Supplementary Materials to

Mortality risk and burden associated with ambient temperature: time-series study in 272 main Chinese cities

Authors:

Renjie Chen^{1,2}, Peng Yin³, Lijun Wang³, Cong Liu¹, Yue Niu¹, Weidong Wang¹, Yixuan Jiang¹, Yunning Liu³, Jiangmei Liu³, Jinlei Qi³, Jinling You³, Haidong Kan^{1,4}, Maigeng Zhou³

Affiliations:

¹ School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China;

² Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Fudan University, Shanghai 200032, China;

³ National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050 China;

⁴ Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.

Correspondence: Maigeng Zhou, PhD, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050 China. Tel/fax: +86 (10) 6301 5058. Email: maigengzhou@126.com.

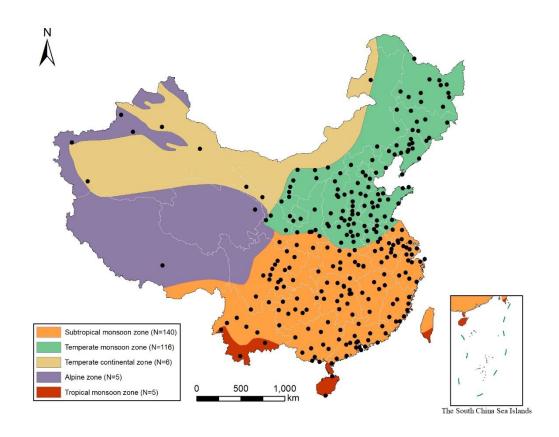


Figure SM1. The map and climatic divisions of 272 main cities in China

Table SM1. The descriptive statistics of minimum-mortality percentiles and minimum-mortality temperatures in 272 Chinese cities, 2013 to 2015

Variables	Mortality	Mean	SD	Min	P25	P50	P75	Max
MMP	Total	79	23	5	80	84	91	99
	CVD	80	22	5	82	86	91	99
	CHD	78	22	5	80	83	87	99
	Stroke	80	24	1	82	86	91	99
	Ischemic stroke	71	25	1	76	79	81	99
	Hemorrhagic	85	24	1	91	92	93	99
	stroke							
	Respiratory	78	27	6	71	78	91	99
	disease							
	COPD	80	19	6	77	80	91	99
MMT	Total	22.8	8.7	-17.3	23.1	25.6	27.8	32.0
	CVD	22.8	8.7	-12.4	22.7	26.1	28.2	32.0
	CHD	23.1	8.8	-17.3	22.5	25.9	27.6	32.0
	Stroke	22.6	8.8	-22.2	23.0	26.1	28.0	32.0
	Ischemic stroke	21.8	10.9	-33.1	21.4	24.4	26.0	31
	Hemorrhagic	23.7	7.7	-10.6	24.1	27.3	28.8	33.6
	stroke							
	Respiratory	21.6	9.7	-25.4	22.4	24.4	25.7	29.5
	disease							
	COPD	21.7	6.1	-7.9	24. 0	25. 0	26.6	29.5

Abbreviations: MMP, minimum-mortality (total) percentiles,%; MMT, minimum-mortality (total) temperatures, $^{\circ}$ C; CVD, cardiovascular disease; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; SD, standard deviation.

Table SM2. The numbers of premature deaths (\times 1000) of different causes attributable to moderate and extreme non-optimum temperature in 272 Chinese cities from 2013 to 2015.

Causes	Overall	Attributable deaths				
	deaths	Moderate cold	Moderate heat	Extreme cold	Extreme heat	
Total	1826	192	38	21	12	
CVD	857	112	21	12	4	
CHD	307	46	5	5	2	
Stroke	415	52	8	5	2	
Ischemic	125	11	4	1	1	
stroke						
Hemorrhagic	187	28	3	2	1	
stroke						
Respiratory	217	15	5	2	1	
disease						
COPD	159	15	2	2	1	

Abbreviations: CVD, cardiovascular disease; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease.

