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Abstract

Motivation: Understanding the formation, architecture and roles of pseudoknots in RNA structures

are one of the most difficult challenges in RNA computational biology and structural bioinfor-

matics. Methods predicting pseudoknots typically perform this with poor accuracy, often despite

experimental data incorporation. Existing bioinformatic approaches differ in terms of pseudoknots’

recognition and revealing their nature. A few ways of pseudoknot classification exist, most com-

mon ones refer to a genus or order. Following the latter one, we propose new algorithms that iden-

tify pseudoknots in RNA structure provided in BPSEQ format, determine their order and encode in

dot-bracket-letter notation. The proposed encoding aims to illustrate the hierarchy of RNA folding.

Results: New algorithms are based on dynamic programming and hybrid (combining exhaustive

search and random walk) approaches. They evolved from elementary algorithm implemented within

the workflow of RNA FRABASE 1.0, our database of RNA structure fragments. They use different

scoring functions to rank dissimilar dot-bracket representations of RNA structure. Computational ex-

periments show an advantage of new methods over the others, especially for large RNA structures.

Availability and implementation: Presented algorithms have been implemented as new functional-

ity of RNApdbee webserver and are ready to use at http://rnapdbee.cs.put.poznan.pl.

Contact: mszachniuk@cs.put.poznan.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the RNA structure is crucial for learning the principles

of RNA folding, its regulatory impact on transcription and transla-

tion, catalytic properties, specificity of RNA-protein interactions and

viral infectivity (Mortimer et al., 2014). The RNA folding process has

been shown to follow a hierarchical pathway in which domains are

assembled sequentially (Batey et al., 1999; Brion and Westhof, 1997;

Mustoe et al., 2014; Fig. 1). At first, upon folding of RNA strand, its

selected nucleotide residues interact through base-pairing to form di-

verse secondary structure motifs like hairpin apical loops, bulges,

internal and n-way junction loops, separated by stems that consist of

stacked Watson-Crick and GU wobble base pairs mostly. By that

means, the secondary structure is established at the molten globule

state (Brion and Westhof, 1997). Subsequently, intramolecular ter-

tiary interactions position the secondary structure elements with re-

spect to each other, often bringing nucleotide residues from distant

molecule parts to a close contact and initiating formation of structure

motifs called pseudoknots. This generates the conformational space

of RNA three-dimensional (3D) structures, to be related to their bio-

logical functions (Guo and Cech, 2002; Woodson, 2002).

VC The Author 2017. Published by Oxford University Press. 1304

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(8), 2018, 1304–1312

doi: 10.1093/bioinformatics/btx783

Advance Access Publication Date: 11 December 2017

Original Paper

http://rnapdbee.cs.put.poznan.pl
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx783#supplementary-data
https://academic.oup.com/


Large RNAs often contain pseudoknots, classified both on sec-

ondary and tertiary structure level. They occur when loop- or bulge-

involved nucleotides pair with a single-stranded region outside to

form a double helical segment. In general, four basic types of pseu-

doknots have been distinguished: H-type (loop—single-stranded re-

gion outside of the loop), K-type (loop—loop interaction), L-type

and M-type (being more complex pseudoknots) (Kucharı́k et al.,

2015). As the name suggest, pseudoknots are not real knots.

Although pulling 5’ and 3’ ends of the RNA strand, pseudoknot

yields a fully stretched chain, whereas physical knot tightens.

Formation of pseudoknots makes RNA structures more compact

and is often linked to biological function(s) attributed to that par-

ticular motif (Cho et al., 2009).

As the first observation of pseudoknot in turnip yellow mosaic

virus structure (Rietveld et al., 1982), this motif and its biological

functions were intensively studied (Staple and Butcher, 2005). It was

shown (Antczak et al., 2014; Chiu and Chen, 2012) that over 53%

of RNA structures in Protein Data Bank (Berman et al., 2000) con-

tain pseudoknots. Among them 20% has simple H-type pseudo-

knots formed by two conflicting regions only, the remaining RNAs

include more complex pseudoknots. Structure complexity in this

sense corresponds to the tiers in RNA folding hierarchy (Mustoe

et al., 2014). Simple pseudoknots appear first, followed by forma-

tion of more complicated ones when folding process advances. Such

hierarchy is exemplified in Figure 1 which illustrates consecutive

steps of cyanocobalamin aptamer folding along two alternative

pathways. At first, the basic secondary structure including hairpin

apical loop (left pathway) or hairpin and internal loops (right path-

way) is established from a single-stranded form (Fig. 1b). Next,

simple H-type pseudoknot is formed (Fig. 1c). In the final step, more

complex L-type pseudoknot is created (Fig. 1d). The secondary

structure on each level of Figure 1 has been encoded in dot-bracket

notation and visualized by PseudoViewer (Byun and Han, 2009).

The 3D structures in Figure 1(a–c) have been generated by

RNAComposer (Popenda et al., 2012), while Figure 1d displays the

X-ray structure of cyanocobalamin aptamer (Sussman et al., 2000).

