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Abstract

Background: Models of between-farm transmission of pathogens have identified service vehicles and social groups as risk
factors mediating the spread of infection. Because of high levels of economic organization in much of the poultry industry,
we examined the importance of company affiliation, as distinct from social contacts, in a model of the potential spread of
avian influenza among broiler poultry farms in a poultry-dense region in the United States. The contribution of company
affiliation to risk of between-farm disease transmission has not been previously studied.

Methodology/Principal Findings: We obtained data on the nature and frequency of business and social contacts through a
national survey of broiler poultry growers in the United States. Daily rates of contact were estimated using Monte Carlo
analysis. Stochastic modeling techniques were used to estimate the exposure risk posed by a single infectious farm to other
farms in the region and relative risk of exposure for farms under different scenarios. The mean daily rate of vehicular contact
was 0.82 vehicles/day. The magnitude of exposure risk ranged from ,1% to 25% under varying parameters. Risk of
between-farm transmission was largely driven by company affiliation, with farms in the same company group as the index
farm facing as much as a 5-fold increase in risk compared to farms contracted with different companies. Employment of
part-time workers contributed to significant increases in risk in most scenarios, notably for farms who hired day-laborers.
Social visits were significantly less important in determining risk.

Conclusions/Significance: Biosecurity interventions should be based on information on industry structure and company
affiliation, and include part-time workers as potentially unrecognized sources of viral transmission. Modeling efforts to
understand pathogen transmission in the context of industrial food animal production should consider company affiliation
in addition to geospatial factors and pathogen characteristics. Restriction of social contacts among farmers may be less
useful in reducing between-farm transmission.
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Introduction

The recent H1N1 pandemic draws attention to the role the

organization of food animal production industries may play in the

generation and transmission of novel influenza A viruses [1–3].

While avian influenza (AI) prevention efforts have largely focused

on improving biosecurity in small-holder poultry systems in recent

years, influenza risk factors associated with industrial poultry or

swine production warrant increased scrutiny [4]. In nations where

the poultry industry is highly industrialized and integrated by

producer, such as the United States and increasingly in Asia and

Latin America, the burden and transmission of infection within

and among commercial flocks may serve as an important

mechanism of minimizing or preventing viral adaptation and

transmission to humans [5].

More than 9 billion broiler chickens (raised for meat and

slaughtered at 6–7 weeks) were produced in the US in 2007 [6].

Industrially produced poultry are raised in confined housing,

provided with defined feeds rather than access to forage, and

managed in order to facilitate the uniform and reliable production

of meat products [7]. The industry is highly vertically integrated,

with poultry production companies (known as integrators)

contracting with farmers (referred to as growers) to raise the birds

prior to slaughter [8]. Production is highly geographically

centralized in the Southeast and Mid-Atlantic regions of the

country (Figure 1).

The absence of H5N1 in the US to date does not in and of itself

indicate that biosecurity measures in the US poultry industry have

been effective. Low pathogenic avian influenza (LPAI) viruses of

great antigenic diversity are detected frequently in commercial

poultry in the US, with over 100 detections confirmed by viral

isolation in commercial and small-scale flocks from 2004–2008 [9].

From 2002–2005, hemagglutinin subtypes H1-H13 and all nine

neuraminidase subtypes were recovered from US poultry flocks.
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Prevalence of H5 and H7 LPAI (which is reported to OIE because

of high pathogenic potential for poultry) in US commercial broiler

and turkey flocks is estimated at .0015%, yet prevalence of non-

reportable LPAI is clearly substantially higher [10].

LPAI viruses are often considered to be of lower risk because

they are associated with limited mortality in poultry, but they may

be harbingers of risk to humans since pathogenicity to poultry is

not a precondition for human infection. Moreover, their

circulation in poultry flocks provides a setting for viral evolution

and human exposure.

Recent LPAI outbreaks with sustained farm-farm transmission

in the US demonstrate the challenges in successfully containing AI

viruses in the commercial poultry industry. A LPAI H7N2 virus

infected 47 broiler flocks in Pennsylvania from 1996–1998 and

seven flocks in 2001 and 2002, resulting in the culling of three

million birds and losses exceeding $4 million [11,12]. In 2002,

LPAI H7N2 appeared in Virginia, spreading to 197 turkey and

broiler farms and resulting in the depopulation of 4.7 million birds

[13], and resurfaced in live markets and broiler facilities in the

Northeast and Mid-Atlantic again in 2004. An LPAI H5N2 virus

resulted in culling over 75,000 turkeys in the Shenandoah Valley

in 2007; detections of LPAI H7N9 and LPAI H7N3 led to the

culling of 116,000 turkeys and broiler breeders in Nebraska and

Arkansas that same year. In March 2009, 20,000 broiler breeders

were culled following a detection of an LPAI H7 virus in Kentucky

[14].

LPAI detections in the US highlight the difficulty in preventing

viral incursions in commercial poultry operations, yet likely

represent a minority of the total burden of LPAI in the US. Little

to no information is released to the public regarding non-H5 and

non-H7 LPAI detections. Additionally, data on the poultry

industry are typically not collected by state or federal agencies,

and existing information is often not publically accessible. Only

since 2006, when detections of low pathogenic H5 and H7 viruses

became reportable to the OIE, have county-level identifiers been

released to the public following a detection of LPAI in the US. At

present, for non-H5 and non-H7 viruses, an infected farm is

publically identified by state only; no information on specific

location or company affiliation is typically released.

