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The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor 
suppressor gene that is among the most frequently inactivated genes throughout the 
human cancer spectrum. The most recent sequencing approaches have allowed the 
identification of PTEN genomic alterations, including deletion, mutation, or rearrange-
ment in about 50% of prostate cancer (PCa) cases. It appears that mechanisms leading 
to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/
deletions, copy number alterations (CNAs), promoter hypermethylation, and RNA inter-
ference. The examination of publicly available results from deep-sequencing studies of 
various cancers showed that PCa appears to be the only cancer in which PTEN is lost 
mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, 
deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By 
investigating the minimal deleted region at 10q23, several other genes appear to be 
lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes 
are also downregulated upon loss of 10q23. These analyses raise the possibility that 
10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the 
expression of surrounding genes. As such, several genes from this deleted region, which 
represents about 500 kb, may also act as tumor suppressors in PCa, requiring further 
studies on their respective functions in that context.

Keywords: steroid, androgen, castration-resistant, androgen receptor, neuroendocrine, androgen deprivation 
therapy

iNtrODUctiON

The PTEN gene on chromosome 10q23 encodes for the phosphatase and tensin homolog, a tumor 
suppressor gene that is among the most frequently inactivated genes throughout the human cancer 
spectrum. Its lipid phosphatase activity allows PTEN to dephosphorylate phosphatidylinositol-
triphosphate, therefore repressing the oncogenic PI3K/Akt/mTOR pathway. In prostate cancer 
(PCa), PTEN is frequently lost by deletion of the 10q23 region in tumors, which has been described 
several years ago (1–4), and prostate-specific deletion of Pten in mice leads to PCa development (5). 
The most recent sequencing approaches have allowed the identification of several types of genomic 
alterations of PTEN, including deletion, mutation, or rearrangement (including genomic inversions), 
and have further described PTEN alterations in about 50% of all PCa samples (6–14).

The inactivation rate of PTEN in PCa is similar to what has been described in other types of 
cancer, such as breast and endometrial cancers (15, 16). However, mechanisms leading to PTEN 
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FiGUre 1 | PTEN genomic alterations in the human cancer spectrum. Genomic alterations of the PTEN gene were visualized with the cBioPortal for Cancer 
Genomics (20, 21). Only cohorts with data on both mutation and copy number alterations are shown.
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inactivation appear to be cancer-specific, comprising gene 
mutations, small insertions/deletions, copy number alterations 
(CNAs), promoter hypermethylation, and RNA interference 
(RNAi) (6–15). For example, endometrial cancer is characterized 
by microsatellite instability that is associated with frameshift 
mutations, which are the most frequent inactivating alterations 
in PTEN in that type of cancer (15, 17). In addition, patients with 
Cowden syndrome, who have a germline mutation in PTEN, also 
harbor a significantly higher risk of endometrial cancer (15, 18). 
Cowden syndrome is a rare autosomal-dominant condition that 
leads to an increased risk of breast, thyroid, and endometrial 
cancers (15, 19). However, patients with Cowden syndrome do 
not have increased risk of PCa, even though the loss of PTEN can 
be detected early in PCa patients (1, 6, 9, 13). It is reported that in 
PCa, between 2 and 15% of primary tumors harbor a PTEN muta-
tion, while between 30 and 40% exhibit an important deletion on 
chromosome 10q23 (6, 10–13).

Importantly, many other genes are also present on the deleted 
region on 10q23, most of which have not been investigated in 
the context of PCa. Moreover, because PTEN is more frequently 
deleted in PCa through large genomic deletions and at a higher 
frequency compared with other types of cancer instead of the 
gene-specific mutations that occur in most malignancies, it raises 
the possibility that genes lost at the same times as PTEN in PCa 
also display important tumor suppressor functions. It is well 
accepted now that large genomic deletions can contain more than 
one important gene, but this concept was not investigated in the 
context of the loss of 10q23 in PCa. In this perspective article, we 
will discuss the genes that are lost along with PTEN upon deletion 
of the 10q23 locus that might well play a role in PCa development.