The tertiary structures have been visualized in PyMOL (DeLano,

2002) using the rainbow scale to label consecutive residues from

5’- (blue) to 3’-end (red).

Despite the considerable accumulation of experimental data and

bioinformatics studies addressing pseudoknot problems, there are

still some unresolved issues. For example, difficulties and ambiguity

in pseudoknot encoding resulted in the fact that many computa-

tional methods cannot reliably handle them. Therefore, several algo-

rithms have been developed to extract the core structure including

nested base pairs only, by removing pseudoknots (Chiu and Chen,

2015; Smit et al., 2008). However, identifying which of two con-

flicted helical regions is responsible for a pseudoknot formation,

and, thus, should be removed, is not an obvious procedure. For ex-

ample, extraction of a nested structure for RNA shown in Figure 1d

may end up in obtaining one of two structures displayed in

Figure 1b which vary significantly. It has been agreed that an im-

portant decisive factor––although not always the only one––is the

region’s length (number of base pairs in the region). That is, if we

consider two conflicted double-stranded regions, the shorter one is

regarded to have initiated pseudoknot formation, while the longer

region is within the basic structure. Such simple rule has been fol-

lowed i.a. in (Antczak et al., 2014; Ponty, 2006; Popenda et al.,

2008; Rybarczyk et al., 2015; Smit et al., 2008), mostly applying

fast greedy procedures sufficient to solve optimally not complicated

structures (with H- and K-type pseudoknots). The problem becomes

harder if conflicted regions have the same length and when pseudo-

knot involves more than two regions, like it is observed in L- and

M-type pseudoknots. For such cases, greedy algorithms do not guar-

antee the optimal solution. Highly conflicted sub-structures have a

significant impact on structure-based analysis, especially if this is

made by automated, computational approaches. For many years,

also text representation of their topology has been ambiguous.

Conventional parentheses notation allowed to encode nothing more

besides a nested RNA structure topology, and the first version of ex-

tended dot-bracket notation allowed to handle simple pseudoknots

only (Byun and Han, 2009; Hofacker et al., 1994).

This situation resulted in slower than expected progress in the

field of secondary-structure-based 3D structure prediction of pseu-

doknotted RNAs as well as in their annotation from 3D data (Miao

et al., 2017; Purzycka et al., 2015). To advance studies in these dir-

ections, it is necessary to have an access to a reliable representation

of RNA secondary structure with complex pseudoknots. Here, we

propose new algorithms that can handle such RNAs and process

them on the secondary structure level. Our methods are based on ex-

haustive search approach and provide exact (optimum) solution.

They operate on BPSEQ-formatted data, handling all base pairs

listed in the input file regardless of their types. They identify, count

and classify pseudoknots and encode them in dot-bracket notation

which reflects the RNA structure topology and hierarchy of the fold-

ing process. These new algorithms have been implemented within

RNApdbee web server (http://rnapdbee.cs.put.poznan.pl), where

they support the route from RNA 3D structure to secondary struc-

ture. They can be also run separately to allow the user for conver-

sion of BPSEQ data to dot-bracket notation and graphical view of

the secondary structure.

(a)

(b)

(c)

(d)

Fig. 1. Subsequent tiers of cyanocobalamin aptamer (1DDY, chain A) folding

pathway from (a) single-stranded form, through creation of (b) a hairpin and

(c) first order pseudoknot of H-type, to (d) the final structure with second

order pseudoknot of L-type
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2 Materials and methods

The basic way of describing the RNA secondary structure is to list

base pairs (e.g. in BPSEQ format), which are formed during the mol-

ecule folding to stabilize the structure. Usually, such base pairs are

formed surrounded by other pairs, thus, creating longer double-

stranded regions. Occasionally, single isolated base pairs occur in

RNA structures.

A double-stranded (paired) region contains only nested base

pairs. Two base pairs (i, i’) and (j, j’) are nested if i< j<j’<i’.

However, sometimes we can find base pairs––we will call them

crossed or conflicted––which form pseudoknot(s). A pseudoknot

occurs if for any pair (i, i’) there exists another one, (j, j’),

such that and i< j<i’<j’ (Studnicka et al., 1978). It is believed

that in the process of RNA hierarchical folding nested base pairs

are formed at first, while pseudoknotted ones bind in the next

steps.

For many years, complete, unambiguous representation of pseu-

doknots in text and graphical form has been a non-trivial problem,

especially in the case of highly conflicted structures. In (Popenda

et al., 2008), we have introduced our first method for encoding

pseudoknotted RNA structure in dot-bracket notation extended to

dot-bracket-letter (DBL) (Table 1). DBL allowed to encode various

pseudoknots, e.g. H-type: ½ Þð �, K-type: ½ Þ ð �ð Þ, L-type: f½ Þð � g and

M-type pseudoknot: f½ Þ ð � gð Þ. The new method aimed to generate

and clearly present DBL representation of the secondary structure

topology based on the input BPSEQ data. All canonical and

non-canonical base pairs listed in the input BPSEQ file were

handled similarly. This First-Come-First-Served (FCFS) algorithm

(Algorithm 1) was applied within the workflow of RNA FRABASE

1.0 (Popenda et al., 2008). Each double-stranded region was

handled in the order determined by its first residue number, due to

the residue arrangement in RNA sequence from 5’ to 3’-end. Every

region was assigned an order (regorder) that translated into charac-

ters used to represent all of its base pairs in DBL notation (Table 1).