A growing literature supports the role of vehicular transmission

and social groups as important viral conduits among farms. Two

analyses of the 2002 outbreak in Virginia identified worker

movement and between-farm vehicular transportation as risk

factors for between–farm transmission at that time [15,16]. In an

Figure 1. Number of broilers and other meat-type chickens sold in the United States, 2007 (Source: USDA Census of Agriculture,
2007).
doi:10.1371/journal.pone.0009888.g001
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analysis of the transmission of HPAI H7N7 from the Netherlands

in 2003, Thomas et al. (2005) identified shared human resources

and equipment as significant factors in international transmission

of the virus [17]. Analyses of outbreaks of other zoonoses, such as

foot and mouth disease and classical swine fever, have also found

that vehicular transmission between farms is an important factor

for pathogen movement [18,19]. However, no previous study has

considered the organization of industrial food animal production

in terms of producer groups and the contribution of these groups

to between-farm contact and exposure risk.

Our research aims to approximate the nature and frequency of

contact patterns among poultry farms in the US through national

sampling and modeling to estimate AI exposure risk in a region of

high poultry density, focusing on the business dynamics specific to

industrial poultry production. Quantitative modeling is useful both

as a means of understanding the causes of an outbreak and to

forecast risk in currently unaffected areas, and has been widely

applied in the zoonotic influenza control literature [20–25]. The

ability to use modeling to understand risk factors and control

points in the US poultry industry is hampered by the lack of

readily available information on rates of contact between farms.

Efforts to understand viral transmission in advance of an outbreak

remain critically important for AI prevention in the US.

Methods

Ethics statement
This research was conducted with the approval of the Johns

Hopkins Bloomberg School of Public Health Institutional Review

Board.

Poultry grower survey
We developed and conducted an online survey of contract

broiler growers in the US (available from the authors by request).

The questions were designed in collaboration with a small group of

growers in the Delmarva region who have worked with our

research group on previous projects and pilot tested with this

group. Our study population was a convenience sample of broiler

growers who responded to an email invitation to participate in an

online survey. Invitations to participate in the survey were sent to

contacts and colleagues in the broiler industry, who forwarded the

survey link to personal and business email lists of broiler growers.

The survey was posted on the ‘‘SurveyMonkey’’ server, and

responses were anonymous [26]. Questions were multiple choice

or short answer in format. The site remained active for three

months, from February 2008 to April 2008.

The survey queried growers about farm size and business cycle

(number of houses, number of birds per house, total bird capacity,

frequency and duration of between-flock gap periods), household

size, poultry industry and service visitors to and from the farm,

frequency of these visits, and biosecurity and waste management

practices on the farm. Growers were asked to report how often a

service vehicle affiliated with a given service visited the farm per

week, per growing cycle (6–7 weeks) or per year, with the time

period depending on prior knowledge of these variables. These

time periods were chosen so as to maximize the usefulness of the

information collected and incorporate data from farms that might

be without a flock at the time of our survey.

We also asked growers if they employed workers (non-

household members) to work in the poultry houses. If growers

reported hiring workers, we queried the number of workers, full-

time or part-time status, days per week worked during the growing

season, and whether these workers worked at other poultry farms

in addition to their own. Questions were also asked about

frequency of social visits (family and friends), and the approximate

percentage of these visitors who were also poultry growers as a way

to estimate social contact between growers.

Data analysis
For this study, we defined ‘‘integrator-linked contact’’ as a visit

to the farm from a service vehicle or personnel affiliated with the

poultry company to which the farm is contracted. ‘‘Non-integrator

commercial contacts’’ refer to service visits from companies that

are unaffiliated with a single integrator but rather service farms

regardless of company affiliation. ‘‘Exposure’’ is defined as a visit

to a susceptible farm from a vehicle that had also visited the index

farm during the period of infectiousness and during the time when

the virus was assumed to survive on that vehicle. To note: we focus

on primary exposures from the index case in this study, rather

than dynamics of viral spread once multiple farms are infected, in

order to highlight upstream control points and depict the

magnitude of potential exposure risk stemming from a single

infectious farm.

The raw data on frequency of visits to the farm was transferred

to STATA [27], and transformed into daily contact rates to permit

comparisons across different vehicle sources. Daily contact rates

were calculated for the following business contacts: feed delivery,

flock supervisor visits (an integrator employee who is the main

point of contact between the integrator and the grower), visits from

other management personnel, chick delivery, live haul (removal of

chickens at the end of the growing cycle for slaughter), meter

readings, propane delivery, maintenance visits, cake out (removal

of poultry wastes from the poultry houses) and waste haul (removal

of poultry wastes from the property).

Daily contact rates were also calculated for social visits among

broiler growers. Non-grower social contacts were assumed to pose

less of a risk of avian influenza transmission between farms and

therefore we only considered social contact among growers in our

analysis.

Since a minority of respondents reported hiring part-time

workers (12.5%), we estimated risk separately for farms employed

part-time workers and did not include daily rates of contact with

part-time workers as a risk factor for the majority of farms that did

not engage in this practice. The model assumed that workers who

worked only at a single poultry farm would be unlikely to expose

that farm to AI from a second farm, but that workers who worked

at multiple farms could transmit the virus between the farms of

their employment.

The daily contact rate from part-time non-household poultry

house workers was assessed using two scenarios that were intended

to represent the range of likely employment practices. These

scenarios were drawn from our survey data and confirmed by

phone conversations and in-person interviews with Delmarva

growers as appropriate for that region. The first scenario assumed

uniform random mixing of part-time workers within a subset of

farms who hired these workers and assumed each farm hired one

worker per day. A function developed and run in the ‘R’ statistical

platform [28] was used to estimate the number of distinct farms

exposed by workers having visited the index farm under the

assumption of random mixing during a given period. A second

part-time worker scenario approximated an intermittent employ-

ment structure. Workers in this scenario worked at two distinct

farms on alternating days, and each farm employed a single

worker for 3 days per week.

Spearman rank correlation in STATA was used to determine

correlation between continuous contact frequency data and

between basic farm descriptors (number of houses, number of

birds per house, and total bird capacity). This nonparametric
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technique was used in part due to our small sample size and

evidence that our data were not normally distributed.

