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A wide variety of cardiopulmonary and systemic diseases are known to lead to pulmonary hypertension (PH). A number of
signaling pathways have been implicated in PH; however, the precise mechanism/s leading to PH is not yet clearly understood.
Caveolin-1, a membrane scaffolding protein found in a number of cells including endothelial and smooth muscle cells, has been
implicated in PH. Loss of endothelial caveolin-1 is reported in clinical and experimental forms of PH. Caveolin-1, also known
as a tumor-suppressor factor, interacts with a number of transducing molecules that reside in or are recruited to caveolae, and it
inhibits cell proliferative pathways. Not surprisingly, the rescue of endothelial caveolin-1 has been found not only to inhibit the
activation of proliferative pathways but also to attenuate PH. Recently, it has emerged that during the progression of PH, enhanced
expression of caveolin-1 occurs in smooth muscle cells, where it facilitates cell proliferation, thus contributing to worsening of the
disease. This paper summarizes the cell-specific dual role of caveolin-1 in PH.

1. Introduction

Pulmonary hypertension (PH) is a rare but a devastat-
ing disease with high morbidity and mortality rate. The
reported prevalence is 15–52 cases/million and the inci-
dence is thought to be 2.4–7.6 cases/million/year [1, 2]. A
wide variety of cardiopulmonary diseases, collagen vascular
and autoimmune diseases, chronic thromboembolism, HIV,
portal hypertension, drug toxicity, and myeloproliferative
diseases are known to lead to PH. In primary pulmonary
arterial hypertension (PAH), currently labeled as idiopathic
PAH, the underlying etiology is not clear and about 6% of
patients in this group have a family history of the disorder
[3, 4]. Multiple signaling pathways and inflammation have
been implicated in the pathogenesis of PH. Endothelial
dysfunction may be an important triggering factor leading to
an imbalance between vasorelaxation and vasoconstriction
and deregulation of cell proliferation leading to vascular
remodeling and PH with subsequent cell migration and
neointima formation. Loss of bioavailability of nitric oxide
(NO) and prostacyclin (PGI2) [5–7], upregulation/activation
of proliferative molecules such as endothelin-1 (ET1) [8,
9], platelet-derived growth factor (PDGF) [10], serotonin
[11], survivin [12], cyclin D1 [13], tyrosine-phosphorylated

signal transducer and activator of transcription 3 (PY-
STAT3) [14, 15], RhoA/Rho kinase [16, 17], and anti-
apoptotic molecules such as Bcl2 and Bcl-xL [18, 19] have
been reported in PH. In addition, increased elastase activity
[20] and increased production of matrix metalloproteinase
2 (MMP2) [21] occur in PH. Recent studies have shown
a strong link between heterozygous germline mutations
in bone morphogenic protein receptor type II (BMPRII),
a member of TGFβ superfamily and pulmonary arterial
hypertension (PAH). Mutation of BMPRII has been reported
in 70% of heritable PAH, 26% IPAH, and 6% of patients
with congenital heart defect and associated PAH. However,
only about 20% of people with this mutation develop PAH
[22–25], indicating that environmental and/or other genetic
factors may be involved in the development of the disease.
Furthermore, recent studies have shown reduction in the
expression of BMPRII protein in both monocrotaline (MCT)
and the hypoxia models of PH [26, 27]. In addition, muta-
tions of activin-like receptor kinase 1 (ALK1) and endoglin,
both belonging to TGFβ superfamily, have been reported
in patients with hereditary hemorrhagic telangiectasia, and
some of these patients develop PAH [28].

Regardless of the underlying etiology, the main features
are endothelial dysfunction, impaired vascular relaxation
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response, deregulated cell proliferation and impaired apop-
tosis, vascular remodeling, narrowing of the lumen, elevated
PA pressure, and right ventricular hypertrophy with sub-
sequent right heart failure and premature death. Despite
major advances in the understanding of the disease process,
a cure is not yet in sight. Current therapy has improved
the quality of life but has not had a significant effect on
the mortality rate [29]. Loss of endothelial caveolin-1, a cell
membrane protein is well documented in experimental and
clinical forms of PH [13, 14, 30]. Recent studies indicate
that in addition to the loss of endothelial caveolin-1, there
is enhanced expression of caveolin-1 in smooth muscle
cells with proliferative activity and subsequent neointima
formation [31, 32]. Thus, caveolin-1 may play a key role in
the pathogenesis of PH, and its activity may depend on cell
type and the disease stage.