Starting from the first in line region, which was assigned regorder¼0,

the succeeding regions were pushed onto order-labelled stack(s) in

order of their appearance in RNA sequence. If the newly pushed re-

gion was conflicting with anything already on current stack, a global

order value was increased by 1, order-labelled stack (if non-existent)

was created and current region pushed onto it with regorder¼ global

order assigned. Once the closing of a region was found, the region

was popped from its stack.

In (Antczak et al., 2014), we have introduced a concept of a

pseudoknot order and we have applied it in RNApdbee tool to com-

pute orders of pseudoknot-forming regions. Following the approach

presented in (Smit et al., 2008), we have defined the pseudoknot

order as a minimum number of base pair set decompositions result-

ing in a nested structure. Thus, for example, if there is a pseudoknot

structure involving three conflicted double-stranded regions, A, B, C

and a decomposition of one region (preferably one including the

least number of base pairs)––e.g. B––leads to a structure without

conflicts, then the pseudoknot has an order equal to 1 (psorder¼1).

Based on that, we can assign region orders in the following way.

Region B selected for decomposition has regorder¼1 (the same as

pseudoknot order), and the remaining regions, A and C, have

regorder¼0 (since after decomposition they are not crossed).

In general, a pseudoknot with psorder¼k consists of regions with

regorder¼0. . .k. The maximum order among regions involved in a

pseudoknot is a pseudoknot order. Thus, H- and K-type pseudo-

knots are topologically simple with psorder¼1, while more com-

plex L- and M-type pseudoknots have psorder¼2.

To compute pseudoknot orders and region orders (for the

purpose of their further encoding and visualization), a modified ver-

sion of Elimination Gain (EG) heuristics introduced in (Smit et al.,

2008) was incorporated into RNApdbee. EG application results in

obtaining RNA secondary structure topology which maximizes the

length of double-stranded regions with small order value. However,

since EG is based on a greedy approach, it does not guarantee find-

ing an optimal solution. Thus, we have developed a Dynamic

Programming (DP) algorithm applying the same criterion and we

have compared its performance with EG heuristics.

Further study of RNApdbee-annotated secondary structures has

led us to consider alternative criterion of optimality, which is a min-

imum pseudoknot order throughout the whole structure. Hence, we

have proposed a new criterion function and we designed new algo-

rithms to encode pseudoknotted RNA structures in DBL notation.

The detailed description of our new algorithms is provided in the

next section.

3 Algorithms

The presented algorithms apply different approaches to solve the

problem of pseudoknot identification and classification, and pseu-

doknotted RNA secondary structure encoding. The Hybrid al-

gorithm (HYB) combines heuristic and exact procedures. DP finds

the solution by treating succeeding sub-problems. Each method

Table 1. Base pair encoding in DBL notation

Region order (regorder): 0 1 2 3 4 5 6 7 8

Base pair representation: () [] {} <> A a B b C c D d E e

Algorithm 1 FCFS algorithm from RNA FRABASE 1.0

Input: ssin – RNA secondary structure in BPSEQ format

Output: ssout – RNA secondary structure in DBL notation

1: function FCFS(ssin)

2: regs  findAllPairedRegions(ssin)

3: n  jregsj " count paired regions

4: sortRegionsByStartPoint(regs)

5: setRegionOrders(regs, n) " assign orders to regions

6: ssout  encodeBasePairs(regs) " encode solution in

DBL

7: return ssout

8: end function

9:

10: procedure setRegionOrders(regs, n)

11: regs½1�:ord  0

12: for i 2 to n do

13: order  0

14: for j 1 to i� 1 do

15: if regs½j�:ord ¼ order AND

16: conflictedðregs½j�; regs½i�Þ then

17: order  orderþ1

18: end if

19: end for

20 regs½i�:ord  order

21: end for

22: end procedure

1306 M.Antczak et al.



optimizes solution with reference to own criterion function.

The function used in DP (Section 3.1) aims to maximize the number

of non-conflicted base pairs at each computational step. Function in

HYB (Section 3.2) combines maximization of nested base pair num-

ber with minimization of the highest pseudoknot order for the entire

structure.

3.1 Criterion function I
All existing heuristics for pseudoknot identification and removal

[EG, Elimination Conflict (EC), etc.] that we have tested follow the

same criterion to evaluate representation R(S) of RNA secondary

structure S. It is defined by function fscoreI:

fscoreI Rð Þ ¼
P

1� i� n;order regið Þ¼0length regið Þ (1)

where length(regi) denotes a length (number of base pairs) of the i-th

region, order(regi) stands for the i-th region order and n is a number

of paired regions in structure S.