PTEN is MOre FreQUeNtLY ALtereD 
tHrOUGH cNA rAtHer tHAN tHrOUGH 
A sPeciFic GeNe MUtAtiON iN Pca

The PTEN genomic status was first screened through the 
cancer spectrum across the different cohorts available on the 

cBio Cancer Genomics Portal from The Cancer Genome Atlas 
(TCGA) group (20, 21). Only cohorts with both mutation and 
CNA were kept for analysis. In most types of cancer, PTEN is 
often mutated (Figure  1, green color), with particularly high 
mutations rates in glioblastoma and uterine cancer, where the 
alterations rate is between 40 and 65% (Figure  1). Despite 
showing small CNA rates, gene mutations are the most com-
mon PTEN genomic alterations. Interestingly, the only type of 
cancer with high rates of PTEN genomic alterations particu-
larly caused by CNA is PCa. In PCa, between 20 and 50% of 
all tumors exhibit PTEN alterations, with 60 and 90% of them 
being CNA instead of mutations (Figure 1). This suggests that 
CNA at the PTEN locus might affect more than PTEN itself and 
lead to the deletion of other tumor suppressor genes important 
to the etiology of PCa.

We further analyzed the PTEN genomic alteration status 
between the different PCa cohorts (Figure  2A), which 
included the Michigan, Stand Up To Cancer (SU2C), and Fred 
Hutchinson Cancer Research Center datasets, mostly compris-
ing metastatic samples (12, 13, 22); the Trento/Cornell/Broad 
dataset, composed of metastatic neuroendocrine prostate 
cancer (23); the Broad/Cornell 2012, Broad/Cornell 2013, 
Memorial Sloan Kettering Cancer Center, and the two TCGA 
datasets, comprising mostly primary localized PCa (9, 11,  
16, 24). In cohorts mostly composed of clinically localized 
tumors, PTEN genomic alterations, mostly CNA, ranged from 
10 to 20%. This alteration frequency increased to 40–50% in 
cohorts of metastatic samples and castration-resistant PCa 
(CRPC) tumors, again mostly through CNA of PTEN. These 
results are consistent with previous reports linking PTEN loss to 
PCa aggressiveness as it is increased in more aggressive disease 
settings (25–28). Further investigation of PTEN alterations in 
the CRPC/metastatic cohorts confirmed higher rates of CNA 
in these tumors compared with the TCGA cohort, which is 
mostly composed of clinically localized tumors (Figure  2B). 
These data also confirmed that deletion of PTEN is the most 
frequent genomic alteration occurring at this locus in prostate 
tumors.

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FiGUre 2 | Copy number alteration (CNA) is the most frequent inactivation mechanism of PTEN in human prostate cancer (PCa). (A) Genomic alterations of the 
PTEN gene in PCa. Only cohorts with data on both mutation and CNAs are shown. Abbreviations: NEPC, neuroendocrine prostate cancer; CRPC, castration-
resistant PCa. (B) Specific alterations of PTEN in the Michigan (MICH), Fred Hutchinson Cancer Research Center (FHCRC), Stand Up To Cancer (SU2C), and The 
Cancer Genome Atlas (TCGA) cohorts. Note that the proportion of alterations is slightly different than in (A): all tumors are shown in (A) while all patients are shown 
in (B) (some patients had more than one sample sequenced).
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cNA At 10q23 LeADs tO LOss NOt ONLY 
OF PTEN BUt ALsO OF severAL 
ADDitiONAL GeNes