Monte Carlo simulations
Daily contact rate data were transferred from STATA to an

Excel spreadsheet [29]. Nonparametric bootstrapping (Monte

Carlo analysis) using the Crystal Ball software package [30] was

conducted for each source of contact because the data did not

convincingly suggest specific parametric distributions. 10,000

simulations were conducted for daily contact rates by source, as

this number of simulations was determined to be sufficient to

achieve stable results. From simulation results, descriptive statistics

(mean, median, standard deviation, coefficient of variation) were

generated for each source of contact. Hypothesis tests and

confidence intervals for estimates of contact rates, exposure risks

and exposure risk differences were also constructed using

nonparametric bootstrap resampling implemented in Crystal Ball.

Based on information from our grower collaborators, we

considered chick delivery, live haul, feed delivery, flock supervisor

visits and visits from other management personnel to circulate

within the integrator group only (integrator-linked contacts). Non-

integrator commercial services related to cake out, waste hauling,

propane delivery and meter reading were assumed to contact

farms contracted with multiple integrators and be regional, rather

than company-specific, in nature. Part-time workers and grower

social visits were also not limited by integrator group, under the

assumption that they moved in the region unrestricted by

integrator affiliation.

Sussex County, Delaware was used as the geographical

framework for this analysis. Sussex County has been the top

broiler producing county in the US since 1944, with production

exceeding 211 million broilers in 2007 [6]. The county is situated

within the Delmarva Peninsula (a region of Delaware, Maryland,

and Virginia), which despite its small size (180660 miles),

produced more than 7% of total US broiler chicken production

in 2007 [6]. Poultry production is densely clustered along the

midline of the peninsula, and this area is ringed by four major

wildlife preserves which are visited by millions of wild birds

annually on the Western Atlantic flyway, posing opportunities for

cross-species transmission [31]. LPAI was most recently detected

in commercial poultry in Delmarva in 2004, when an LPAI H7N2

virus spread to at least three broiler farms (2 being commercial

farms) before it was contained, resulting in the depopulation of

over 100,000 broilers [9].

Data on the number of poultry farms in Sussex County were

collected from the 2007 USDA Census of Agriculture [6] and from

Google Earth maps [32]. For the Google Earth mapping, a grid

was superimposed over a satellite image of the county and facilities

that appeared to be poultry houses were identified by a marker,

starting from a height of 38,000 feet. Three methods were used to

confirm the presence and location of poultry houses: 1) a second

pass through the county following major roads surrounding

processing plants; 2) a third visual assessment of the grids at lower

altitudes; and 3) observation and measurement of each individual

farm at a lower altitude. The closer observation was intended to

confirm that the object was a poultry house, identify the number of

houses on the property and classify poultry houses by size (small or

large). Small houses were ,90 m in length and large houses were

.90 m. The ruler function in Google Earth was used to measure

the houses. Houses that were co-located or situated along the same

driveway were considered part of a single farm.

Through Google Earth, 789 farms were identified by location

and size in Sussex County, which is higher than the USDA Census

estimate of 714 farms. As a result of this discrepancy, we chose an

intermediate number–750 farms–as an estimate of the number of

farms in the county for use in this model. Median farm size

observed from our Google Earth mapping was 2 large houses, and

53% of farms had 1 or 2 large houses. 54 farms had ten or more

big houses on a single property. 10% of farms had small houses

only. Given a lack of consistent data on the correlation between

farm size and rate of visits, however, we did not incorporate the

information on farm size into our model and assumed all farms

had the same rate of contact, regardless of size.

From information provided from the Delmarva Poultry

Industry, Inc.[33], the regional trade organization, we assumed

that there are three major integrators operating in Sussex County.

We set the same number of farms to each integrator, assuming that

250 farms in the county were contracted to each integrator. There

are more farms in Sussex County than other counties in the

Delmarva Peninsula, but the three integrators that operate here

also operate in many of the other areas in Delmarva [33].

We estimated the number of farms a single service vehicle could

service in a single workday through conversations with Delmarva

growers and, for non-integrator commercial operations, an

assessment of the number of such firms in the region. These

values were used to guide Monte Carlo simulations on these

estimates, with triangular distributions fitted to these data to

incorporate the minimum, maximum, and mode of our data.

Spatial factors and locational data of farms were not explicitly

included in this model, which focused principally on company

groups and business services. Our use of a range of farms that a

given service vehicle could visit in a day implies a similar, but not

exact, spatial distribution of farms within integrator groups, which

does integrate spatial information a very limited way into our

model. It is possible that farms associated with the same integrator

are also clustered spatially, but this data was not included in our

model here, which focused solely on the role of vehicular contact.

The generalizability of our contact rate data to the Delmarva

region was confirmed in three ways: 1) in-person and phone

conversations with Delmarva broiler growers, who reported the

duration of time different service vehicles spent on the farm; 2) an

analysis of truck traffic density data for Sussex County, using

publically available documents from the Delaware Department of

Transportation [34]; and 3) on the ground observations of truck

movements in the region by the authors and our collaborators [35].

Exposure risk estimation
Our model assumes that a single farm, contained within a single

integrator group in Sussex County, becomes infected by and

subsequently infectious with an AI virus. We used stochastic

techniques to estimate the risk that a second farm in the region

would be exposed to the virus from the infectious (index) farm

during a period of infectiousness, which was calculated at a range

of days (2, 5, 10, and 15 days). These time points were chosen to

encompass the biological parameters of duration of infectiousness

in experimental settings [36–41] as well as time to farmer detection

and reporting of the outbreak, which may take up to 2 weeks,

according to study of the 2003 HPAI outbreak in the Netherlands

[42].

Data on the survival of avian influenza viruses on fomites was

used to estimate the ability of a vehicle to expose secondary farm.