2. Caveolin-1 and Caveolae

Caveolae are 50–100 nm flask-shaped invaginations rich in
cholesterol and sphingolipids was described by Palade and
Yamada in 1950s [33, 34]. Caveolae are a subset of lipid
rafts found on the plasmalemmal membranes of a variety of
cells including endothelial, smooth muscle, epithelial cells,
and fibroblasts. One of the major functions of caveolae is to
serve as a platform and to compartmentalize the signaling
molecules that reside in or are recruited to caveolae. Caveolae
are also involved in transcytosis, endocytosis, and regulation
of cell proliferation, differentiation, and apoptosis via a
number of diverse signaling pathways. Three isoforms of
caveolin gene family have been identified. Caveolin-3 is a
muscle-specific gene found primarily in skeletal and cardiac
myocytes. Caveolin-2 not only colocalizes with caveolin-
1 but also requires caveolin-1 for membrane localization.
Caveolin-1 (22 kD) is the major constitutive protein of cave-
olae that interacts and regulates several proteins including
Src family of kinases, G-proteins (α subunits), G protein-
coupled receptors, H-Ras, PKC, eNOS, integrins, and growth
factor receptors such as VEGF-R and EGF-R. Caveolin-1
stabilizes these signaling proteins, and generally, protein-
protein interaction with caveolin-1 exerts negative regulation
of the target protein within caveolae; these interactions occur
through caveolin-1-scaffolding domain (CSD, residue 82–
101 in caveolin-1) [35–41]. Major ion channels such as Ca2+-
dependent potassium channels and voltage-dependent K+

channels (Kv 1.5) and a number of molecules responsible
for Ca2+ handling such as inositol triphosphate receptor
(IP3R), heterodimeric GTP-binding protein, Ca2+ ATPase,
and several transient receptor potential channels localize in
caveolae and interact with caveolin-1. In SMC, caveolin-
1 regulates Ca2+ entry and enables vasoconstriction. The
localization of Ca2+-regulating proteins in caveolae and the
proximity to sarcoplasmic reticulum is indicative of an
important role for caveolae/caveolin-1 for Ca2+ homeostasis
[42–44]. RhoA interacts directly with caveolin-1, and the
translocation of RhoA to caveolae is required for myogenic
tone. The CSD peptide of caveolin-1 has been shown to
inhibit the agonist-induced redistribution of RhoA and PKC-
α [45–47]. In addition, caveolin-1 ablation attenuates both

pressure and agonist-induced vasoconstriction [48]. Thus,
caveolae/caveolin-1 plays a complex and important role in
regulating Ca2+ homeostasis.

Endothelial cells (EC) are thought to have one of the
highest levels of caveolin-1 [36]. One of the major functions
of endothelial cells is to maintain vascular tone and structure;
in addition, endothelial cell layer forms an important
interface between circulating blood and vascular smooth
muscle cells. Nitric oxide (NO), endothelium-derived hyper-
polarizing factor (EDHF), and PGI2 are potent vasodilators
and antimitogenic factors produced by endothelial cells to
maintain vascular health. Sustained Ca2+ entry into EC
regulated by caveolin-1 is required for the activation of
NO, PGI2, and EDHF. Importantly, caveolin-1 deficiency
impairs Ca2+ entry, thus caveolin-1 has an impact on the
activation of these vasoactive factors [49]. Endothelial NO
synthase (eNOS) catalyzes conversion of L-arginine to NO.
For optimum activation, eNOS is targeted to caveolae.
Although it is negatively regulated by caveolin-1, caveolin-
1 is crucial for NO-mediated angiogenesis [50–54]. In
addition, the downstream effector of NO, soluble guanylate
cyclase has been shown to compartmentalize in caveolae to
facilitate its activation [55]. Genetic deletion of caveolin-
1 has been shown to abrogate EDHF-induced hyperpolar-
ization by altering Ca2+ entry, thus highlighting the role
of caveolin-1 in EDHF regulation [56]. PGI2, a potent
vasodilator produced by EC is formed from arachidonic
acid by the enzymatic activity of PGI2 synthase, which
also colocalizes with caveolin-1. Unlike eNOS, PGI2synthase
remains enzymatically active even when bound to caveolin-
1. Colocalization of eNOS and PGI2 synthase and VEGFR2
with caveolin-1 suggests a role for caveolin-1 in angiogenesis
signaling pathways [57]. Furthermore, VEGFR2 activation
has been shown to be impaired in endothelial cells from
caveolin-1 knockout (KO) mice, further supporting a role for
caveolin-1 in VEGF-induced signaling [52, 58].