The function (Formula 1) sums up lengths of all non-conflicted

double-stranded regions in S. The representation R(S) with a max-

imum value of fscoreI wins. When the above-mentioned methods

are used to determine pseudoknot orders, we run them iteratively. In

every j-th iteration (j¼0, 1, 2,. . .), fscoreI is applied to select the

maximum nested sub-structure. All non-conflicted regions in the

best solution are assigned regorder¼ j and removed from structure

S. Next iteration is processed with the reduced representation of S to

identify regions with regorder¼ jþ1, etc.

fscoreI has been also applied to optimally evaluate partial solu-

tions in newly developed DP algorithm (Section 3.3).

3.2 Criterion function II
An analysis of the results obtained by methods applying fscoreI for

complex RNA structures made us propose a modified version of the

criterion function. It is defined as two-element vector function

fscoreII, where each element is a weighted sum of lengths of particu-

lar double-stranded regions in S:

fscoreII Rð Þ ¼

Xn

i¼1

1� xið Þ � length regið Þ

�1 �
Xn

i¼1

order regið Þ � length regið Þ

2
666664

3
777775

where xi ¼
0; if order regið Þ ¼ 0

1; otherwise

8<
:

(2)

The components of fscoreII are defined as follows: n denotes a

number of paired regions in structure S; length(regi) stands for a

length of the i-th region; order(regi) is the i-th region order (rep-

resented by appropriate character in DBL); xi is an auxiliary

variable.

In practice, the first element of the vector is the same as criterion

function defined by Formula 1, i.e. fscoreII[1] ¼ fscoreI. It sums up

the lengths of all non-conflicted regions (with regorder¼0). The

second element, fscoreII[2], is to sum up the lengths of conflicting

regions multiplied by their orders. As, we aim to penalize R(S) for

high order regions, the sum in fscoreII[2] is taken with a negative

value.

Looking for a representation of structure S, we maximize values

of both vector elements. Having two representations, R1(S) and

R2(S), we define the following domination rule to decide which one

is better:

if fscoreII½1�ðR1Þ > fscoreII½1�ðR2Þ

or ðfscoreII½1�ðR1Þ ¼ fscoreII½1�ðR2Þ

and fscoreII½2�ðR1Þ > fscoreII½2�ðR2ÞÞ

then R1ðSÞ dominates over R2ðSÞ

(3)

Two example representations of the secondary structure of cyano-

cobalamin (vitamin B12) aptamer (1DDY, chain A), R1 provided by

HYB and R2 output by FCFS, are shown in Figure 2. As it can be seen

from fscoreII values, R1 is better than R2, since it dominates on both

vector elements (although, according to Formula 3, a domination on

fscoreII[1] is sufficient for R1 to be the winner). The difference between

R1 and R2 is already in location of zero-order regions. If these results

were considered by the procedure aimed to obtain the nested structure

by pseudoknot removal, we would observe significant differences at the

level of both the secondary and the 3D structure. Figure 1b shows

nested structure of cyanocobalamin aptamer that can be obtained by re-

moval of pseudoknots identified by FCFS (left) and HYB (right).

3.3 DP algorithm
DP method (Algorithm 2) follows the optimality principle formu-

lated by Richard Bellman (Bellman, 1952). The problem is broken

into time separable sub-problems and the solution is accomplished

by recursively solving Bellman’s equations. In our case, the sub-

problem lies in the classification of a single base pair.

The main DP procedure iteratively runs four operations: (i) find a

set of nested base pairs in the input set, (ii) associate found base pairs

with current order (initially set to 0) and add them to the solution,

(iii) increase current order and (iv) remove obtained base pairs from

the input set. In each iteration, an optimum subset of nested base pairs

is found according to criterion function fscoreI (Formula 1). The algo-

rithm stops when all base pairs are moved from the input set to the

solution.

(a)

(b)

Fig. 2. DBL representations of cyanocobalamin aptamer (1DDY, chain A) sec-

ondary structure encoded by (a) HYB and (b) FCFS, the corresponding arc dia-

grams and fscoreII values
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The first step is a key part of the algorithm. It starts from reading

current input set (ssin) in BPSEQ format and preparing the data

(treatBasePairSet). The latter includes: (i) base pair renumeration,

(ii) addition of virtual edge pair and (iii) sorting base pairs with re-

spect to the distance between indexes of paired residues (firstly) and

first residue index (secondly) (Supplementary Fig. S1). Next, two DP

matrices are allocated and filled recursively with numerical weights.

We use scoreMtx matrix to store the ratings of consecutive optimum

solutions (nested sets). A cell in indexMtx matrix keeps an index of

the closing residue of outermost base pair in currently analyzed

nested set. A change in scoreMtx initiates the corresponding modifi-

cation in indexMtx.

