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Abstract

Spontaneous fluctuations in blood oxygenation level-dependent (BOLD) images are the basis of resting-state fMRI and
frequently used for functional connectivity studies. However, there may be intrinsic information in the amplitudes of these
fluctuations. We investigated the possibility of using the amplitude of spontaneous BOLD signal fluctuations as a biomarker
for cerebral vasomotor reactivity. We compared the coefficient of variation (CV) of the time series (defined as the temporal
standard deviation of the time series divided by the mean signal intensity) in two populations: 1) Ten young healthy adults
and 2) Ten hypertensive elderly subjects with chronic kidney disease (CKD). We found a statistically significant increase
(P,0.01) in the CV values for the CKD patients compared with the young healthy adults in both gray matter (GM) and white
matter (WM). The difference was independent of the exact segmentation method, became more significant after correcting
for physiological signals using RETROICOR, and mainly arose from very low frequency components of the BOLD signal
fluctuation (f,0.025 Hz). Furthermore, there was a strong relationship between WM and GM signal fluctuation CV’s
(R2 = 0.87) in individuals, with a ratio of about 1:3. These results suggest that amplitude of the spontaneous BOLD signal
fluctuations may be used to assess the cerebrovascular reactivity mechanisms and provide valuable information about
variations with age and different disease states.
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Introduction

Blood oxygenation level dependent (BOLD) is a complex signal

arising from a combination of changes in cerebral blood volume

(CBV), cerebral blood flow (CBF), and oxygen extraction fraction

(OEF), leading to a change in the concentration of deoxyhemo-

globin. Low frequency (f,0.1 Hz) spontaneous fluctuations in the

BOLD signal have been observed in resting-state time series

measurements [1]. These fluctuations appear to be correlated in

functionally connected brain regions and form the basis of resting-

state fMRI studies [2–4]. It has been shown that these fluctuations

correlate with infraslow local field potential fluctuations at the

recording sites with a delay comparable to the hemodynamic

response [5]. Although the precise physiological origin of these

signal fluctuations is not yet clear, they likely arise from oscillations

in metabolic-linked brain physiology, arterial vasomotion, and

hemodynamics [1,6,7], originating from myogenic and neurogenic

sources [8]. They may also be sensitive to disease states. For

example, previous research suggests that the amplitude of BOLD

signal fluctuation changes in ischemic lesions [6,9,10]. In another

study, Makedonov et al. recently showed that the BOLD signal in

white matter can be used as a biomarker for aging and small vessel

disease [11].

We view the spontaneous BOLD signal fluctuations as the

response of the brain to the internal challenges to the cerebrovas-

cular system, including heartbeat, inhalation, and baseline

neuronal activity. We hypothesize that the response of the brain

to these tiny challenges, as expressed by the normalized amplitude

of the BOLD fluctuations, may provide information about

cerebral perfusion, blood volume, oxygenation, and cerebrovas-

cular autoregulatory mechanisms, in addition to neuronal activity.

Consequently, these signals may yield insight into factors

modulating the cerebrovasculature, such as aging and disease.

To test this hypothesis, we compared the magnitude of sponta-

neous BOLD fluctuations in two groups who might be expected to

have large differences in vasomotor reactivity [12–15]: young

healthy adults and hypertensive elderly subjects with chronic

kidney disease (CKD).
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Methods

Ethics Statement
This prospective study was approved by the Stanford Uni-

versity’s internal review board and was Health Insurance

Portability and Accountability Act (HIPAA) compliant. Written

informed consent was obtained prior to all human studies. The

Stanford University’s internal review board approved the consent

procedure.

Patient Population
Ten subjects (8 men and 2 women, age mean6std = 7267

years; age [min max] = [56 83]) with hypertension and chronic

kidney disease (CKD), defined as baseline estimated glomerular

filtration rate (eGFR) ,65 ml/min/1.73 m2 were recruited.

Patients with diabetes or prior history of stroke were excluded

from the study. Ten healthy sex-matched young volunteers (8 men

and 2 women, age mean6std = 2864 years; age [min max] = [24

35]) with no history of renal disease or hypertension were recruited

in the study as a control group. Demographic information can be

found in Table 1.