Recent studies have shown that caveolae and caveolin-1
may serve as mechanosensers and/or transducers in arterial
responses to alterations in blood flow. Vascular endothelial
cells subjected to blood flow-induced shear stress trans-
form mechanical stimuli into biological signaling known
as mechanotransduction. Mechanosensing by endothelial
cells results in the activation of MAPK/ERK, Akt, and
eNOS pathways, thus preventing apoptosis and facilitating
vasodilation. Furthermore, impaired flow-mediated vasol-
dilation in caveolin-1 KO mice is rescued by reconstitution
of caveolin-1. Interestingly, poor activation of ERK 1/2 and
Akt in EC with low caveolin-1 is thought to be due to
impaired VEGFR2 signaling [59, 60]. Thus, caveolin-1 and
caveolae are essential for maintaining normal function of
blood vessels.

Caveolin-1, also known as a tumor-suppressor factor,
inhibits a number of proliferative pathways. Downregulation
of caveolin-1 has been shown to lead to hyperactivation
of MAPK/ERK pathway. In caveolin-1 KO mice, observed
cell hyperproliferation has been attributed to MAPK/ERK
signaling pathway. Interestingly, caveolin-1 is negatively reg-
ulated by MAPK/ERK pathway [61–63]. Caveolin-1 regulates
apoptosis in several cell types. It promotes cell-cycle arrest via
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a p53/p21waf1/cip1-dependent mechanism. It has been further
shown that caveolin-1 facilitates apoptosis via suppressing
survivin [64–66]. Caveolin-1 inhibits PDGF receptor signal-
ing and is capable of transforming PDGF-induced prolif-
erative signals into death signals [67, 68]. Caveolin-1 also
functions as an immunomodulator. It modulates inflam-
matory processes via its regulatory effect on eNOS, and
depending on the cell type and possibly the disease, the effect
can be positive or negative. In addition, caveolin-1 inhibits
and degrades inflammatory and proneoplastic protein COX2
to maintain it at the homeostatic level, and caveolin-1
regulation of TGF-β signaling and modulates several cellular
processes including differentiation and migration. TGF-β1
receptor activin like receptor kinase (ALK) 1 colocalizes with
caveolin-1 and both proteins regulate angiogenesis [69–76].

Thus, caveolin-1 regulates and interacts directly or
indirectly with a number of signaling molecules implicated
in PH. Therefore, there is a reason to believe that the alter-
ations in endothelial cell membrane integrity and caveolin-
1 may have a profound effect on the development and the
progression of pulmonary vascular disease.

3. Endothelial Caveolin-1 in Pulmonary
Hypertension

3.1. Disruption of Endothelial Cell Membrane and Loss of
Caveolin-1. Loss of endothelial caveolin-1 has been reported
in clinical and experimental forms such as monocrotaline
(MCT) and myocardial infarction models of PH [13, 14, 30].
The MCT model has been extensively studied to understand
the pathogenesis of PH. A single subcutaneous injection of
MCT in rats injures endothelial cells within 24–48 hrs and
PH is observed at 10–14 days after MCT. In this model the
disruption of endothelial caveolae associated with progres-
sive loss of caveolin-1 occurring as early as 48 hrs after MCT,
is a major feature seen before the onset of PH. In addition
to the loss of caveolin-1, there is reduction in the expres-
sion of other endothelial cell membrane proteins known
to colocalize with caveolin-1 such as Tie2 (endothelium-
specific tyrosine kinase receptor of angiopoietin 1), platelet
endothelial cell adhesion molecule (PECAM) 1, and both
subunits of soluble guanylate cyclase [14, 19]. Importantly,
the loss of caveolin-1 is associated with reciprocal acti-
vation of signal transducer and activator of transcription
(STAT) 3 to PY-STAT3, known to be preferentially activated
by downstream effectors of proinflammatory cytokine IL-
6/gp130 signaling pathway. In addition, the expression of
Bcl-xL is increased simultaneously with the activation of
PY-STAT3. PY-STAT3 plays a critical role in cell growth,
inhibition of apoptosis, survival, and in immune function
and inflammation. Persistent phosphorylation of STAT3 has
been reported in a number of primary tumors, and activation
of STAT3 signaling confers resistance to apoptosis, [13, 14,
19, 77]. Some of the downstream effectors of PY-STAT3 are
survivin and Bcl-xL (antiapoptotic factors), and cyclin D1
(cell-cycle regulator). All these factors have been shown to
be upregulated in PH. Importantly, activation of PY-STAT3
has been observed in endothelial cells obtained from patients
with idiopathic PAH [15]. RhoA/Rho kinase activation is