There are three operations followed in filling the cells of

scoreMtx:

O1: scoreMtx i½ þ1� j½ �¼maxfscoreMtx i½ þ1� j½ �; scoreMtx i½ þ1� j½ -1�g
O2: scoreMtx i½ þ1� j½ �¼maxfscoreMtx i½ þ1� j½ �; scoreMtx i½ þ1� j0½ -1�þ

scoreMtx j0½ � j½ �g
O3: scoreMtx i½ � i0½ �¼1þscoreMtx i½ þ1� i0½ -1�

Their application depends on mutual position of considered

base pairs, i.e. for every two base pairs i; i0ð Þ; j; j0ð Þ 2 s sin;

iþ 1 < j < i0 � 1:

• if j; j0ð Þ is nested and i < j < j0 < i0 (Supplementary Fig. S2a),

or i; i0ð Þ; j; j0ð Þ are in conflict (Supplementary Fig. S2b) we per-

form operation O1,
• if j; j0ð Þ is nested, j0 < j (Supplementary Fig. S2c), and

scoreMtx i½ þ1� j0½ –1�þscoreMtx j0½ � j½ �> scoreMtx i½ð þ1� j½ –1� and

scoreMtx i½ þ1� j½ �) we apply operation O2,
• if j; j0ð Þ is nested, j0 < j (Supplementary Fig. S2c), and

scoreMtx i½ þ1� j0½ –1�þscoreMtx j0½ � j½ �<¼ (scoreMtx i½ þ1� j½ –1� or

scoreMtx i½ þ1� j½ �) we apply operation O1.

Finally, for every i; i0ð Þ the algorithm performs operation O3. After fill-

ing the matrices, optimum solution (nested set) is back-tracked from

indexMtx. Starting from i¼1, i0¼n, if indexMtx i½ � i0½ �¼k0 and k0 6¼ NN,

then k0 is the closing residue number of base pair k;k0ð Þ in the solution.

The opening residue, k, is gained from rawBps. Next, the procedure

continues recursively into indexMtx k½ þ1� k0½ –1� and indexMtx i½ � k½ –1�,
until stepping into not set cell (NN) (Supplementary Fig. S1).

3.4 Hybrid algorithm
HYB that we introduced (Algorithm 3), combines two procedures,

exhaustive search (exSearch) and random walk (randWalk), run de-

pending on the number of conflicting regions in the pseudoknot

structure. In the pre-processing stage, it identifies all regions which

are not pseudoknot-involved. They obtain a zero order and are dis-

regarded in further steps. Next, the algorithm finds disjoint pseudo-

knots. Two pseudoknots, P1 and P2, are disjoint if no region

involved in the formation of P1 is in conflict with any region in P2.

Disjoint pseudoknots are processed separately. All conflicting re-

gions which form one pseudoknot are stored in single container. In

detail, one container is a vector of region identifiers and corresponds

to a chain of regions’ decompositions leading to a nested structure.

A single container is processed iteratively to find the best

Algorithm 2 DP algorithm

Input: ssin – RNA secondary structure in BPSEQ format

Output: ssout – RNA secondary structure in DBL notation

1: function DynamicProgramming(ssin)

2: solution  1
3: order  0

4: do

5: bps  findNestedBasePairs(ssin)

6: setBasePairOrders(bps, order)

7: solution  solution [ bps

8: order  orderþ1

9: ssin  s sin nbps

10: while bps 6¼1
11: ssout  encodeBasePairs(solution)

12: return ssout

13: end function

14:

15: function findNestedBasePairs(ssin)

16: rawBps  getAllBasePairs(ssin)

17: n  jrawBpsj
18: bpSet  treatBasePairSet (raw Bps)

19: scoreMtx  createMatrixðnþ 2; 0Þ
20: indexMtx  createMatrixðnþ 2;NNÞ
21: for each base pair ði; i0Þ 2 bpSet do

22: for j iþ 2 to i0 � 1 do

23: j0 getPairedBase(j, bpSet)

24: if ðj0 < i OR j0 > i0 OR j0 > jÞ then

25: updateMtxði; j; scoreMtx; indexMtxÞ " O1

26: else if ðj0 < jÞ then

27: nsc  scoreMtx½iþ 1�½j0 � 1� þ scoreMtx½j0�½j�
28: if ðscoreMtx½iþ 1�½j� 1� < nsc AND

29: scoreMtx½iþ 1�½j� < nscÞ then

30: scoreMtx½iþ 1�½j�  nsc " O2

31: indexMtx½iþ 1�½j�  j

32: else

33: updateMtxði; j; scoreMtx; indexMtxÞ " O1

34: end if

35: end if

36: end for

37: scoreMtx½i�½i0�  1þ scoreMtx½iþ 1�½i0 � 1� " O3

38: indexMtx½i�½i0�  i0

39: end for

40: nestedBps  1
41: addNestedð1;n; indexMtx; rawBps;nestedBpsÞ
42: return nestedBps

43: end function

44:

45: procedure updateMtx(i; j; scoreMtx; indexMtx)

46: if ðscoreMtx½iþ 1�½j� < scoreMtx½iþ 1�½j� 1�Þ then

47: scoreMtx½iþ 1�½j�  scoreMtx½iþ 1�½j� 1�
48: indexMtx½iþ 1�½j�  indexMtx½iþ 1�½j� 1�
49: end if

50: end procedure

51:

52: procedure addNested(i; i0; indexMtx; rawBps; nestedBps)

53: if ði < i0 AND indexMtx½i�½i0� 6¼ NNÞ then

54: j0  indexMtx½i�½i0�
55: j  getPairedBaseðj0; rawBpsÞ
56: nestedBps  nestedBps [ ðj; j0Þ

57: addNestedðjþ 1; j0 � 1; indexMtx; rawBps; nestedBpsÞ
58: addNestedði; j� 1; indexMtx; rawBps; nestedBpsÞ
59: end if

60: end procedure
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decomposition chain. In every iteration, the vector is permuted by

either exSearch or randWalk. Next, setRegionOrders (Algorithm 1)

assigns orders to regions, and the solution is scored using fscoreII

(Formula 2). The best permutation for the container is selected due

to the domination rule (Formula 3). Thus, for each container one

permutation is obtained. They are merged to create final solution

for the input structure.