Studies of influenza A viruses in hospital or other social settings

suggest that the virus may survival on surfaces up to 2 days, with

survival duration depending on surface type and temperature [43–

45]. Research in the farm environment has observed longer

survival times, up to 7 days in manure and on other farm surfaces,

such as tires, feathers and plastic [46,47]. We developed two

scenarios–one assuming 2 days and one assuming 7 days of viral
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survival on a vehicle – to incorporate a reasonable range of

survival times in our model.

Because this model is focused on exposure risk rather than

infection risk, we made the simplifying assumption that the index

farm had a constant level of infectiousness during its period of

infectiousness, rather than assuming infectiousness followed a

standard epidemic curve. This assumption added parsimony to

our model and allowed for straightforward comparison of sources

of risk in different scenarios.

The period-specific probability of exposure, Pn(d), was calculat-

ed as the risk of any given second farm in the county being

contacted by a vehicle that had 1) serviced the index farm during

the period of the index farm’s n infectious days; 2) serviced the

index farm before the second farm; and 3) serviced the second

farm within the period during which the virus could survive on the

vehicle (s). These probabilities were calculated for farms within

(d = 1) and outside (d = 0) the integrator group. All calculations

were performed in Excel.

Information on the derivation of the equation is provided in the

Supplemental Information (Figure S1) available with this article.

The probability of exposure by day n due to any source can be

estimated by Equation 1 below, which is one minus the product of

three probabilities, representing cyclical events related to integra-

tor-linked and commercial service contacts, contacts with part-

time workers, and social contact among growers.

The probability of exposure due to any source can be estimated

by:

P̂Pn,s dð Þ~1{

P
10

i~1
1{min

sNi

Mi{1
,1

� �
min
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,1

� �
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where n is the days of infectiousness at the index farm, s is the days

of viral survival on a service vehicle, d is a binary variable indicating

whether the potentially exposed farm is in the same integrator group

as the index farm, Ni is the average number of farms visited daily by

vehicles in the ith vehicular group, Mi is the number of farms

serviced by a given service vehicle during the total duration of the

service cycle, ti is the average cycle length for the ith vehicular

group, Nin is the average number of farms within integrator groups,

N is the total number of farms in the region, ni is a binary variable

indicating whether vehicles in the ith vehicular group only operate

within integrator groups, m̂m a,b,cð Þis the estimated mean number of

distinct farms (excluding the index farm) exposed due to part-time

workers when a total of a farms are participating in worker

exchanges, and with periods of farm and vehicle infectiousness of b

and c days, respectively, r12 is the average daily number of social

grower-visitors at a given visitor-receiving farm, and M12 is the

average number of visitor-receiving farms on any given day.

Results

Seventeen broiler growers completed our online survey (n = 17).

Characteristics of survey respondents are presented in Table 1.

Respondents represented basic demographics of the broiler industry

in terms of size of farms and poultry houses and regional distribution.

The median number of chickens per house was 23,500, with a

median of 4 houses per farm. Seventy three percent (73%) of

respondents were from Southeast states, with 20% from the mid-

Atlantic region and the remaining 7% from the Midwest and West.

No significant correlations among our daily contact rate

calculations were observed by visit type, lending support to our

assumption that contact rate variables are independent. As a measure

of farm size, total bird capacity at one time on the farm was positively

correlated with flock supervisor visits (p = 0.045), as well as with a

composite variable representing all non-integrator commercial visits

(p = 0.013) and marginally with feed delivery visits (p = 0.069).

Daily contact rates, total and by source, are presented in Table 2.

The mean daily contact rate from all sources was 0.82 vehicular

contacts per day. Integrator sources accounted for approximately

80.5% of total contact, with 15.5% of contacts connected to non-

integrator commercial visits and part-time workers. 4.0% of total

contacts were social visits among growers. According to these

results, a broiler farm in our sample is visited by a contact linked to

the integrator approximately at least once every 1.5 days and by a

contact linked to non-integrator commercial services every 8 days.

Growers in our survey reported a social contact with another grower

an average of once per month.

Table 1. Select characteristics of survey respondents*.

Variable Values

Median number of broilers per house 23,500 (range: 15,500–100,000)

Median number of broiler houses on the farm 4 (range: 2–12)

Median total bird capacity 100,800 (range: 33,700–400,000)

Median household size 2 adults

% of respondents reporting:

Hiring non-household workers on the farm 10 farms

Hiring part-time workers+ 2 farms

Caking out the poultry houses themselves or with help of other growers 14 farms

Doing some or all of poultry house maintenance themselves 14 farms

Full-time or part-time off-farm employment for self or spouse 10 farms

Employment in the poultry industry for 10+ years 10 farms

*n = 17 respondents.
+n = 16 for this question.
doi:10.1371/journal.pone.0009888.t001
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Feed delivery accounted for the highest rate of contact, occurring

at each farm once every 2 days during the 6–7 week growing cycle.

The flock supervisor visited each farm on average every 9 days

during the growing cycle. Other management personnel were

reported to visit the farm less frequently, on average 2–3 times

during the year. Contact from chick delivery and live haul vehicles

occurred typically 1–2 times during the growing cycle, with farms

with more chickens reporting dual delivery and pickup cycles.

Propane deliveries and meter readings occurred approximately

monthly (mean every 26 days). Mean frequency for visits from

outside maintenance or repair services was low–approximately 4–

5 times per year–with 82% of farmers reporting doing some or all

repairs themselves (Table 1). Daily contact from cake out and

waste hauling service contributed minimally to the total daily

contact rate, with each service occurring 2–3 times annually and

82% of farmers reporting caking out their poultry houses on their

own and not hiring outside companies for this service.

Contribution to variance
Rate of visits from non-flock supervisor management personnel,

maintenance/repair workers and part-time workers had the

highest coefficient of variation estimates, suggesting greater

variability in the data for these two variables than for other

sources of contact (Table 2). Rates of cake out service visits had the

lowest contribution to variance, followed by flock supervisor, chick

delivery and live haul services.