MR Protocol
Subjects were scanned at 3T (MR750, GE Healthcare,

Waukesha, WI) using an 8-channel head coil. Resting-state BOLD

signals were measured using a 2D gradient echo planar imaging

(GRE-EPI) sequence (FOV = 22 cm, matrix = 64664, slice thick-

ness/slice spacing = 3.5/0 mm, number of slices = 35 covering the

whole brain, TR/TE = 2 s/25 ms, flip angle = 75u, Number of

time points = 180, imaging time: 6 min). A 3D T1-weighted image

was also acquired for anatomic reference using an IR-SPGR

sequence covering the entire brain (TR/TE/TI = 8.18/3.2/

900 ms, matrix = 2566256, in-plane resolution = 0.9460.94 mm,

slice thickness = 1 mm, 176 sagittal slices). Cardiac and respiratory

functions were monitored using the scanner’s built-in photo-

plethysmograph and respiratory belt.

Post-processing
After reconstruction, EPI images were corrected for movement

using least-squares minimization. The 3D T1-weighted image was

co-registered to the EPI images and normalized to the Montreal

Neurological Institute (MNI) template. Using the obtained transfer

matrix, EPI images were also registered to the standard MNI

space. These processing steps were carried out using the FSL

software package (http://www.fmrib.ox.ac.uk/fsl). To further

reduce any movement-related signal fluctuations, 6 rigid-body

movement parameter time-courses (estimated in the motion

correction step) were removed from the data by linear regression.

Baseline scanner drifts were estimated and removed from the EPI

images by first-order polynomial detrending. The coefficient of

variation (CV) of signal fluctuation, defined as the temporal

standard deviation of the EPI signal amplitudes normalized by the

mean signal intensity, for each voxel was then calculated. To

calculate the mean CV in GM and WM, we performed 3 different

analyses to evaluate the sensitivity of the results to the segmen-

tation process:

a) Partial Volume Estimation (PVE) Method: GM and WM

partial volume maps were estimated from the T1-weighted

structural images in each voxel. Each voxel was assigned a value

between 0 and 1 that represents the proportion of GM or WM

present in that given voxel [16] using the automated segmentation

tool of FSL (FAST). Mean CV in GM and WM were calculated

using Eq. 1:

Mean CV (tissue)~

P
n PVEtissue(n):CV (n)½ �
P

n PVEtissue(n)
ðEq:1Þ

where PVE is the partial volume estimated for a particular tissue

type and n is the number of voxels in the brain.

b) Strict Threshold Method: GM and WM masks were

generated from the GM and WM PVE maps including only

voxels with a partial volume threshold of .0.8. Only voxels that

had PVE levels above this threshold were included in the analysis.

c) Standard Template Method: After placing the images into

MNI atlas space using FSL, ICBM152 nonlinear GM and WM

Table 1. Demographic information of the CKD and Control cohorts along with quantitative CV values calculated using different
segmentation analysis approaches.

Control CKD

Gender 8 M/2 F 8 M/2 F

Age, years (Range) 2864 (24–35) 7267 (56–83)

eGFR (ml/min) - 49.4611.7

Blood pressure (systolic), mmHg - 142615

Blood pressure (diastolic), mmHg - 74610

CV61023 (Method a, PVE), GM 4.760.6 7.761.7

CV61023 (Method a, PVE), WM 3.260.4 4.560.8

CV61023 (Method b, Strict Threshold), GM 4.660.6 7.961.8

CV61023 (Method b, Strict Threshold), WM 3.060.4 4.260.7

CV 61023 (Method c, Standard Template), GM 4.360.5 5.561.3

CV61023 (Method c, Standard Template), WM 2.960.3 3.660.8

CV61023 (Method b with RETROICOR), GM 4.460.7 7.861.8

CV61023 (Method b with RETROICOR), WM 2.860.4 4.160.7

Methods a, b, and c refer to partial volume estimation (PVE), strict threshold and standard template methods, respectively. All values reported as mean6SD unless
otherwise noted. Estimated glomerular filtration rate (eGFR) and systolic/diastolic blood pressures were measured within 90 days from the date of imaging.
doi:10.1371/journal.pone.0092539.t001

Use of BOLD Signal Fluctuations as a Biomarker
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standard templates (McConnell Brain Imaging Centre, Montreal

Neurological Institute, McGill University) were used for the GM

and WM regions-of-interest.

Given that resting-state fMRI data is often post-processed using

low-pass filtering to minimize the effects of cardiac and respiratory

variation, we examined the effect of different types of filtering.

First, we studied the signal without any filtering, assuming there

may be important and potentially useful information in the higher

frequency bands. We also examined the results using three

different band-pass filters (0.01–0.014 Hz, 0.014–0.025 Hz and

0.025–0.1 Hz) to estimate the contribution of these frequency

bands to the BOLD signal fluctuations. These bands were chosen

based on manual inspection of the frequency spectrum of the

BOLD time series to capture the fast initial decay of the signal in

the frequency domain.

