47b of ABPs on a sphere can therefore be written in the equivalent integral kernel form

	﻿‍
∂tJ(r, t) =

ˆ
dΩ′

[
− v2

0
2
∇Sδ(r − r′)ρ(r′, t) − Drδ(r − r′)J(r′, t)

]
.
‍�

(56)

To make analytic kernel properties comparable to practical inference scenarios in which we work with 
a finite number of harmonic modes, we computed the sums in Equations 54; 55 up to a maximum 
mode number ‍lmax = 4‍. The resulting kernels – depicted in Figure 4D (main text) – approximate the 
Dirac delta function ‍δ(r − r′)‍ and its derivative, leading to the finite range of ‍tr(MJ)‍ with amplitude 
maximum at ‍ω = 0‍, while ‍|mρ|‍ vanishes at and peaks away from ‍ω = 0‍. Additionally, finite mode 
representations introduce an apparent kernel inhomogeneity across the spherical surface as evident 
from the non-zero standard deviation depicted in Figure 4D of the main text (blue shades).
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Appendix 4—figure 2. The ‍3 × 3‍-matrix invariant 
‍
I2 = 1

2

(
tr[(MJ)2] − (tr[MJ])2

)
‍
 sampled for pairs of positions 

‍r‍, ‍r′‍ vanishes to machine precision for the dynamical matrix ‍M ‍ learned on the zebrafish data. This invariant can be 
expressed in terms of matrix eigenvalues as ‍I2 = λ1λ2 + λ1λ3 + λ2λ3‍. Additionally, ‍λ1λ2λ3 = det(MJ) = 0‍ (see 
discussion below Equation 53), which implies only one eigenvalue is non-zero. Evaluating I2 for the kernel matrix 
‍MJ ‍ encoded by the theoretical (see Equation 13b and Equation 13c) and inferred (see Figure 3C, main text) 
dynamical matrix ‍M ‍ of the ABP dynamics yields similar results.
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