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Abstract

An increasing amount of studies suggest that brain dynamics measured with resting-state functional magnetic resonance
imaging (fMRI) are related to the state of consciousness. However, the challenge of investigating neuronal correlates of con-
sciousness is the confounding interference between (recovery of) consciousness and behavioral responsiveness. To address
this issue, and validate the interpretation of prior work linking brain dynamics and consciousness, we performed a longitu-
dinal fMRI study in patients recovering from coma. Patients were assessed twice, 6 months apart, and assigned to one of
two groups. One group included patients who were unconscious at the first assessment but regained consciousness and im-
proved behavioral responsiveness by the second assessment. The other group included patients who were already con-
scious and improved only behavioral responsiveness. While the two groups were matched in terms of the average increase
in behavioral responsiveness, only one group experienced a categorical change in their state of consciousness allowing us
to partially dissociate consciousness and behavioral responsiveness. We find the variance in network metrics to be system-
atically different across states of consciousness, both within and across groups. Specifically, at the first assessment, con-
scious patients exhibited significantly greater variance in network metrics than unconscious patients, a difference that dis-
appeared once all patients had recovered consciousness. Furthermore, we find a significant increase in dynamics for
patients who regained consciousness over time, but not for patients who only improved responsiveness. These findings
suggest that changes in brain dynamics are indeed linked to the state of consciousness and not just to a general level of be-
havioral responsiveness.
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Introduction

The embodiment of the brains’ billions of neurons creates a
complex entity across space and time that allows the human
mind to be conscious of itself and its environment. Despite ma-
jor efforts in the past decades to understand neuronal

mechanisms underlying processes of consciousness, our under-
standing of these complex relationships is still elusive.
Nevertheless, a large body of work demonstrates that the func-
tional organization of brain regions including frontal and me-
dial posterior areas, the thalamus, and the globus pallidus are
altered in impaired states of consciousness in patients (Laureys
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et al. 1999, 2000; Adams et al. 2000; Schiff 2008, 2016; Fernandez-
Espejo et al. 2010, 2012; Lull et al. 2010; Vanhaudenhuyse et al.
2010; Zhou et al. 2011; Crone et al. 2014, 2015, 2018; Hannawi
et al. 2015; Lutkenhoff et al. 2015) as well as in anesthetized
healthy subjects (Fiset et al. 1999; White and Alkire 2003;
Greicius et al. 2008; Boveroux et al. 2010; Deshpande et al. 2010;
Mhuircheartaigh et al. 2010; Guldenmund et al. 2013; Ranft et al.
2016). It is no coincidence that all of these regions are part of the
basal ganglia-thalamo-cortical circuit known to be involved in
regulating a critical balance of excitation and inhibition neces-
sary for cortical arousal, motor control, and high-level cognition
(Middleton and Strick 2000; Van der Werf et al. 2003; Gerardin
et al. 2004; Nambu 2008; Schiff 2008; Qiu et al. 2010; Vetrivelan
et al. 2010; Bor and Seth 2012; Lazarus et al. 2012; Leech and
Sharp 2014; Halassa and Kastner 2017; Schmitt et al. 2017).
Recent approaches, however, shifted their focus from the rather
restricted view of the “where” to the more sophisticated “how”
focusing on the relation of information to its embodiment
rather than locating function based on the notion that the
emergence of consciousness is best understood if the complex
network interactions are quantified at a spatio-temporal scale
(Hoel et al. 2013). A previous investigation suggests that the tem-
poral dimension of network connectivity, i.e., alterations in spa-
tial distribution of connectivity patterns over time, specifically
represent fluctuations in basic brain states of wakefulness or
consciousness (Laumann et al. 2018). Indeed, measures of com-
plexity and dynamics have been shown to distinguish states of
consciousness in a range of different experimental settings in-
cluding sleep, anesthesia, and patients with severe brain injury
(Massimini et al. 2005; Casali et al. 2013; Chang et al. 2013;
Hutchison et al. 2013, 2014; Amico et al. 2014; Hall et al. 2014;
Tagliazucchi et al. 2014; Tagliazucchi and Laufs 2014; Barttfeld
et al. 2015; Hudetz et al. 2015, 2016; Sarasso et al. 2015; Laumann
et al. 2018; Rosanova et al.2018) including a very recent large-
sample publication (Demertzi et al. 2019). However, in each of
these experimental designs, changes in the state of conscious-
ness are also closely associated with changing levels of behav-
ioral responsiveness and cognitive abilities as well as other
non-cognitive processes of transition. Independent of the spe-
cific metric used to measure brain dynamics, this intertwining
association makes it difficult to draw straightforward conclu-
sions regarding the relationship of brain function and con-
sciousness itself, thus limiting the interpretation of these
findings. Despite it being common practice to interpret these
metrics as revealing changes in states of consciousness, it
remains yet to be proven that they are not just a (partial or com-
plete) reflection of changes in behavioral responsiveness.

In this study, we address this issue by adopting an approach
that allows to dissociate the state of consciousness from the
level of behavioral responsiveness (i.e., the level of residual cog-
nitive function, as well as arousal and motor control as mea-
sured with standardized behavioral protocols). Implementing
this approach, we assess the dynamics of network properties at
the whole brain level and within the basal ganglia-thalamo-
cortical loop. We were able to acquire a rare data set of two
functional magnetic resonance imaging (fMRI) sessions (acute
and follow-up) as part of a longitudinal study in patients who
recovered from coma after severe brain injury to a state of
wakefulness with either no or only reduced conscious behavior.
The patients underwent standardized behavioral evaluation
and functional neuroimaging early post-injury (within the first
�7 days; acute session) and 6 months later (follow-up session).
Within this sample, some patients were unconscious at the
acute session and, by the follow-up session, had regained both

consciousness and behavioral responsiveness (unconscious–
conscious group). The other patients, in contrast, could already
demonstrate a state of consciousness — if minimal — at the
acute session and had improved further behavioral responsive-
ness by the follow-up session (conscious–conscious group).
Crucially, the feature that allows disentangling recovery of con-
sciousness from recovery of behavioral responsiveness is that
our sample includes two groups of patients which differ in their
(binary/qualitative) state of consciousness (Bayne et al. 2016) but
not in their (continuous/quantitative) gain of behavioral respon-
siveness over time.