Pulsatility of blood flow in the brain and respiration-induced

magnetic field changes or motion can cause appreciable modu-

lation of the BOLD signal [17]. To evaluate the contribution of

these effects on the CV of signal fluctuations, we performed a

separate analysis after removing the physiological motion effects

from reconstructed images utilizing the RETROICOR method

[17], based on the recorded cardiac and respiratory time-courses.

RETROICOR fits a low-order Fourier model to the BOLD time

series based on the time of each image acquisition relative to the

phase of the cardiac and respiratory cycles for each slice. These

effects are subsequently removed from of the BOLD time series

using regression. Since RETROICOR is based on the assumption

of quasi-periodic variation of physiological noise, cardiac and

respiratory time-courses were also inspected for any sign of

arrhythmia.

Figure 1. Coefficient of variation (CV) maps calculated for a representative (a) CKD patient and (b) young healthy control. No
temporal filtration was applied.
doi:10.1371/journal.pone.0092539.g001

Use of BOLD Signal Fluctuations as a Biomarker
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Figure 2. CV histograms in GM (dotted lines) and WM (solid lines) for a representative CKD patient (red) and young healthy control
(blue), corresponding to the CV maps shown in Figure 1. GM and WM ROIs were defined using the strict threshold approach.
doi:10.1371/journal.pone.0092539.g002

Figure 3. GM (top rows) and WM (bottom rows) masks used for calculating mean CV in these two tissue types: The GM and WM
threshold masks derived from partial volume estimation (PVE) maps (PVE threshold.0.8) for representative (a) control and (b)
CKD subjects. ICBM152 standard GM and WM template masks are shown in column (c), and were, of course, independent of the cohort group.
doi:10.1371/journal.pone.0092539.g003
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Although the effect of motion upon the CV is corrected for by

the initial step of motion correction and also by regressing the

motion parameters, we also compared the estimated average

displacement from the 6 rigid-body movement parameters for

each subject before correction.

Statistical Analysis
To evaluate the statistical significance of the analyses we

performed a Wilcoxon test, a nonparametric test for equality of

population medians of two independent cohorts. The null

hypothesis was that CV values in control and CKD cohorts are

independent random samples with equal median. The alternative

hypothesis was that the medians of these two random variables

were not equal. A threshold of p,0.05 was considered significant.

Results

Figures 1 and 2 show CV maps and the histogram of the CV

values obtained in representative control and CKD subjects.

Contrast between GM and WM can be seen in both cohorts;

however, the average CV in both GM and WM is higher in CKD

subjects compared to that of the control population. For each

subject, mean CV values in GM and WM were calculated using

the 3 different methods for GM/WM segmentation. Figure 3

shows the GM and WM threshold masks for the subjects shown in

Figure 1 using the different approaches described earlier.

Mean CV in GM and WM masks, calculated using these 3

methods for all subjects, is presented as Figure 4. There is

significantly higher mean CV of fluctuations in the elderly CKD

cohort in both GM and WM for all segmentation approaches. The

results of PVE and strict threshold masking approaches (methods a

Figure 4. Mean CV of BOLD signal fluctuations in GM (left columns) and WM (right columns) for young healthy control and elderly
CKD populations using different approaches: (a–b) PVE, (c–d) strict threshold masks, and (e–f) ICBM152 standard template masks.
Mean CV is significantly higher in the CKD group in both tissue types using all approaches. The difference is more significant using PVE and the strict
threshold masking approaches compared to the standard template approach.
doi:10.1371/journal.pone.0092539.g004

Use of BOLD Signal Fluctuations as a Biomarker
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and b) are similar and are more significantly different compared to

the standard template approach (method c). For all the subsequent

analyses we quote values based on the strict threshold segmenta-

tion approach (method b). Table 1 summarizes the quantitative

CV values in the two cohorts using the different segmentation

methods.

The relationship between individual CV values in GM and WM

for all subjects is presented in Figure 5. There is a strong linear

relationship between CV values in GM and WM in both

populations, with the elderly CKD patients lying largely above

the young normal subjects. The slope of a linear fit to the data was

0.36 (y = 0.366+0.0014, R2 = 0.87).

The results of the effects of the three different band-pass filters

(0.01–0.014 Hz, 0.014–0.025 Hz and 0.025–0.1 Hz) on the mean

CV in GM and WM are shown in Figure 6. It can be seen that the

changes in the BOLD signal fluctuations mainly arise from very

low frequency components (,0.025 Hz). Lower frequency com-

ponents showed higher contribution to the overall signal

fluctuation.