Exposure risk estimates
The model estimated the risk of exposure for farms within the

same integrator group as the index farm and for farms outside the

same integrator group (that is, contracted to other integrators) but

within Sussex County. Point estimates of risk and 95% confidence

intervals are presented in Table 3 and in bar graph form in

Figure 2a and 2b.

Assuming a 2-day period of viral survival on a vehicle, a second

farm affiliated with the same integrator group as the index farm

would likely face an exposure risk of more than 3% with a 2 day

period of infectiousness at the index farm [mean = 3.6 (95% CI:

2.4, 4.9)] (Table 3). This risk may exceed 11% at 15 days of

infectiousness [mean = 11.8; (8.3, 16.2)]. Farms outside the

integrator group of the index farm faced minimal risk at 2 days

of infectiousness of the index farm (,1%) and upwards of 4% risk

of exposure by 15 days of infectiousness [mean = 4.4 (3.6, 6.0)].

In the scenario assuming 2 days of viral survival on a vehicle,

farms within the same integrator group as the index farm faced

nearly 5-fold increase in risk compared to farms associated with

different integrator groups at 2 days of infectiousness [RR = 4.9

(3.1, 6.8)]. At 15 days of infectiousness of the index farm, farms

within the same integrator group had a greater than 2-fold

increase in risk of exposure [RR = 2.7 (1.9, 3.8)] (Table 4).

If 7 days of viral survival on a vehicle is assumed (which might

occur as a result of manure on tires, for example [46,47]), farms

within the same integrator group as the index farm may face an

exposure risk greater than 6% at 2 days of infectiousness of the

index farm [mean = 6.4 (4.2, 8.6)]. This risk may exceed 25% at

15 days of infectiousness [mean = 25.3(18.7, 32.2)]. Farms

affiliated with different integrator groups had minimal risk at 2

days of infectiousness (,2%), with the exposure risk at 15 days of

infectiousness approximately 8% [mean = 8.5 (5.5–14.0%)].

In the 7 day viral survival scenario, farms within the integrator

group had an approximately 5-fold increase in risk compared to

Table 2. Daily vehicular contact rates at a broiler farm, by source.

Source of contact
Mean daily rate of contact
(5th, 95th percentile)*

Approximate mean frequency
of visits (range; max-min)+

Coefficient
of variation*

Integrator-linked contacts

Feed delivery 0.48 (0.20, 1.00) 2 days (1–5 days) 0.61

Flock supervisor 0.12 (0.02, 0.16) 9 days (6–45 days) 0.35

Chick delivery 0.03 (0.02, 0.04) 35 days (23–45 days) 0.35

Live haul 0.03 (0.02, 0.04) 35 days (23–45 days) 0.35

Management personnel other than flock supervisors 0.01 (0.00, 0.04) 142 days (22 days–no visits) 1.94

Total from integrator group 0.66 (0.31, 1.20)‘ (80.5% of total) 1.5 days (2x daily–3 days) 0.45

Non-integrator commercial visits and part-time
workers

Propane delivery 0.04 (0.02, 0.07) 26 days (15–45 days) 0.39

Meter reading 0.04 (0.02, 0.09) 26 days (11–45 days) 0.70

Maintenance/repair 0.01 (0.00, 0.07) 83 days (23 days- no visits) 1.60

Waste hauling 0.01 (0.00, 0.02) 167 days (65 days–no visits) 0.93

Cake out 0.01 (0.00, 0.01) 180 days (120–360 days) 0.24

Part-time workers 0.03 (0, 0.10) 37 days (1 day–no visits) 1.35

Total, non-integrator commercial visits and
part-time workers

0.13 (0.08, 0.27)‘ (15.5% of total) 8 days (5–19 days) 0.40

Grower social contacts 0.03 (0.00, 0.10) (4.0% of total) 30 days (10 days–no visits) 0.77

Total daily contact, by all sources 0.82 (0.45, 1.36)‘ 1.2 days (2x daily–2 days) 0.37

*Values derived from survey data from national survey of poultry growers and Monte Carlo simulations. Confidence intervals generated through nonparametric
bootstrapping resampling in Crystal Ball.

+Based on daily contact rate.
‘Sums calculated from data presented above differ slightly from totals presented due to rounding.
doi:10.1371/journal.pone.0009888.t002
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farms affiliated with different integrators [RR = 4.9 (3.0, 7.4)].

These farms faced a greater than 3-fold increase in risk at 15-days

of infectiousness (RR = 3.1 (2.1, 4.5).

Being within the same integrator group as the index farm was

therefore associated with statistically significant increases in

exposure risk for farms under all model parameters (p,0.05)

(Table 4).

Point estimates of risk varied significantly with the model

parameters of duration of infectiousness at the index farm and

duration of viral survival on a vehicle parameters (p,0.05). In all

scenarios, however, the effect of being within the same integrator

group as the index farm contributed to a greater relative increase

in risk than did changes to the model parameters of duration of

infectiousness at the index farm duration of viral survival on a

vehicle.

Hiring day laborers was associated with statistically significant

increases in exposure risk across all model parameters (p,0.05)

(Table 5). Hiring intermittent workers also contributed to

statistically significant increases in exposure risk for farms that

engaged in this practice across most scenarios, but the increase in

risk associated with this practice was notably less than that

associated with hiring day laborers. In both part-time employment

scenarios, relative risk of exposure was significantly higher for

farms that had a different integrator affiliation than the index farm

compared to farms within the same integrator group as the index

farm (p,0.05). Risk estimates in the part-time worker scenarios

assume that the index farm also engages in the given employment

practice.

A farm outside the integrator group of the index farm that hired

day-laborers faced a greater than 13-fold increase in risk compared

to farms that did not in the 2 day viral survival scenario (Table 5).