well established in PH, and interestingly, Rho GTPases is
required for STAT3 activation, and Rho GTPases-mediated
cell proliferation and migration occur via STAT3 [17, 78].
Caveolin-1 functions as a suppressor of cytokine signaling
(SOCS) 3 and inhibits PY-STAT3 activation [79]. Therefore,
it is not surprising that the rescue of endothelial caveolin-
1 not only inhibits STAT3 activation but also restores the
endothelial cell membrane integrity and attenuates MCT-
induced PH and vascular remodeling [80–82]. These results
underscore the importance of endothelial cell membrane
integrity and the expression of endothelial caveolin-1 in
maintaining vascular health.

Studies with caveolin-2 KO mice have shown pulmonary
defects such as alveolar wall thickening and increased cell
proliferation similar to what has been reported in caveolin-1
KO mice. Unlike caveolin-1 KO, caveolin-2 KO has no effect
on vascular reactivity, nor does it participate in the formation
of caveolae. Interestingly, in the MCT and myocardial infarc-
tion models of PH, in addition to loss of caveolin-1, caveolin-
2 loss occurs, and the rescue of caveolin-1 attenuates PH
and also restores caveolin-2 expression [13, 81, 83]. Since
caveolin-2 requires caveolin-1 for its transport to the mem-
brane surface, caveolin-2 loss may accompany the caveolin-
1 loss in these models of PH. It is likely that caveolin-2
participates with caveolin-1 in pulmonary vascular health
and disease. It is not clear what independent role caveolin-
2 might have in the pathogenesis of PH. Further studies are
warranted to examine the specific role of caveolin-2 in PH.

3.2. Perturbation of Endothelial Cell Membrane and Dys-
function of Caveolin-1. PH is an important cause of heart
failure and increased mortality in patients suffering from
chronic lung diseases associated with alveolar hypoxia [84].
Hypoxia induces pulmonary vasoconstriction and vascular
remodeling leading to PH. In hypoxia-induced PH, similar
to the MCT model, low bioavailability of NO, low basal and
agonist-induced cGMP levels, and impaired endothelium-
dependent NO-mediated relaxation responses in pulmonary
arteries have been reported [85–87]. Interestingly, BH4 or L-
arginine administration does not improve eNOS dysfunction
[85]. However, unlike the MCT model, in hypoxia-induced
PH, there is no reduction in caveolin-1 expression. Murata
et al. [85] have further shown that in pulmonary arteries
from rats with hypoxia-induced PH, eNOS forms a tight
complex with caveolin-1 and becomes dissociated from
HSP90 and calmodulin, resulting in eNOS dysfunction. In
addition, the long-term effect of prenatal hypoxia results in
impaired endothelium-dependent and NO-mediated relax-
ation responses coupled with increased caveolin-1 and eNOS
association [88]. Interestingly, hypoxia-induced PH and
pulmonary endothelial cells exposed to hypoxia exhibit
hyperactivation of PY-STAT3 [89]. Hypoxia-inducible factor
(HIF) 1α is thought to play a significant role in hypoxia-
induced hyperplasia of SMC [90]. STAT3 plays a significant
role in stabilizing HIF1α, and its interaction with HIF1α
mediates transcriptional activation of vascular endothelial
growth factor (VEGF) promoter. Targeting STAT3 blocks
HIF1α and VEGF, thus modulating proliferation and angio-
genesis [91, 92]. These results strongly suggest that PY-STAT3
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may be an important regulator of VSMC proliferation in PH
irrespective of the underlying etiology.