In a separate analysis of the data, we calculated the CV’s in GM

and WM after applying the RETROICOR technique to remove

the effects of cardiac and respiratory motion (Figure 7). After

applying RETROICOR, the difference in CVs in GM and WM

became slightly larger between the two cohorts, though the

increase itself due to RETROICOR was not significant. The

quantitative CV values for this analysis are also summarized in

Table 1. Differences in mean head displacement before correction

in the two cohorts is shown as Figure 8. Although the movement in

the elderly CKD patients before correction is higher (mean

difference = 0.07 mm), it is not statistically different from the

normal young subjects (P = 0.07). We expect this difference to be

even less significant after the two-step motion correction used in

this study. To evaluate the sensitivity of our measurements to non-

rigid movements in the brain caused by heartbeat and respiration,

we also calculated mean CV in the WM area in voxels

immediately adjacent to the lateral ventricles. For this analysis,

the region of interest (ROI) was manually drawn on the T1

weighted images in the MNI space (Figure 9a). Mean CV values

calculated within the ROI in control and CKD cohorts are

presented in Figure 9b. Average CV values obtained within the

Figure 5. Scatterplot of mean CV in GM and WM for CKD (red)
and Control (blue) populations. The dotted line represents a linear
fit of the data (y = 0.366+0.0014, R2 = 0.87).
doi:10.1371/journal.pone.0092539.g005

Figure 6. Mean CV of signal fluctuation in GM (a,b) and WM (c,d) in different frequency intervals ([0.01–0.014] Hz, [0.014–0.025] Hz
and [0.025–0.1] Hz) for CKD (a,c) and control (b,d) cohorts. Lower frequency components have a larger contribution to the BOLD signal
fluctuations.
doi:10.1371/journal.pone.0092539.g006

Use of BOLD Signal Fluctuations as a Biomarker
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ROI in control and CKD cohorts were 3.061023 and 3.561023,

respectively. These values were similar to those measured in WM

using the standard template method (2.961023 and 3.661023).

The difference between the two cohorts, however, was less

significant within this ROI (P = 0.064) compared to that of the

whole WM (P = 0.0017). This indicates that the reported

difference of the CVs between the two cohorts does not arise

from non-rigid body movements in the brain.

Discussion

In this study we compared the mean CV values in GM and WM

between young normal and elderly, hypertensive CKD patients.

Our results indicate a statistically significant increase in BOLD

signal fluctuations in the CKD cohort and also between GM and

WM within each cohort. We also investigated the origin of the

fluctuations employing different analysis schemes. Using different

GM/WM masking approaches, we evaluated the sensitivity of the

results to the particular segmentation method. Using the strict

threshold mask, there were different numbers of GM and WM

voxels for different subjects; however, since the number of voxels

was large (.2000) for all subjects, we believe that the difference in

the number of voxels did not affect our estimation of the mean

CVs. The fact that the strict threshold and PVE masking

approaches generated very similar results also supports this

assumption. The linear registration algorithm for transferring the

data from the imaging space to the standard atlas was imperfect,

particularly for the CKD patients, due to their larger CSF

compartment. Therefore, the results of using the standard

templates were slightly different from the PVE and strict threshold

masking approaches. Another factor that can potentially affect the

accuracy of the WM/GM segmentation in this study is the

presence of white matter hyperintensities (WMHs), which are

often associated with aging and can be segmented as GM using the

segmentation tools [11]. In this study, the segmentation results

were inspected manually and we observed no significant segmen-

tation error. Due to large number of voxels in GM and WM,

however, we do not expect minor segmentation errors to

significantly affect the calculation of mean CVs. Particularly; the

segmentation method C (‘‘Standard Template Method’’) that used

a standard template would not erroneously misclassify WMHs as

gray matter. The fact that all methods used for calculating mean

CVs in GM/WM demonstrated a significant difference between

the two cohorts indicates that these results are somewhat

independent of the precise segmentation strategy employed.

It is interesting that the WM to GM signal fluctuation lie on a

line (Figure 5). The slope is close to the ratio of GM and WM

cerebral blood volume (CBV) reported in the literature [18,19].

This may suggest that CBV is a major contributor to the

fluctuations of the BOLD signal. However, it is interesting to note

that most prior studies suggest that CBV decreases with age [19],

suggesting that other hemodynamic factors such as changes in

OEF or neuronal activity may also play a role in these findings.