In the 7 day viral survival scenario, the farms hiring day laborers

had a 12- to 25-fold increase in risk compared to farms that did

not hire day laborers. Farms within the same integrator group as

the index farm hiring day laborers had at a greater than 3-fold

increase in risk compared to farms in the integrator group that did

not hire day laborers.

Hiring intermittent part-time workers contributed to marginal

to small increases in risk for farms within the same integrator

group as the index farm, with relative risk ranging from 1.0 to 1.7

under varying parameters. This practice contributed to higher

relative risk of exposure for farms that were not in the same

integrator group as the index farm, with a greater than 4-fold

increase in risk observed in one scenario [RR:4.2 (3.4, 4.7]. By 15

days of infectiousness at the index farm, the practice of hiring

intermittent workers did not contribute significantly to elevated

risk compared to farms that did not hire these workers regardless

of integrator affiliation due to visits by other service personnel

during this longer time period.

The percent contribution to overall risk by each source of

vehicular contact was also estimated (Table 6). With 2 days of

index farm infectiousness and 2 days of viral survival on a vehicle,

sources of contact from within the integrator group accounted for

nearly 85% of total exposure risk for farms within the group. Non-

integrator commercial visits contributed approximately 4% of total

exposure risk, and part-time workers contributed 11% of total risk.

Social visits among growers accounted for less than 1% of total

risk. With a longer period of infectiousness of the index farm and a

vehicle, the relative contribution of the integrator group is

reduced, with the non-integrator sources accounting for more

than 17% of exposure risk. The contribution of part-time workers

and social visits to total risk decreased minimally with this change

in assumptions.

At 2 days of farm infectiousness and viral survival on a vehicle,

feed delivery visits are the predominant source of risk of exposure,

accounting for nearly 74% of total risk for farms within the same

integrator group as the index farm, followed by the part-time

workers and flock supervisors, which contributed approximately

11% and 7% respectively to total risk. The other sources of contact

contributed minimally to total exposure risk during a short

duration of infectiousness and viral survival. At 15 days of farm

infectiousness and 7 days of vehicle infectiousness, additional

sources contribute more significantly to overall risk and the role of

feed delivery is reduced. Feed delivery and flock supervisor visits

still play a prominent role in risk, contributing more than 50% of

risk together, but other sources–including chick delivery, part-time

workers, propane delivery and live haul–contribute together more

than 40% of total exposure risk for these farms.

Discussion

Our analysis indicates that company affiliation is a major driver

of farm-based exposure risk to an infection like avian influenza in

region with high-density food animal production. Farms within the

same integrator group as the index farm may face as much as a 5-

fold increase in exposure risk compared to farms affiliated with a

different integrator.

This ‘‘integrator effect’’ is stronger for short duration of

infectiousness and for short periods of viral survival on vehicles,

due to the high farm contact rate with integrator-linked services,

Table 3. Estimated exposure risks for second farm, given one infectious farm in region.

Point estimates for risk of exposure (%) for a second farm given a single infectious farm in the region (95% confidence
interval)

2 days of viral survival on service vehicle 7 days of viral survival on service vehicle

Number of
infectious days
at index farm

Shared integrator
affiliation with as
index farm

Different
integrator

Shared integrator
affiliation with as
index farm

Different
integrator

2 days 3.6% (2.4–4.9) 0.75% (0.3 - 1.0) 6.4% (4.2–8.6) 1.4% (0.93–2.1)

5 days 7.1 (3.6–11.5) 1.8 (1.5–2.0) 13.6 (8.1–19.4) 3.2 (2.1–5.0)

10 days 10.1 (6.8–14.5) 3.2 (2.6–4.3) 21.6 (15.6–27.8) 6.0 (3.9–9.7)

15 days 11.8 (8.3–16.2) 4.4 (3.6–6.0) 25.3 (18.7–32.3) 8.5 (5.5–14.0)

*These probabilities include integrator-linked service visits, visits from non-integrator commercial services, part-time workers and social contacts among growers.
Confidence intervals generated through nonparametric bootstrapping resampling in Crystal Ball.

doi:10.1371/journal.pone.0009888.t003
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but statistically significant at all model iterations (p,0.05). Sources

of farm contact associated with the integrator group contributed

from 72–85% of total exposure risk, depending on scenario.

Hiring part-time poultry house workers was also observed to be

a significant risk factor for exposure, particularly the practice of

employing day laborers (who were assumed to move randomly

among farms that engaged in this practice). Intermittent workers

(who worked at set multiple farms on a regular schedule) also

contributed to increases in exposure risk for farms that hire these

workers, but the relative risks associated with this practice were

significantly less than those associated with hiring day laborers.

Social contacts among growers do not appear to drive exposure

risk in our model, accounting for 1% or less of total contribution to

risk.

Our results indicate that a single infectious farm within the

context of a dense, broiler producing region can result in

Figure 2. Exposure risk by duration of infectiousness and viral survival on vehicle.
doi:10.1371/journal.pone.0009888.g002
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quantifiable AI exposure risk to other farms as a result of vehicular

business contacts. In a real-world setting, where it may take up to 2

weeks to detect an LPAI outbreak in an industrial flock and a virus

can persist for long periods of time in manure [42,46,47], farms

associated with the same integrator as the index farm may face a

25% risk of exposure to a vehicle that had serviced the index farm

during its period of infectiousness. Farms affiliated with different

integrators may have an exposure risk upwards of 8%. While the

point estimates should not be taken as interpretations of precise

risk, they suggest that the risk posed by vehicular business contacts

is a potentially significant source of viral transmission in a poultry-

dense region.