If the container includes up to eight conflicted regions, the

exSearch procedure is used to produce succeeding solutions and to find

the exact one, being the global optimum. That is, all permutations of

regions within container are generated, order-assigned and scored.

Then, the best one is selected as an optimum solution. At most, if the

container stores eight regions, exSearch has to handle 40320 solutions.

Otherwise, randWalk is launched. This method generates and scores

MAX_ITERATIONS¼10000 random permutations, and provides

the user with sub-optimal solution (Supplementary Fig. S3).

4 Results and discussion

In computational experiments, we have analyzed the performance of

five algorithms: First-Come-First-Serve (FCFS) method (Popenda et al.,

2008), EG and EC heuristics (Smit et al., 2008) and the new ones,

Hybrid (HYB) and DP algorithms. All of them were implemented in

Java (including EG and EC, originally developed in Python) and are

available through RNApdbee web server (Antczak et al., 2014).

Quantitative experiments aimed to compare algorithms’ effi-

ciency in solving (annotating and representing) secondary structures

of complex pseudoknotted RNAs. The test set was built based

on representative, non-redundant RNA 3D structure repository

(Leontis and Zirbel, 2012). Initial set consisted of 1272 entries. In

the preparation step, all of them were processed using 3DNA/DSSR

running in two modes, without (mode I) and with helices’ analysis

(mode II) (Lu and Olson, 2008). This resulted in obtaining base pair

list for every RNA 3D structure. Next, RNAs without pseudoknots

were removed to obtain two datasets, DS1 containing 209 structures

(mode I) and DS2 with 283 structures (mode II). We processed every

structure in DS1 and DS2 to find how many disjoint pseudoknots it

included. It appeared that the majority, i.e. 154 structures in DS1

and 221 in DS2, had only one pseudoknot, but single structures con-

tained up to 13 pseudoknots per structure (Table 2). All together,

there were 466 pseudoknots identified in DS1 and 547 in DS2.

Data in both sets were managed by all considered algorithms.

Many structures included only first-order pseudoknots. In these, and

a few other cases, all algorithms returned the same results, as ex-

pected. Solutions were different for 80 structures in DS1, and 172

structures in DS2. Our further analysis covered these cases only, i.e.

subsets DS10 (80 structures) and DS20 (172 structures), respectively.

DS10 included structures with pseudoknots of up to the fifth order,

DS20––up to the eighth. Subsets processed equally by all algorithms,

i.e. DS100¼DS1nDS10 and DS200¼DS2nDS20, included structures

with pseudoknots of up to the second and the third order, respect-

ively. A distribution of structures with the i-th highest pseudoknot

order is summarized in Table 3. For example, [FCFS, 3] ¼ 7 in the

table’s part (a) means that in subset DS10, FCFS algorithm found

seven structures with pseudoknots of order �3.

In the first experiment, solutions provided by particular algo-

rithms were evaluated using multi-criterion function fscoreII

(Formula 2). For each input RNA structure S, provided in BPSEQ

format, we obtained five structure representations R1 Sð Þ–R5 Sð Þ
encoded in DBL notation and we made their all-against-all compari-

son. For every pair of representations, we picked the winner apply-

ing Formula 3. This way, we counted how many times each

algorithm won/lost a duel with every other one (draws were not

Algorithm 3 Hybrid algorithm

Input: ssin – RNA secondary structure in BPSEQ format

Output: ssout – RNA secondary structure in DBL notation

1: function Hybrid(ssin)

2: regs  findAllPairedRegions(ssin)

3: ncfregs  findNonConflictedRegions(regs)

4: setRegionOrdersðncfregs; jncfregsjÞ
5: cfregs  regsnncfregs

6: containerSet  splitRegionsToContainers(cfregs)

7: for each container 2 containerSet do

8: container:bestSolution  1
9: container:bestScore  {0, 0}

10: m  jcontainerj
11: if ðm � 8Þ then

12: exSearch(container, m)

13: else

14: randWalk(container, m)

15: end if

16: end for

17: solution  mergeBestSolutions(containerSet)

18: ssout  encodeBasePairs(solution)

19: return ssout

20: end function

21:

22: procedure exSearch(container, m)

23: for k 1 to m! do

24: currSol  generateNextSolution(container)

25: setRegionOrders(currSol, m)

26: updateBest(container, currSol)

27: end for

28: end procedure

29:

30: procedure randWalk(container, m)

31: for k 1 to MAX ITERATIONS do

32: currSol  shuffleRegions(container)