OEF is thought to increase with age [19], thus potentially

offsetting the effects of CBV changes, if any. Grady et al. [20]

demonstrated that there is an age-related decline in the ability to

suspend non-task-related (i.e., resting state) brain activity and

engage areas for carrying out memory tasks. This could be due to

increased resting-state brain activation in the older population and

can also be a contributing factor in higher BOLD signal

fluctuations seen in the elderly CKD population. Since neuronal

activity mainly arises from the GM, the presence of a significant

difference of the CV values in WM as well as GM, suggests that

the difference in the CV of the spontaneous BOLD signal

fluctuation mainly originates from a difference in the vascular

reactivity rather than neuronal activity. Differences in the baseline

neuronal activity, however, might be the cause of a more

significant difference in the CV values in GM compared to that

of WM.

Figure 7. Mean CV of signal fluctuations in (a) GM and (b) WM for young healthy control and CKD populations after applying
RETROICOR. Results are not significantly different from those achieved without RETROICOR (Figure 3c–d).
doi:10.1371/journal.pone.0092539.g007

Figure 8. Mean head displacement (mm) before correction
during the scan for CKD and control cohorts (p = 0.07).
doi:10.1371/journal.pone.0092539.g008

Use of BOLD Signal Fluctuations as a Biomarker
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To investigate the possibility of the difference of the CVs

originating from physiological motion or respiration-induced

magnetic field changes, we used RETROICOR to reduce the

effects of these confounding components [17]. Using RETRO-

ICOR resulted in more pronounced signal differences between the

two cohorts. This change, however, was not large, suggesting that

recording the respiratory and cardiac physiological signals may not

be necessary in other similar applications and analyses. Although

rigid body movements were used as a regressor in our analyses,

motion correction algorithms cannot completely correct for non-

rigid body movements of the brain due to heartbeat and

respiration. But since these movements mainly appear at the

CSF boundaries on the surface of the brain (note the high CV

values on the surface in Figure 1), they are largely eliminated from

the analysis for calculating CVs in GM and WM. In addition these

voxels represent a very small fraction of voxels included in the

analysis.

Our analysis indicated that most of the BOLD signal

fluctuations originated from very low frequency components

(f,0.025 Hz). Using a reflected light imaging technique, it has

been suggested that cerebral vasomotion demonstrates a 0.1 Hz

oscillation [8]. The discrepancies can be explained by the

difference in the point spread function of BOLD imaging as

compared to that of the reflected light imaging as well as

contributions from sources other than vasomotion, such as

neuronal modulation. The long TR (2 s) used in this study does

not allow for a true frequency analysis of the BOLD signal

fluctuation power spectrum, due to the aliasing of the cardiac

variations. Since the TR was considerably longer than the cardiac

period (,0.9 s), one possibility is that the low-frequency fluctua-

tions may in fact reflect the aliased response to cardiac

fluctuations. Although, considering the frequency of the cardiac

waveforms in our experiment (1.13+/20.13 Hz) and the sampling

frequency (0.5 Hz) lower frequency components (f,0.025) prob-

ably do not result from an aliasing of the cardiac peak frequency or

its first 2 harmonics. With a shorter TR (,400 ms), it would be

possible to differentiate and compare the spontaneous neural

activity, respiration, and cardiac response components between

two populations, which are largely aliased into the low frequency

band using longer TRs. Shorter TR scans would result in lower

SNR images and limited number of slices resulting in partial brain

coverage. Approaches to counter these problems include multi-

band imaging [21] and the use of higher magnetic fields, such as 7

T [22]. Higher BOLD signal fluctuation in the elderly CKD

population could be due to higher baseline concentrations of

deoxyhemoglobin, difference in vascular compliance, increased

instability of autoregulatory mechanisms, increased neuronal

metabolic activity, and/or CSF contamination due to atrophy in

these patients. Baseline oxygenation differences could be assessed

using MR-based oxygenation methods [23] or PET [19]. Given

that the differences between the cohorts are seen in both WM and

GM, it is unlikely that differences in CSF partial volume are solely

responsible.

A major limitation of this study is that we are not able to

distinguish the possibly separate effects of aging, hypertension, and

CKD on the signal fluctuations. The two cohorts were chosen

based on the expectation that there would be a potentially large

difference in arterial vasomotor function, based on prior work [12–

15,24]. Further studies on healthy elderly populations, elderly

hypertensive populations without CKD, and younger hypertensive

patients will be required to assess the relative contributions of these

various factors. However, these initial results suggest that

spontaneous BOLD signal fluctuation amplitude may represent

a unique source of contrast that is sensitive to cerebrovascular

compensatory mechanisms.
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