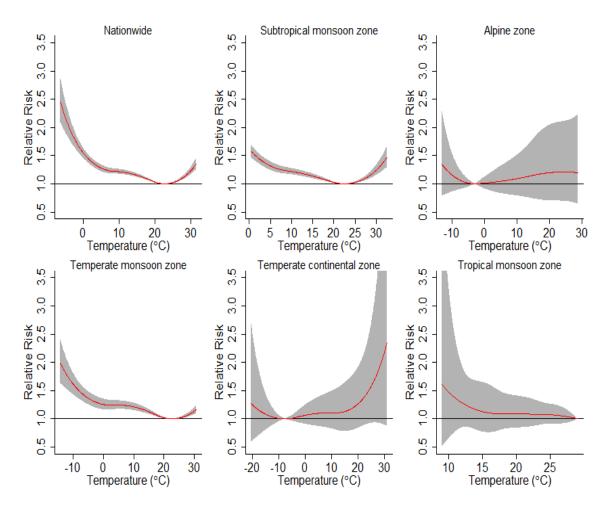
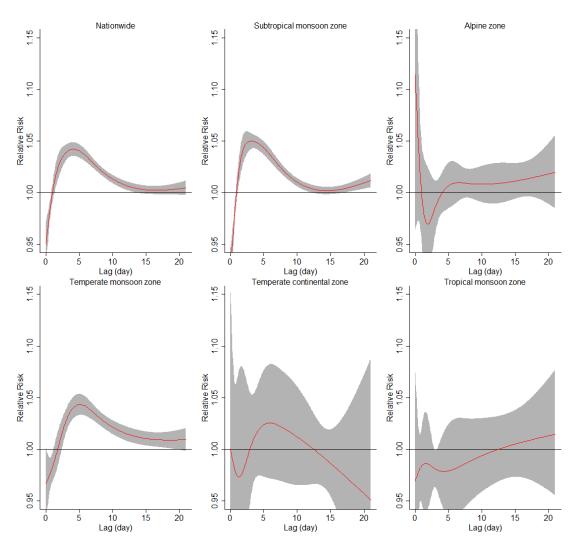



Figure SM2. The pooled cumulative exposure-response curves for the associations between daily temperature and total mortality over lag 0 to 21 days in different climatic zones.

Figure SM3. The lag structure in the effects of extreme cold temperature on daily total mortality in different climatic zones. The effects were defined as the risks at the mean of the 2.5th percentile of temperature distributions, compared with the estimated minimum-mortality temperature in each zone.

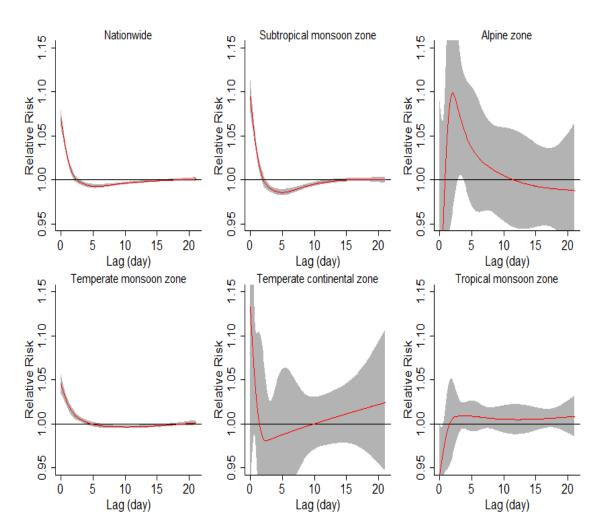


Figure SM4. The lag structure in the effects of extreme hot temperature on daily total mortality in different climatic zones. The effects were defined as the risks at the mean of the 97.5th percentile of temperature distributions, compared with the estimated minimum-mortality temperature in each zone.

Table SM3. The numbers of premature deaths (\times 1000) among total nonaccidental deaths (N=1826 thousands) attributable to moderate and extreme non-optimum temperature in 272 Chinese cities from 2013 to 2015, classified by age, gender, and education.

Subgroups	Moderate cold	Moderate heat	Extreme cold	Extreme heat
5-64	172	17	18	4
65-74	177	21	19	7
≥75	216	50	24	19
Males	181	33	19	8
Females	239	42	27	16
\leqslant 9 years of	199	48	27	13
education				
>9 years of	59	21	15	2
education				

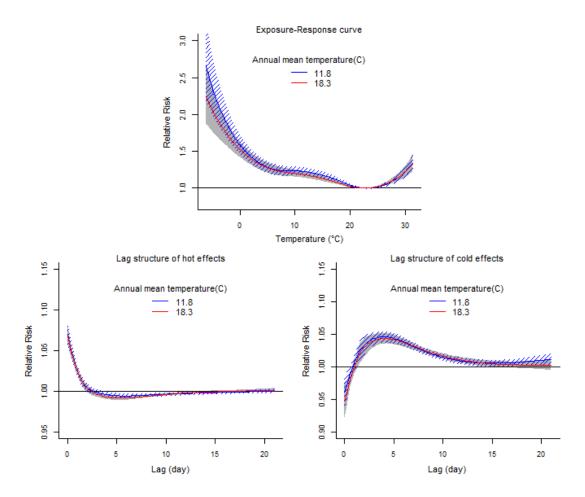


Figure SM5. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by annual-mean temperature (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C).