Since caveolin-1 has been shown to inhibit PY-STAT3
activation [79–81], the activation of PY-STAT3 in hypoxia-
induced PH despite the unaltered expression of caveolin-1
protein strongly suggests that caveolin-1 is dysfunctional and
has lost its inhibitory function. Furthermore, within 24 hr
exposure to hypoxia, bovine pulmonary artery endothelial
cells reveal caveolin-1 and eNOS complex formation accom-
panied by PY-STAT3 activation (Figures 1(a) and 1(b)).
These results indicate that the tight complex formation of
caveolin-1 and eNOS in hypoxia-induced PH renders both
eNOS and caveolin-1 dysfunctional. In this context, it is
worth noting that statins protect eNOS function in hypoxia-
induced PH. The major effect of statins is reported to be the
uncoupling of eNOS/caveolin-1 complex, thus freeing eNOS
for activation. This effect on eNOS is not accompanied with
lowering of cholesterol [93]. It is likely that the statins disrupt
the tight cavolin-1/eNOS coupling resulting from hypoxia-
induced perturbation of endothelial cell membrane, thus
restoring antiproliferative properties of caveolin-1 and NO
production by eNOS. Unlike the MCT model, hypoxia does
not appear to cause physical disruption of EC membrane but
causes perturbation of the endothelial cell membrane and
leading to “mislocalization” of caveolin-1 and eNOS.

4. Progressive Endothelial Cell Damage and
Enhanced Expression of Caveolin-1 in SMC in
Pulmonary Hypertension

Juxtaposition of EC and SMC facilitates crosstalk and co-
regulation and EC protects SMC from blood elements and
direct shear stress. Our studies with experimental and clinical
PH show that inflammation and drug-induced injury disrupt
endothelial cell membrane integrity leading to the loss of
endothelial caveolin-1. The endothelial damage is progressive
resulting in the loss of cytosolic proteins, such as HSP90, Akt,
IκBα, eNOS and subsequently the loss of von Willebrand
factor (vWF) [14, 19, 32]. vWF, synthesized by endothelial
cells is stored in Weibel Palade bodies within the cell;
therefore, the loss of vWF is indicative of an extensive
endothelial damage or loss. Importantly, increased plasma
levels of vWF and circulating endothelial cells are markers of
poor prognosis in PAH [18, 94, 95]. Enhanced expression of
caveolin-1 in SMC is seen only in the arteries exhibiting vWF
loss [32], and interestingly, a loss/apoptosis of endothelial
cells is thought to trigger SMC proliferation [96].

The number of caveolae in SMC are said to be less
than half that of EC [97]. Recent studies have shown
robust expression of caveolin-1 in SMC in PAH, in addition
to the loss of endothelial caveolin-1 [31, 32]. Following
immunosuppressant therapy-induced endothelial damage, a
significant loss of endothelial caveolin-1 and vWF was shown
to be associated with robust expression of caveolin-1 in SMC
with subsequent neointima formation [32]. Interestingly, in
patients with chronic obstructive pulmonary disease, expres-
sion of caveolin-1 in SMC was seen only in the presence
of PH [98]. Smooth muscle cells isolated from patients

with idiopathic PAH exhibit not only enhanced caveolin-1
expression but also altered Ca2+ handling, increased cytosolic
[Ca2+]i and increased DNA synthesis. Increased [Ca2+]i is
a trigger for DNA synthesis and cell proliferation [31].
Caveolin-1 is considered to play an important role in the
regulation of vascular SMC in receptor-mediated signaling
[99]. Caveolin-1 regulates mitogenic signaling and Ca2+

entry in SMC. Normally, caveolin-1 keeps mitogens inactive
in caveolae, but under increased mechanical stress/strain,
caveolin-1 translocates from caveolae to noncaveolar sites
within the plasma membrane of cultured SMC and translo-
cated caveolin-1 triggers cell-cycle progression and cell
proliferation [100, 101]. The extensive endothelial damage,
as described in the preceding section, may result in a breach
in the endothelial layer, thus exposing SMC to high cyclic
pressure with consequent enhanced expression of caveolin-1
in SMC and possible translocation from caveolae. Interest-
ingly, caveolin-1 requires cavin-1 (one of the cavin protein
family also known as polymerase 1 and transcript release
factor) for caveolae formation. Recent in vitro studies show
that cells (murine lung endothelial and HeLa cells) exposed
to mechanical stress reveal reduced caveolin-1/cavin-1 inter-
action, disappearance of caveolae, and increased expression
of caveolin-1 at the plasma membrane [102, 103]. It is
tempting to postulate that in PH, the observed enhanced
expression of caveolin-1 in SMC may in part be related to
the reduction in caveolin-1/cavin-1 interaction and loss of
caveolae during exposure to pulsatile shear stress. Further
studies are required to address caveolin-1/cavin-1 interaction
in SMC in PH.