Interestingly, visualization of CNA at the PTEN locus in the 
various cohorts available on the cBioportal indicated that 
deletion of PTEN often results in the loss of a large (>500 kb) 
genomic segment of chromosome 10q23 (Figure  3). Results 
from the metastatic cohort SU2C revealed that PTEN is 
commonly lost with other genes located at 10q23, including 
MINPP1, PAPSS2, KLLN, and ATAD1. Moreover, deletion at 
10q23 frequently occurs in one of the RNLS introns. By also 
investigating other cohorts with high coverage at 10q23 CNA 
status, we observed a similar deletion pattern, notably in the 
localized PCa cohort from the provisional TCGA dataset 
(Figure  3, right). Again, the same similar minimal region 
seems to accompany the loss of PTEN, altering the same set 
of genes as in the more aggressive SU2C cohort, including 
the deletion breakpoint in the intronic region of RNLS. These 
results suggest that the loss of 10q23 in PCa cells does not 
solely inactivate the tumor suppressor PTEN, but that there is 

also a selective pressure to lose other gene(s) at this particular 
genomic region in this specific type of cancer. Accordingly, 
CNA at 10q23 significantly altered mRNA expression of PTEN, 
and deletions of PTEN resulted in decreased mRNA expres-
sion in both the SU2C and the TCGA cohorts (Figures 4A,B, 
respectively). Genes surrounding PTEN that are located in the 
minimal deleted regions (Figure 3) also have a similar pattern, 
with a significantly decreased expression with either shallow or 
deep deletions in the two cohorts (Figure 4). The only excep-
tion was PAPSS2, which was not significantly altered by deep 
or shallow deletion (Figure 4). As reported previously (13, 16), 
various inactivating mutations of PTEN were also detected in 
both cohorts, but at lower frequency than CNA.

FUtUre DirectiON iN Pca GeNOMic 
ALterAtiON stUDies

Since the initial characterization of PTEN loss in PCa two decades 
ago (1–4), most studies on CNA at 10q23 have focused exclusively 
on PTEN as basically the only gene lost upon deletion at this specific 
locus, even in more recent deep-sequencing studies (6–14). Given 
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FiGUre 3 | The minimal deletion at 10q23 in prostate cancer (PCa). Deletion status at the 10q23 locus in the Stand Up To Cancer (SU2C) (left) and the The Cancer 
Genome Atlas (TCGA) (right) PCa clinical datasets. Blue color indicates copy number loss at this locus. Genes present in that genomic regions are shown (bottom 
panel).
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its known role as a tumor suppressor in most types of cancer and 
because mutation of PTEN causes a hereditary syndrome with 
multiple cancer susceptibilities, PTEN is most certainly the main 
tumor suppressor gene lost with this deletion. However, other 
genes located in the minimal deleted region at 10q23 might play 
a significant role in PCa etiology because (1) CNA is the major 
genomic alteration in PCa, not a direct mutation of PTEN, which 
occurs in all other types of cancer; (2) a large region at 10q23 
is deleted, comprising more than just PTEN and often including 
the loss of at least six other genes; and (3) some of these genes 
have already been associated with tumor suppressing functions in 
PCa or other cancers. The question remains as to what roles these 
genes play in prostate biology and PCa development.

KLLN encodes for the KILLIN protein, which has been 
identified as a P53 target required for S phase checkpoint con-
trol to eliminate precancerous cells (29). KLLN overexpression 
reduces PCa cell growth in vitro by decreasing the androgen 
receptor (AR) signaling, while its repression increases it; this 
is consistent with a tumor suppressor function of this gene 
(30). Interestingly, mutation in the promoter of KLLN is also 
associated with Cowden and Cowden-like syndromes, pos-
sibly by sharing its promoter with PTEN itself (31). ATAD1 
depletion induces mitochondrial fragmentation and impairs 