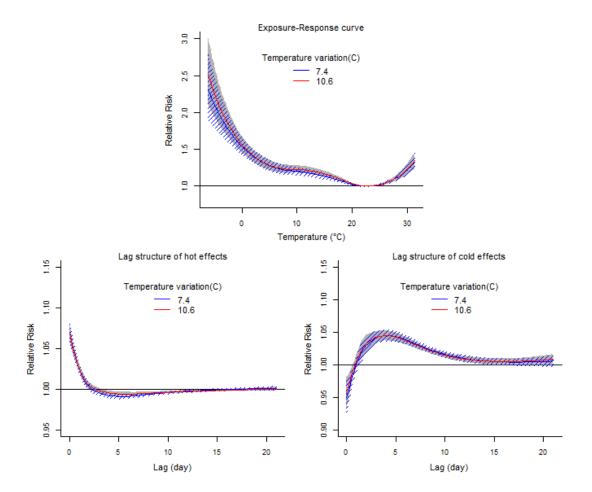


Figure SM6. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by temperature variations (standard deviations) (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). SD, standard deviation.

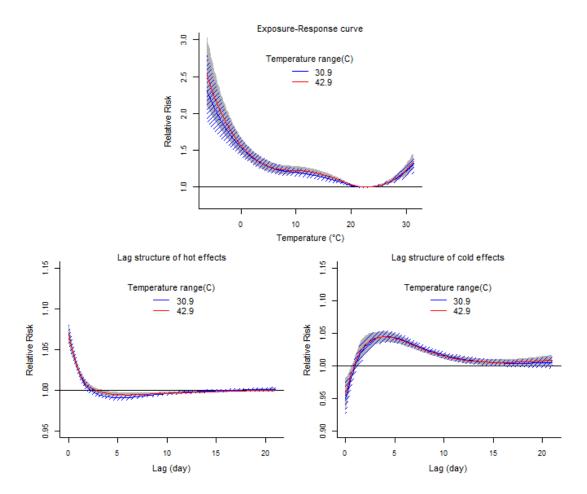


Figure SM7. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by temperature range (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C).

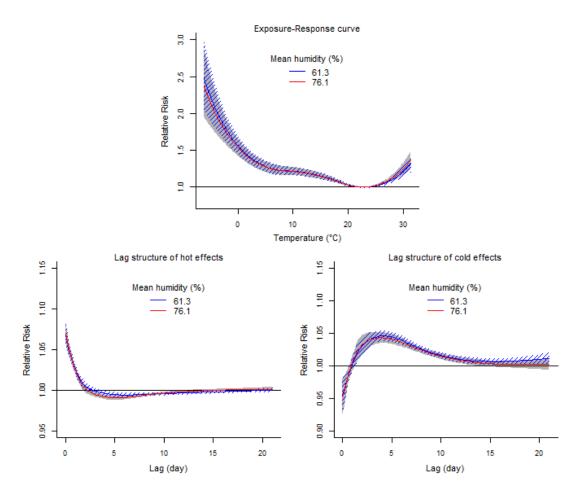


Figure SM8. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by annual-mean humidity (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C).

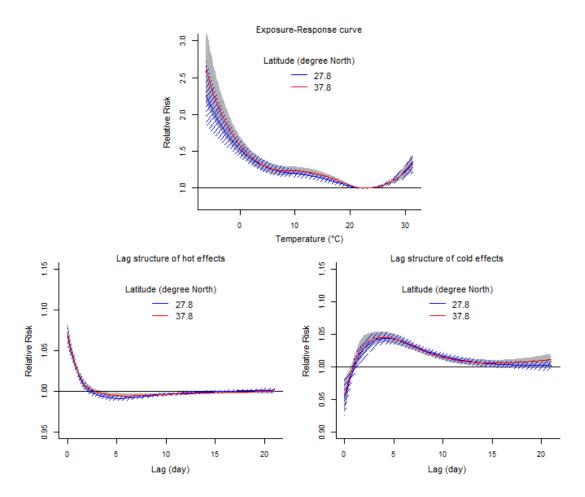


Figure SM9. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by latitude (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C).