SMC migration, matrix degradation, and remodeling
leading to neointima formation are essential aspects of PH.
Matrix metalloproteinases (MMP); especially, the activation
of MMP2 is considered a critical step in the migration
of SMC through the basement barrier. MMP2 belongs to
a family of zinc-dependent endopeptidases called MMPs,
involved in matrix degrading processes. MMP2 has been
implicated in vascular remodeling and plays an important
role in cell migration, thus contributing to neointima for-
mation. Not surprisingly, increased expression and activity
of smooth muscle cell MMP2 has been reported in idiopathic
PAH. Importantly, MMP2 and its physiologic activator MT1-
MMP colocalize in caveolae and are negatively regulated by
caveolin-1 [21, 104–106]. This suggests that the exposure
of SMC to increased shear stress may translocate caveolin-1
from caveolae to other plasma membrane sites, thus losing its
inhibitory activity on MT1-MMP and MMP2 and facilitating
cell migration via MMP2. In support of this view, it has
been shown that the caveolin-1 re-expression in tumor cells
inhibited MMP activation and function thereby preventing
cell migration [107]. In vascular SMC, the localization of
BMPRII to caveolae and binding with caveolin-1, required
for efficient signal transduction and disruption of caveolin-1
and BMPRII interaction negatively affects BMP2-dependent
SMAD phosphorylation [108]. Thus, the localization of
caveolin-1 in caveolae may be of paramount importance for
its activity.

Acute respiratory syndrome (ARDS) is comprised of
increased pulmonary vascular permeability and pulmonary
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Figure 1: Bovine pulmonary artery endothelial cells (BPAEC) after 24 hr exposure to hypoxia (H, 5% O2) and in normoxia (C). (a) During
hypoxia the expression of caveolin-1 (green) and eNOS (red) appear increased and they form a complex. (b) PY-STAT3 (red) activation is
observed after exposure to hypoxia.

edema associated with hypoxemia and carbon dioxide
retention, caused by a variety of pulmonary and systemic
insults and drug toxicity. Endothelial injury is a critical
underlying feature resulting in the disruption of alveolar-
capillary membrane and vascular fluid leak. The reported
incidence is about 2.2–16/100,000 with a mortality rate of
about 40%. Incidence of PH is as high as 92% in patients with
ARDS, severe and moderated being 7% and 76% respectively
[109–111]. A recent case report [32] has shown that within
2 months of developing ARDS, lung biopsy revealed loss
of endothelial caveolin-1 in several arteries without any
evidence of PH. This is similar to the observation in the MCT
model, where the progressive loss of endothelial caveolin-1
occurs before the onset of PH [19, 80]. The second patient
developed severe PH despite having clinically recovered from

ARDS two years earlier. Importantly, the loss of vWF was
associated with robust expression of caveolin-1 in SMC
with subsequent neointima formation [32]. Interestingly,
increased plasma vWF antigen is an independent marker of
poor prognosis in acute lung injury and is associated with
high mortality, similar to what has been reported in PAH [95,
112]. Thus, the loss of endothelial cell membrane integrity,
and resulting caveolin-1 loss, directly or indirectly facilitates
vascular leak and has the potential to initiate pulmonary
vascular disease. Progressive endothelial damage as indicated
by loss of vWF and enhanced expression of caveolin-1 in
SMC may portend worsening PH.

It is worth noting that caveolin-1, a marker of mature
and contractile SMC, keeps SMC in quiescence. It modulates
Ca2+-regulatory molecules, increases Ca2+ mobilization and
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Figure 2: This figure depicts the proposed model of PH (#1). Injury to EC results in progressive loss of endothelial caveolin-1, loss of
vasodilators, and the activation of proliferative and anti-apoptotic pathways leading to PH. EC disruption is progressive resulting in further
loss of multiple proteins and possibly the loss of EC. Extensive damage/loss of EC exposes SMC to direct shear stress leading to enhanced
expression of caveolin-1 which participates in further cell proliferation and cell migration resulting in neointima formation. Newly formed
EC in neointima express increased eNOS; possibly low caveolin-1 expression in these cells may in part be responsible for the observed
dysfunctional eNOS. The resulting oxidant/nitration injury further influences PH adversely.

facilitates contractile responses to agonists. In addition,
interaction of caveolin-1 and RhoA is critical for pressure-
induced myogenic tone in resistance arteries. Therefore,
it is not surprising that the arteries from caveolin-1 KO
mice develop poor myogenic tone in response to pressure.
Caveolin-1 also prevents proliferative activity. It inhibits
receptor and nonreceptor tyrosine kinases by sequestering
them to caveolae and prevents cell proliferation. Further-
more, disruption or ablation of caveolin-1 in airway and
vascular SMC show increased cell proliferation [113–115].
Thus, caveolin-1 is essential for normal functioning of SMC.