respiration (32). It is notable that increased mitochondrial 
respiration is a key metabolic phenotype associated with PCa 
development and progression (33–37). RNLS encodes the 
renalase FAD-dependent metabolic enzyme (38), which has 
no currently known role in PCa. PAPSS2 encodes for PAPS 
synthase 2, which provides sulfate donors to sulfotransferase 
enzymes, including SULT2A1, which is a critical enzyme 
for dehydroepiandrosterone (DHEA) sulfation (39). DHEA 
and its sulfate form (DHEA-S) represent the major adrenal 
androgen precursors and therefore are important sources for 
intra-tumor androgen synthesis. This is particularly relevant 
during PCa progression and is a therapeutic target used in 
the clinic (adrenal androgens production is inhibited using 
abiraterone acetate) (40–42). The few patients identified with 
mutations in this gene are female, and heterozygous inacti-
vation of PAPSS2 has been associated with polycystic ovary 
syndrome, premature puberty, hyperandrogenic anovulation, 
very low DHEA-S levels, and increased androgen levels (43). 
Even though PAPSS2 is not significantly decreased by CNA, 
intra-tumor loss of PAPSS2 could favor androgen excess and 
hyperactivation of AR, which is critical for tumor growth and 
cancer progression. MINPP1 encodes a phosphatase linked to 
inositol-3-phosphate metabolism, similar to PTEN functions 
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(44). CFL1P1 is cofilin pseudogene 1 and has no known func-
tion. However, based on mRNA expression profiles across tis-
sues from the data presented by Fagerberg et al. (45), it shows 
high expression specifically in the testis, possibly reflecting a 
function in the male reproductive system.

Further experiments are now required to characterize the 
role of these genes located near PTEN and lost along with this 
important tumor suppressor in PCa. Only a few in vitro models 
of human PCa exist, some that exhibit complete loss of PTEN, 
such as in PC3 cells; some that exhibit mutation of PTEN and 
partial loss at 10q23, such as LNCaP cells; and finally some 
that harbor wild-type PTEN, such as 22rv1 and DU145 cells  

(4, 9, 46). These wild-type PCa cell lines thus represent potential 
in vitro models to study the impact on PCa cell proliferation of 
PTEN inactivation, with and without inactivation of one or more 
of the other genes located within the minimal deleted region at 
10q23 (KLLN, ATAD1, RNLS, PAPSS2, MINPP1, and CFLIP1). 
Because in most tumors there is a single copy lost at 10q23 in 
most tumors, and not a complete loss of both copies, repression of 
these genes with RNAi would mimic the gene expression decrease 
observed in tumor samples. The more recent genome editing 
technology using the CRISPR/Cas9 system would also allow the 
knockout of these genes along with PTEN to study their potential 
role as tumor suppressors of PCa in vitro (47).

FiGUre 4 | Relationship between genomic alterations at the 10q23 locus and genes encompassed within this region. Expression of six genes located at the 
minimal deleted regions at the 10q23 locus in the Stand Up To Cancer (SU2C) (A) and the The Cancer Genome Atlas (TCGA) (B) prostate cancer cohorts. 
***p < 0.001; **p < 0.01; *p < 0.05 in ANOVA with post hoc Tukey’s Honest Significant Difference. Note that for RNLS and PTEN expression data in the TCGA 
cohort (B), the sample with an amplification at 10q23 was not included for statistics.
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cONcLUDiNG reMArKs

In summary, using publicly available results from deep-sequencing 
studies of various cancers, PCa appears to be the only cancer in which 

PTEN is inactivated mostly through CNA. Large genomic deletions 
often contain more than one important gene, and this is a concept 
that needs to be revisited in the context of PTEN loss in human PCa. 
Instead of inactivating mutations as seen in other cancers, deletion at 
10q23 is the most common form of PTEN inactivation. Investigation 
of the minimal deleted region at 10q23 revealed that several other 
genes appear to be lost in addition to PTEN. Expression data indicate 
that, like PTEN, these genes are downregulated upon CNA, and, 
together with the CNA profile, suggest that these genes represent 
potential novel tumor suppressor genes in PCa. Their potential 
function as PCa tumor suppressors thus remained to be determined 
using state-of-the-art genetic engineering approaches in in vitro and 
in vivo models of PCa.
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