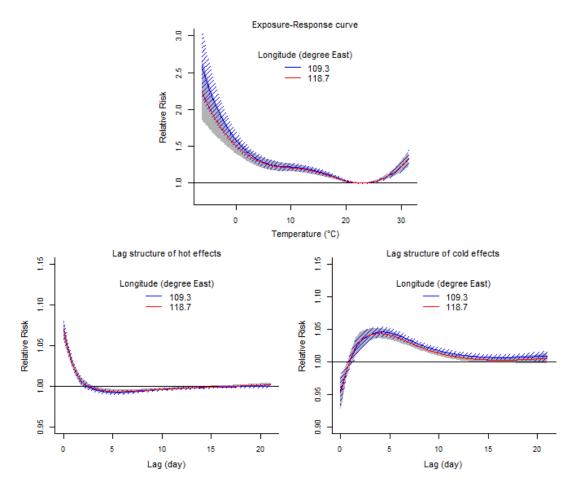


Figure SM10. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by longitude (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C).

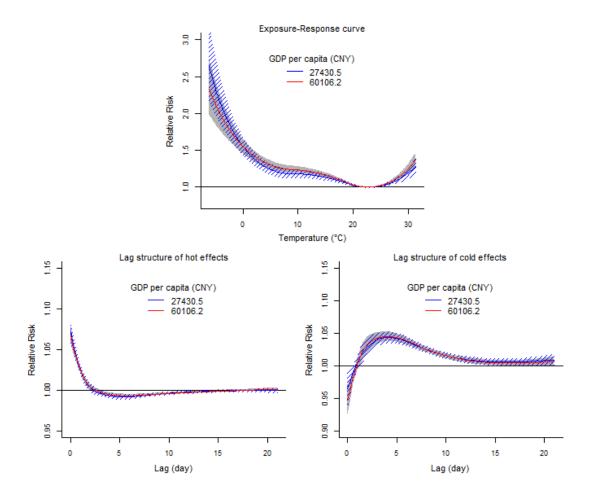


Figure SM11. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by GDP per capita (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). GDP, gross domestic product.

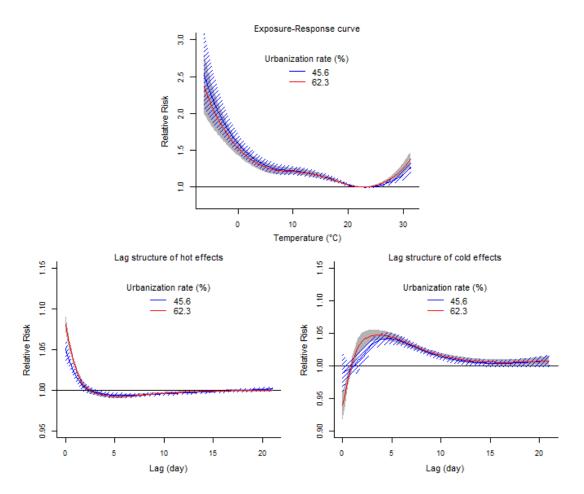


Figure SM12. Pooled curves for the temperature-mortality (total) associations and for the lag structure of hot effects and cold effects, classified by urbanization rate (25th VS 75th percentiles). The hot effects were defined as the risks at 29 °C (the mean of the 97.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C). The cold effects were defined as the risks at -1.4 °C (the mean of the 2.5th percentile of temperature distributions), compared with the estimated minimum-mortality temperature (22.8°C).