Taken together, our studies and published reports, it
appears that injury to EC (shear stress, drug toxicity,
inflammation) results in (a) a progressive loss of endothelial
caveolin-1, (b) impaired Ca2+entry into EC resulting in
reduced production of vasodilators, and (c) reciprocal activa-
tion of mitogenic signaling pathways leading to vascular cell
proliferation, medial wall thickening, and PH. It is possible
that PH at this stage may be reversible. Progressive EC
damage results in further loss of proteins including eNOS.
As the disease progresses, extensive EC damage/loss occurs
followed by enhanced expression of cav-1 in SMC, where
cav-1 facilitates cell proliferation and migration leading to
neointima formation. It is likely that translocated caveolin-
1 in SMC not only loses its ability to inhibit proliferative
pathways but also switches from being antiproliferative to
proproliferative that may eventually lead to SMC phenotype
change from contractile to synthetic type. Recent studies
indicate that there is increased expression of eNOS in
neointimal EC, but eNOS is dysfunctional, resulting in

oxidant/nitration injury, thus further aggravating PH as out-
lined in Figure 2. In contrast, perturbation of EC in hypoxia
model of PH results in a tight complex formation of caveolin-
1 and eNOS leading to dysfunction of both caveolin-1 and
eNOS. The end results are impaired availability of NO, the
activation of proliferative pathways, vascular remodeling,
and PH. It is worth noting that there is no loss of eNOS or
caveolin-1 protein in this model (Figure 3).

5. Caveolin-1 Knockout (KO) Mice and
Pulmonary Hypertension

Studies conducted with caveolin-1 KO mice have provided
valuable information regarding the function of caveolin-1 in
pulmonary vascular health and disease. Caveolin-1 KO mice
are viable and fertile, but with significantly shortened life
span. Embryonic fibroblasts taken from these animals show
increased capacity for cell proliferation, and arterial SMC
lacking caveolin-1 display abnormalities in proliferation both
in vivo and in vitro. Furthermore, these mice manifest
hypercellular lung phenotypes, cardiomyopathy, systemic
vasculopathy, and a propensity to develop PH [115–120].
In caveolin-1 KO mice there is a global loss of caveolin-1
associated with hyperactivation of eNOS, increased cGMP
production, and re-expression of endothelial caveolin-1
restores vascular and cardiac pathology and dysfunction
[121]. However, there is a distinct difference between
caveolin-1KO mice model of PH and the MCT model vis-
à-vis eNOS expression and function. In the latter model,
MCT injures pulmonary endothelial cells within the first
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Figure 3: This figure depicts the proposed model of PH (#2). Hypo-
xia causes perturbation of endothelial cell membrane, and caveolin-
1 and eNOS form a tight complex rendering both molecules
dysfunctional. eNOS dysfunction function leads to impaired NO
availability and superoxide generation, and dysfunctional caveolin-
1 loses its ability to inhibit proliferative pathways resulting in the
activation of mitogenic pathways. The end results are pulmonary
vascular remodeling and PH.

pass through the lungs resulting in progressive disruption of
endothelial cell membrane and a loss of endothelial caveolin-
1 with subsequent endothelial dysfunction, vascular remod-
eling, and PH. At 2 weeks after MCT with the onset of PH,
there is impaired endothelium-dependent, NO-mediated
pulmonary vascular relaxation response. At this stage, there
is a loss of cytosolic proteins such as HSP90 and Akt,
both required for eNOS activation. However, eNOS protein
expression is relatively well preserved, but there is transient
uncoupling of eNOS as indicated by increased superoxide
generation, reduction in sulfhydril levels, cGMP levels, and
impaired endothelium-dependent NO-mediated vascular
relaxation responses [9, 79, 85]. By 3 and 4 wks after MCT,
the level of eNOS protein is significantly reduced and the
superoxide generation returns to normal levels [9, 19, 122].