These results suggest that attention to the economic structure of

the poultry industry, specifically integrator-level groups and

business practices, may be critically important in estimating the

risk of outbreak in areas dominated by industrial-scale animal

production. Given the geographic consolidation of the industrial

food animal industry–especially in the US, where the industry is

highly concentrated in a few regions–models that estimate risk in

these regions must specifically consider factors unique to business

connections and practices in this industry. Geospatial models that

focus solely on distance among farms as the primary risk factor for

disease transmission may not capture the full dynamics of disease

spread in settings where production is dominated by a vertically

integrated structure and industrial food animal production

methods.

Correlation analyses found that certain contact rates were

significantly and positively associated with farm size as measured

by total bird capacity. Correlations were observed between total

bird capacity and flock supervisor visits, feed delivery and non-

integrator commercial visits. As these variables were important

predictors of risk in our model, these correlations suggest that total

bird capacity may be a useful proxy for risk. However, correlations

were not observed using other measures of farm size (physical size

of poultry house, number of growing cycles per year, and total

number of houses on the property). A similar study conducted in

Georgia did not find a correlation between farm size and rate of

visits; more research is required in this area to better inform

modeling efforts [48].

The coefficient of variation estimates suggest that the rates of

visits from management personnel other than the flock supervisor,

maintenance/repair services and part-time workers have the

highest relative variability of all sources of contact considered in

the model. These results suggest that the greatest need for more

information lies in these areas, and that future studies considering

contact patterns among poultry farms should pay particular

attention to these sources of contact. Low variability in cake out

visits, flock supervisor visits, chick delivery, live haul and propane

suggest more consistency in these values among farms.

Our results are supported by findings from other studies that

have reported that human movement and equipment sharing

among poultry farms is an important factor in the spread of AI

viruses [15,16,17,49]. Our results are also largely in concordance

Table 5. Relative risk of exposure for farms that hire part-time workers (95% confidence interval)*.

2 day viral survival on a service vehicle

Same integrator group as index farm Different integrator group

Days of infectiousness
at index farm

Day laborer
scenario

Intermittent
worker scenario

Day laborer
scenario

Intermittent
worker scenario

2 days 3.8 (3.0, 5.2) 1.7 (1.5, 2.0) 14.7 (11.4, 17.0) 4.2 (3.4, 4.7)

5 days 4.5 (2.8, 6.8) 1.3 (1.1, 1.4) 14.5 (11.1, 17.0) 2.0 (1.7, 2.2)

10 days 4.9 (3.5, 6.7) 1.1 (1.1, 1.1) 13.9 (10.4, 16.6) 1.3 (1.2, 1.3)

15 days 5.4 (3.9, 7.1) 1.0 (1.0, 1.0) 13.4 (9.8, 16.2) 1.0 (1.0, 1.1)

7 day viral survival on a service vehicle

Same integrator group as index farm Different integrator group

Days of infectiousness
at index farm

Day laborer
scenario

Intermittent
worker scenario

Day laborer
scenario

Intermittent
worker scenario

2 days 5.9 (4.4, 8.2) 1.4 (1.3, 1.5) 25.8 (15.9, 35.2) 2.8 (2.1, 3.5)

5 days 5.3 (3.6, 8.0) 1.1 (1.1, 1.2) 21.2 (12.6, 29.4) 1.6 (1.3, 1.8)

10 days 4.2 (3.2, 4.6) 1.0 (1.0, 1.0) 15.5 (9.0, 22.0) 1.1 (1.1, 1.2)

15 days 3.9 (3.0, 5.1) 1.0 (1.0, 1.0) 12.1 (6.9, 17.4) 1.0 (1.0, 1.0)

*Reference group is farms who do not hire part-time workers with the same model parameters (viral survival on a service vehicle, days of infectiousness, and integrator
affiliation).

doi:10.1371/journal.pone.0009888.t005

Table 4. Relative risk of exposure, by integrator group.

Relative risk of exposure for farms within the same
integrator group as the index farm (95% CI)*

Number of
infectious days
at index farm

2 days of viral
survival on a
service vehicle

7 days of viral
survival on a
service vehicle

2 days 4.9 (3.1, 6.8) 4.9 (3.0, 7.4)

5 days 4.1 (2.2, 6.8) 4.5 (2.5, 7.1)

10 days 3.2 (2.1, 4.7) 3.8 (2.4, 5.6)

15 days 2.7 (1.9, 3.8) 3.1 (2.1, 4.5)

*Reference population is a farm that is not affiliated with the integrator group
of the index farm at the same model parameters (viral survival and duration of
infectiousness). Confidence intervals obtained using nonparametric
bootstrapping resampling in Crystal Ball.

doi:10.1371/journal.pone.0009888.t004
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with Vieira et al. (2009), who conducted a similar survey of poultry

growers in Georgia, US [48].

As any stochastic model consists of a simplified representation of

reality, we made a number of key assumptions in our analysis. For

example, we did not include environmental sources of transmis-

sion (wild animal movement, or wind or water transport, for

example) or viral emissions in our model. A growing literature

supports the notion that confined animal facilities pose biosecurity

risks, and that pathogen movement can occur through high

throughput ventilations systems, water emissions, insect and

rodent movement, and waste management practices, among other

mechanisms [50–54]. While difficult to quantify, these emissions

are undoubtedly important in transmission and our model likely

underestimates true exposure risk by excluding them.

We did not weigh contacts by level of risk, making the

assumption that all business-related or grower social contacts to

the farm pose an equal level of risk of pathogen transmission.

Further studies aimed at weighing risk of various contacts would

be valuable in this regard. Our study did not incorporate possible

differences in biosecurity practices by farmers, integrators and

businesses, which may be important mediating factors in a true

outbreak situation. Our model also does not include information

on contacts within the poultry industry involving other products

(layer chickens, turkeys, ducks, etc) or contacts between these

industries. Future projects could consider area where there is

overlap by poultry industries, such as North Carolina, to better

estimate risk in these regions.