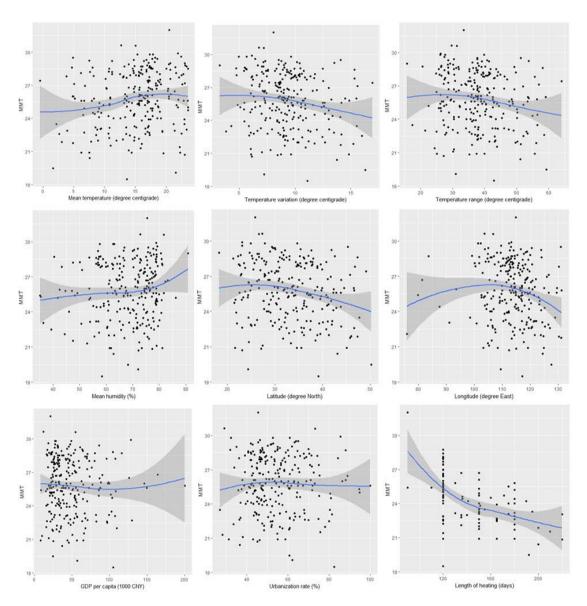


Figure SM13. The correlation plots between city-specific minimum-mortality (total) temperatures and city characteristics. These plots excluded cities (N=23) with outliers of minimum-mortality temperature less than 10th percentile. The data on length of central heating was available in 121 northern cities.

Table SM4. The national-average attributable fractions and relative risks (means and 95% empirical confidence intervals) of daily total mortality associated with non-optimum ambient temperatures, using alternative maximum lags

Lags (d)	MMP	MMT	Relativ	ve risks	Attributable fractions (%)		
			Extreme low	Extreme high	Overall	Cold	Heat
7	69.2	21.3	1.23 (1.19 to 1.28)	1.15 (1.12 to 1.19)	6.15 (5.51 to 6.73)	4.63 (4.09 to 5.11)	1.58 (1.23 to 1.87)
14	77.4	22.6	1.40 (1.33 to 1.47)	1.16 (1.12 to 1.19)	11.03 (10.08 to 11.87)	9.01 (8.27 to 9.67)	2.03 (1.56 to 2.48)
21	79.1	22.8	1.68 (1.57 to 1.81)	1.16 (1.12 to 1.21)	14.12 (13.06 to 15.14)	11.50 (10.64 to 12.38)	2.48 (1.98 to 2.98)
28	81.5	23.0	1.76 (1.58 to 1.96)	1.14 (1.08 to 1.20)	14.88 (13.24 to 16.52)	12.23 (10.78 to 13.68)	2.15 (1.46 to 2.77)

Abbreviations: MMP, minimum-mortality percentiles; MMT, minimum-mortality temperatures.

Table SM5. The national-average relative risks and attributable fractions (mean sand 95% empirical confidence intervals) of daily total mortality associated with non-optimum ambient temperatures, with and without the adjustment of air pollutants

Adjustm	Mortality	MMP	MMT	Relative risk		Attributable fractions (%)		
ent ^a				Extreme low	Extreme high	Overall	Cold	Heat
Without	Total	75.3	21.8	1.46 (1.35 to 1.57)	1.15 (1.09 to 1.22)	13.14 (11.99 to 14.15)	10.20 (9.40 to 10.97)	2.94 (2.24 to 3.57)
	CVD	78.7	21.9	1.62 (1.45 to 1.80)	1.20 (1.11 to 1.29)	15.12 (13.89 to 16.31)	12.53 (11.36 to 13.61)	2.59 (2.03 to 3.06)
	Respiratory	59.0	20.7	1.23 (1.06 to 1.43)	1.42 (1.28 to 1.59)	9.98 (7.76 to 11.97)	6.68 (4.97 to 8.30)	3.30 (2.09 to 4.49)
With	Total	76.5	21.8	1.48 (1.36 to 1.60)	1.17 (1.11 to 1.24)	13.28 (12.07 to 14.30)	10.65 (9.77 to 10.61)	2.63 (1.99 to 2.61)
	CVD	79.9	22.0	1.61 (1.44 to 1.81)	1.20 (1.11 to 1.29)	15.69 (14.12 to 16.95)	12.98 (11.63 to 14.09)	2.71 (1.97 to 3.40)
	Respiratory	59.3	20.6	1.31 (1.12 to 1.53)	1.47 (1.31 to 1.65)	9.86 (7.77 to 11.73)	6.72 (4.90 to 8.47)	3.14 (2.12 to 4.18)

^a The adjustment of the two-day average concentrations of fine particulate matter and ozone, which were conducted in 69 cities with 3-year data, 74 cities with 2-year data and 129 cities with 1-year data.

Abbreviations: MMP, minimum-mortality percentiles; MMT, minimum-mortality temperatures; CVD, cardiovascular disease.