It has recently been suggested that the hyperactivation
of eNOS subsequently leading to PKG nitration may be
responsible for PH in the caveolin-1 KO mice. Interestingly,
treatment with superoxide scavenger or the inhibition of
eNOS reverses PH, supporting the view [123]. These authors
have further shown increased eNOS activation, PKG nitra-
tion and reduced caveolin-1 in the lungs from patients with
idiopathic PAH [123]. Furthermore, in an earlier report,
increased expression of eNOS in plexiform lesions in both
primary and secondary PH was described [124]. In contrast,
several other studies show loss of eNOS in the lungs from
patients with idiopathic PAH, and PH/PAH associate with a
variety of diseases such as congenital heart defect, rheumatic
heart disease, cirrhosis, and systemic lupus erythematosis
[125, 126]. These observed differences in eNOS expression
may depend on the stage of disease in a given lung
section, because the disease does not progress uniformly.

Importantly, it has recently been shown that severe angio-
proliferative PAH is associated with initial endothelial cell
apoptosis followed by the appearance of apoptosis-resistant
proliferating endothelial cells [96], and these proliferative
EC in neointima have reduced expression of caveolin-1
[30]. Based on these clinical and experimental studies, one
could postulate that the initial endothelial injury which
is progressive results in extensive endothelial cell damage
and/or loss leading to a loss of eNOS protein expression. As
the apoptosis-resistant endothelial cells proliferate, increased
eNOS expression coupled with low caveolin-1 expression in
these cells may lead to eNOS dysfunction. Further studies
are required to elucidate these observed differences in the
expression of eNOS in PH.

6. Nitric Oxide and Pulmonary Hypertension

Impaired NO bioavailability is the hallmark of PH. NO is
produced from L-arginine via catalytic activity of eNOS.
NO released from EC activates soluble guanylate cyclase to
produce cGMP, which facilitates Ca2+ uptake into intracel-
lular Ca2+ stores, thereby lowering [Ca2+]i and inducing
vascular relaxation. In addition to the vascular relaxation
function, NO/cGMP pathway regulates SMC proliferation
and migration, cellular responses to inflammation, controls
the concentrations of antioxidants, and modulates apoptosis.
Inhibition of NO synthesis results in increased pulmonary
vascular thickening and administration of NO attenuates
PH. Interestingly, treatment with NO donor started early
in the course of MCT-induced PH prevents caveolin-
1 disruption and attenuates PH, likely through its anti-
inflammatory function [82, 127, 128]. Thus, there is a
dynamic interrelationship between eNOS and caveolin-1,
and impaired caveolin-1/eNOS interaction and function may
be an important factor in the pathogenesis of PH.

7. Dual Role of Caveolin-1

Loss of caveolin-1 has been shown to induce oncogenic
transformation, and the cells become resistant to apoptosis.
Furthermore, the introduction of caveolin-1 scaffolding
domain inhibits cancer progression. Many oncogenes tran-
scriptionally downregulate caveolin-1 expression. However,
caveolin-1 regulation impacts both negatively and positively
on several aspects of tumor progression. Caveolin-1 acts as
a tumor suppressor in the early stages of cancer, but in
late stages it promotes metastasis, multidrug resistance, and
portends poor prognosis. Caveolin-1 function is thought
to be interdependent on tumor stage and the expression
of molecular effectors that may have an impact on its role
during tumor progression [63, 129–131]. Similarly in PH,
the switch from an antiproliferative to proproliferative func-
tion may depend on alteration in caveolin-1 conformation,
localization, cell context, and the stage of the disease.

8. Concluding Remarks

Caveolae and caveolin-1 play an important role in pulmo-
nary vascular system. Depending on the type of endothelial
injury, the end result is either the loss of caveolin-1 secondary
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to endothelial cell membrane disruption or in endothelial
caveolin-1 dysfunction. A classic example of the latter case is
hypoxia-induced PH in which a tight complex formation of
caveolin-1/eNOS resulting in dysfunction of both molecules
is an important feature. Both these alterations, however, do
lead to pulmonary vascular remodeling and PH. Disruption
of endothelial cell membrane integrity as in the former case
is often progressive leading to extensive EC damage and/or
loss with subsequent enhanced expression of caveolin-1
in SMC, which participates in further proliferation, cell
migration, and neointima formation. These alterations in
caveolin-1 may determine reversibility versus irreversibility
of the disease process. Thus, depending on the underlying
pathology, cellular involvement, and the stage of the disease,
modulation of caveolin-1 function may be considered a
therapeutic target in PH.
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