33: setRegionOrders(currSol, m)

34: updateBest(container, currSol)

35: end for

36: end procedure

37:

38: procedure updateBest(container, currSol)

39: currScore  fScore(currSol)

40: if ðcurrScore½1� > container:bestScore½1� OR

41: ðcurrScore½1� ¼ container:bestScore½1� AND

42: currScore½2� > container:bestScore½2�ÞÞ then

43: container:bestScore  currScore

44: container:bestSolution  currSol

45: end if

46: end procedure

Table 2. A number of instances in DS1 and DS2 which include

k¼ 1. . .13 disjoint pseudoknots per one structure

# Pseudoknots per str. 1 2 3 4 5 6 7 8 9 10 11 12 13

# Structures in DS1 154 18 8 1 0 5 6 1 4 4 5 2 1

# Structures in DS2 221 25 8 1 0 5 6 1 4 4 5 2 1
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considered). We also identified cases, in which one method domi-

nated over all the others (won the battle) or lost with all the remain-

ing algorithms (lost the battle; Tables 4 and 5).

It can be easily noticed that one method stands out among all.

HYB algorithm is the one to have dominated in overwhelming part

of duels. It has won 15% of battles for DS20, and 9% of battles for

DS10 (compared to other methods winning 0 or 1 battle only), which

means that for that percentage of instances it has generated the best

solution and outperformed all other algorithms. The second place

belongs to DP, and the third one is occupied by EG heuristics. The

same relationship between the algorithms emerges from the analysis

of lost duels and battles. HYB did not lose a single battle. The FCFS

method, historically the first and the simplest of all, proved to be the

least successful. In consequence, we decided to update RNA

FRABASE by exchanging FCFS to HYB within its workflow.

The experiment with multi-objective fscoreII function was fol-

lowed by a study of Pareto frontier. We have applied Pareto-based

multi-objective algorithm to identify the front of non-dominated so-

lutions. This experiment was run separately for each RNA structure

from dataset DS1 (mode I, 209 instances) and from DS2 (mode II,

283 instances). For every instance, we obtained five solutions and

we analyzed which ones were Pareto optimal. In two cases, two

incomparable solutions were found for the instance: 4GMA–

Z2 DS1 (Pareto front: [49,–10]; [48,–9]) and 4WCE–X2 DS2

(Pareto front: [951,–143]; [950,–142]). For every other RNA, single

non-dominated solution was identified. For every algorithm, we

have investigated for what fraction of DS1 or DS2 dataset it found

Pareto optimal solution (i.e. included in the Pareto frontier). These

results are provided in Table 6. For some instances (i.e. 8 instances

from DS1, 25 instances from DS2) only one solution, obtained by

exactly one method, has constituted Pareto frontier. In all but one of

these cases, the Pareto optimal solution was found by HYB only.

Next experiment was performed to examine algorithms’ perform-

ance with respect to the first criterion function, i.e. fscoreI (Formula

1). The experiment followed the same pattern as in the previous case,

i.e. each RNA structure S was processed by five algorithms that pro-

vided various structure representations, R1 Sð Þ–R5 Sð Þ. They were

compared against one another upon their evaluation with fscoreI. The

results (Supplementary Table S1 and S2) show the advantage of DP

algorithm over others. DP is the only method that has not lost any

duel. It has also won most duels with other algorithms. The second

place in fscoreI-based ranking belongs to HYB, and the third one to

EG heuristic. Similarly as in the experiment based on fscoreII-ranking,

FCFS method is the least successful of all.