A central limitation of this study is the small sample size of our

survey from which our estimates were generated for modeling

purposes. Our use of Monte Carlo analysis was geared towards

providing variance measures on these estimates. It is feasible that

our sample population is biased, and that growers with access to

the internet or who participate on email listserves may be

fundamentally different than growers who do not. The demo-

graphics of our respondents coincide with overall industry

demographics and observations from the Vieira et al. study

however, suggesting this concern is less germane [6,48].

As previously noted, this study focuses on risk of exposure,

rather than infection. Infection involves multiple factors, including

viral adaptation to the host species [55], dose [39,56], route of

exposure [57] and viral survival in different environments [58,59]

among other factors. There is inherent variability and uncertainty

in estimating risk of infection, particularly from novel viruses.

Modeling exposure risk can help target interventions, but

predictions of infection transmission require knowledge of viral

and host parameters. We made the choice in this model to focus

on exposure risk rather than infection risk due to our prevailing

interest in exploring the role of company affiliation in risk and

using our survey data to estimate this risk. Limiting the current

model to exposure allowed us to highlight this area of interest

while avoiding uncertainties involved in modeling the full course of

an infectious disease in a farm population. It would be expected

that risk of actual infection would be less than the exposure risk

estimates we calculate, under the assumption that not every

exposure results in infection.

Our study was intended to be a caricature of a poultry dense

region and inform general assessments of exposure risk and high-

risk practices, rather than a definitive depiction of exposure risk.

Our intention was to provide an initial exercise into infectious

disease modeling for AI transmission in the context of US broiler

farms, and in doing so, we hope to encourage additional data

collection and research in this area of relevance to industrial scale

food animal production, which is increasingly practiced around

the world. Our analysis could be performed with data from other

areas or industries to identify practices of high risk and target

interventions, and could be used as the basis for models that

consider the full course of an outbreak.

Policy implications
Business contacts are cyclical and reliable sources of potential

pathogen transmission, and as such, can be controlled through

guidelines or regulations. The integrator group is the locus of risk

of exposure from vehicular traffic, and therefore, heightened

attention should focus on improving and maintaining biosecure

practices for integrator vehicles. Regular disinfection of these

vehicles or reducing the frequency of services may be more

straightforward and efficient than targeting other sources of

potential transmission, such as confinement house emissions or

wild animal movement.

In addition to large trucks or service vehicles, this study suggests

that passenger cars–such as those driven by flock supervisors and

workers–may play a significant role in exposure risk, and it is

important to include them in biosecurity and biocontainment

plans.

The practice of hiring part-time workers in the poultry industry

should also be considered in analyses of biosecurity and

biocontainment. Integrators and growers engaging in these

practices should take care to disinfect personal vehicles and

provide protective equipment to growers for use by workers–

particularly work clothing that can be laundered at an appropriate

facility, rather than at home (the latter of which is commonplace in

the industry) [60].

Our analysis of social contact among growers suggests that

exposure risk from social contact is low. Therefore, the social

Table 6. Percent contribution to total exposure risk, by
source of contact.

Contribution to total exposure risk (%)

2 days of farm
infectiousness,
2 days of vehicle
infectiousness

15 days of farm
infectiousness,
7 days of vehicle
infectiousness

Integrator-linked contacts

Feed delivery 73.7 32.7

Flock supervisor 6.83 19.1

Chick delivery 2.3 10.9

Other management personnel 0.0 0.0

Live haul 1.9 9.1

Total 84.7 71.8

Non-integrator commercial
services

Meter reading 1.1 5.0

Propane delivery 2.2 10.3

Maintenance 0.0 0.0

Cake out 0.2 0.8

Waste haul 0.2 1.1

Total, non-integrator
commercial services

3.7 17.2

Part-time workers 10.9 10.4

Grower social contacts 0.8 0.7

Total, all sources 100.0 100.0

doi:10.1371/journal.pone.0009888.t006
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quarantine of growers at infected farms may not have a significant

impact in reducing transmission of the virus. However, the rate of

social contacts between growers in our study was notably less than

that observed by Vieira et al. in Georgia, and further research is

required to elucidate social contact patterns among grower

populations in different regions [48].

Interventions focused on halting business related vehicular

contact within the integrator group of the infected farm and

quarantining the group, without regard to distance between farms,

would improve biosecurity and biocontainment efforts in areas

with high density animal production. Control strategies targeted

specifically at banning waste hauling services within a radius

around an infected farm, as was mandated by the US state of

Virginia in 2007 following an LPAI detection, may not

significantly reduce the risk of outbreak because of the infrequency

of this activity. Attention to the frequency of visits by different

services when designing biosecurity and biocontainment strategies

would likely improve the efficacy of these efforts.

The effect of shared integrator group was a stronger driver or

risk in our model, emphasizing the need for data on industry

associations in addition to other parameters in future modeling

exercises in industrialized regions. Modeling efforts focused on

between-farm pathogen transmission in the context of industrial

food animal production should explicitly include data on

integrator groups, rather than just spatial factors. As the industrial

model of food animal production spreads throughout the world

and expands to other food animal industries (notably swine),

attention to the specific practices in this industry is imperative to

the successful control of zoonotic disease.

Company affiliation may serve as a disease transmission

network for poultry facilities, particularly those located in high-

density production regions in the US. Knowledge of basic industry

dynamics can help identify risk profiles for these areas.

Standardized collection and greater availability of this data in

the US is essential to preventing AI outbreaks in commercial

poultry flocks and subsequent human transmission; keeping this

data confidential undermines animal and human health goals.

Existing data on LPAI outbreaks should be centralized and

publicized–including information on specific integrators involved

in outbreaks–to aid in prevention efforts.

Supporting Information

Figure S1 Model specifications and derivation of probability

equations.

Found at: doi:10.1371/journal.pone.0009888.s001 (0.08 MB

PDF)
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