Finally, we have analyzed a single case experiment performed

with all algorithms that were applied to process example RNA mol-

ecule. For this experiment, we have selected RNA from ribosomal

subunit from human mitochondria, 3J7Y, chain A, (Brown et al.,

2014), being one of the largest and most complex structures in our

dataset. This RNA is composed of 1473 residues and includes 7 dis-

joint pseudoknots. In our experiment, base pair list for 3J7Y_A was

obtained by 3DNA/DSSR in mode II (Lu and Olson, 2008). Next, dif-

ferent methods were used to annotate pseudoknots and determine

their orders. One hundred double-stranded regions were found to

form pseudoknots. The minimum highest pseudoknot order deter-

mined by HYB algorithm was 4, FCFS–5 and the remaining methods

(EG, EG and DP)–6. From Table 7, we can read how many regions of

the i-th order (i¼0. . .6) have been annotated by particular algorithms

in this 100, in 3J7Y_A structure. Every method found 24 regions with

non-zero order (Fig. 3). Fourteen regions were encoded differently by

various algorithms. These differences can be spotted in DBL encoding

provided in Figure 3. They are observed mainly in single base pair re-

gions (i.e. isolated base pairs forming pseudoknots). To complete the

view of 3J7Y_A pseudoknots we provide Figure 4 prepared using R-

CHIE (Lai et al., 2012). It displays two arc diagrams, HYB- and

FCFS-based, with all pseudoknot-involved base pairs, included in 100

Table 3. A number of structures with pseudoknot order

psorder¼ 1. . .8, found in particular datasets

(a) DS10 dataset (b) DS20 dataset

Pseudoknot order 1 2 3 4 5 1 2 3 4 5 6 7 8

FCFS 162 36 7 3 1 138 52 59 16 9 3 5 1

EG 160 32 12 4 1 133 61 57 15 6 5 5 1

EC 160 35 9 4 1 132 63 55 15 6 7 4 1

DP 159 33 11 5 1 132 62 56 16 6 6 5 0

HYB 161 33 9 5 1 137 58 58 14 8 5 3 0

(c) DS100 dataset (d) DS200 dataset

All algorithms 123 6 0 0 0 87 17 7 0 0 0 0 0

Table 4. All-against-all algorithm comparison for DS10 dataset

upon fscoreII

FCFS EG EC DP HYB # Duels won # Battles won

FCFS – 0 1 0 0 1 0

EG 75 – 22 1 2 100 1

EC 75 6 – 0 2 83 0

DP 79 6 22 – 1 108 0

HYB 78 12 23 7 – 120 7

# Duels lost 307 24 68 8 5 – –

# Battles lost 71 0 1 0 0 – –

Table 5. All-against-all algorithm comparison for DS20 dataset

upon fscoreII

FCFS EG EC DP HYB # Duels won # Battles won

FCFS – 0 15 0 0 15 0

EG 169 – 94 1 5 269 0

EC 108 6 – 0 5 119 0

DP 170 18 95 – 5 288 1

HYB 167 28 98 25 – 318 25

# Duels lost 614 52 302 26 15 – –

# Battles lost 107 0 15 0 0 – –

Table 7. A number of the i-th order regions identified in pseudo-

knots of RNA from ribosomal subunit from human mitochondria

(3J7Y, chain A)

Region order (i) 0 1 2 3 4 5 6

# FCFS-identified i-th order regions 76 12 8 2 1 1 0

# EG/EC/DP-identified i-th order regions 76 13 6 2 1 1 1

# HYB-identified i-th order regions 76 13 7 3 1 0 0

Table 6. Percentage of instances from dataset DS1 and DS2 for

which Pareto optimal solution was found by the algorithm

Dataset FCFS EG EC DP HYB

DS1 62.68% 94.25% 88.52% 96.17% 99.04%

DS2 39.58% 89.75% 63.60% 91.17% 98.59%
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mentioned regions. Diagrams resulting from other algorithms are

shown in Supplementary Material (Supplementary Figs. S4 and S5).

Each of these figures enables pairwise comparison of two representa-

tions returned by different methods.

5 Conclusion

RNA pseudoknots draw wide interest of researchers studying the

RNA structure. But still, due to topological complexity, their classifi-

cation and machine representation remain a challenge. In our work,

we have addressed the problem of determination and assignment of

pseudoknot order and encoding the pseudoknotted RNA structures in

DBL notation. We have introduced new algorithms, Hybrid and DP,

to handle this problem and we have compared them with already

existing approaches, FCFS (Popenda et al., 2008), EG and ECs (Smit

et al., 2008). We have proposed the new scoring function to better

evaluate the solutions. The methods were tested using the representa-

tive set of 1272 non-redundant RNA 3D structures (Leontis and

Zirbel, 2012). The computational experiment has identified HYB as

the best one in the ranking made according to fscoreII. It finds ma-

chine representation of the secondary structure maximizing the num-

ber of non-conflicting base pairs and minimizing the highest

Fig. 3. A distribution of regions with non-zero order in the structure of RNA from ribosomal subunit from human mitochondria (3J7Y, chain A) and their encoding

by considered algorithms

Fig. 4. Arc diagrams of pseudoknot-involved regions in RNA from ribosomal subunit from human mitochondria (3J7Y, chain A) corresponding to HYB (top) and

FCFS (bottom) results
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pseudoknot order. If the first criterion (fscoreI) is considered, DP

beats the other methods and HYB is just behind.

All considered algorithms have been made available within

RNApdbee web server (http://rnapdbee.cs.put.poznan.pl) and are

ready to be used and investigated in further experiments. We hope

they will open new opportunity in modelling more accurate 3D

structures of pseudoknotted RNAs (Miao et al., 2017), in particular

in the case of secondary structure-based prediction (Antczak et al.,

2016; Martinez et al., 2008; Parisien and Major, 2008; Popenda

et al., 2012). They should facilitate an access to a proper secondary

structure for those who annotate it from the tertiary data. They also

allow to apply the preferable optimization criterion, based on

fscoreI or fscoreII, depending on the user expectations.

We believe that an admittance to properly represented RNA sec-

ondary structure can contribute to explain the folding process and

explore the RNA fragmentation pattern (Rybarczyk et al., 2016).

The algorithms can be also useful in comparison and evaluation of

predicted 3D models via their back-translation to the secondary

structure level (Lukasiak et al., 2015; Wiedemann et al., 2017; Zok

et al., 2014). Finally, they can cast a new light on the study of rela-

tionships between the sequence, secondary and tertiary structure of

RNAs (Wiedemann and Milostan, 2016), as well as an investigation

of structure-function relationship.
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