Given the above, we can make a set of straightforward hy-
potheses regarding a group of four comparisons, as to which
pattern of results would validate previous assumptions that
brain dynamics reflect one’s state of consciousness and not just
behavioral responsiveness (including implied residual cognitive
function). Specifically, if the state of consciousness is the driving
factor underlying brain dynamics, we ought to observe (i) a signif-
icant difference between the two groups at the acute session
(since the state of consciousness differs between the groups) but
no significant difference at follow-up (since all patients had re-
covered consciousness by then), as well as (ii) a significant differ-
ence over time for the unconscious–conscious group (since the
state of consciousness of these patients changed across sessions)
but no significant difference over time for the conscious–con-
scious group (since the state of consciousness of these patients
did not change across sessions) — see pattern A in Fig. 1. In con-
trast, if brain dynamics are mainly driven by the level of behav-
ioral responsiveness, we expect significant differences for both
between assessments and between groups — see pattern B in
Fig. 1. In the case that we find significant differences between
groups at the follow-up session (since patients in both groups are
conscious) or between sessions in the conscious–conscious group
(since the state of consciousness did not change), the state of
consciousness can be ruled out as the main driving factor under-
lying changes in time-varying network organization.

Materials and Methods
Patient population

Patients were recruited as part of the UCLA Brain Injury
Research Center (BIRC). Inclusion criteria were an admission
Glasgow Coma Scale (GCS) (Teasdale and Jennett 1974) score of
below 8 or an admission GCS of 9–14 with computerized tomog-
raphy brain scans demonstrating intracranial bleeding, in addi-
tion to a stable condition. The main exclusion criteria were a
GCS score of above 8 with a non-significant computerized to-
mography brain scan, history of neurological disease or injury,
brain death, and unsuitability to enter the magnetic resonance
imaging (MRI) environment (e.g. due to any non MRI-safe im-
plant or medical restrictions). Informed written consent was
obtained from the patient’s legal representative. The study was
approved by the UCLA institutional review board. For this study,
we investigated 55 patients including only patients who were
scanned during the acute stage of injury [within 14 days (mean
¼ 7.33) after injury] as well as during the follow-up stage
(6 months after injury) and who have recovered consciousness
at the follow-up assessment. However, we excluded patients ex-
ceeding the threshold for motion (see Motion section) as well as
subjects with severe deformation of the head for which we do
not expect sufficient registration results. Hence, we excluded 37
of the initial cohort of 55 patients with severe traumatic brain
injury resulting in a total of 18 patients [10 male; mean age ¼
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38 years (SD ¼ 17 years); see Supplementary Table S1 for details
on each subject]. The unusual high number of exclusions was
necessary to obtain a sample of patients with high-quality data
in order to perform reliable resting-state analyses (comparable
to high-quality data used in experimental studies on healthy
subjects).

Behavioral assessment

Patients were assessed at the day of scanning using the
Glasgow Coma Scale (GCS) for the acute session. Since this as-
sessment took place within days of injury, the GCS was the ap-
propriate assessment tool (see Discussion of limitations
section). At the follow-up session, the Glasgow Outcome Scale-
extended (GOS-e) was performed. It is the standard assessment
tool for patients who have recovered from brain injury (see
Discussion of limitations section). Based on the GCS subcatego-
ries at the acute assessment, we divided the patients into two
groups, those who were conscious and those who were not con-
scious (see Supplementary Table S1) by following a simple rule:
If the patient exhibited any sign of voluntary behavior, that is,
retrieved one of the following scores on either subscale, Verbal
Response of 4 (Confused speech) or 5 (Oriented to time and
place) or a Motor Response of 5 (Localization to noxious stimu-
lus) or 6 (Obeys commands), the patient has recovered from un-
consciousness as defined by the Coma Recovery Scale-Revised
(Giacino et al. 2012; Giacino and Kalmar 2006) Although it would
have been interesting to include a group of patients who
remained unconscious at both time points, we do not have suf-
ficient data for these patients. However, we do believe that this
group is not necessary to prove our point since it would not ex-
hibit a dissociation between behavioral responsiveness and
level of consciousness.

Only for comparison purposes, the GCS acquired on the day
of the acute MRI was transformed into an “inferred GOS-E” score
of 2 (if they were diagnosed as vegetative state) or a score of 3 (if
they recovered from vegetative state) by using the individual
GCS subscale scores. None of the patients had a higher “inferred
GOS-E” score than 3 since all patients were in the intensive care
unit. With the “inferred GOS-E score,” we then verified that the
slope of gain in behavioral responsiveness across time are not
significantly different between groups with an ANOVA using

aov in R. Although a non-parametric test would have typically
been the method of choice for ordinal data, we decided to im-
plement an ANOVA since an ordinal logistic regression cannot
handle (i) perfect predictions when one value of a predictor vari-
able is associated with only one value of the response variable;
(ii) small sample sizes; and (iii) small cells. All three apply to
this dataset.

MRI data acquisition

For each patient, we acquired one anatomical and one func-
tional MRI data set (among other clinical and research sequen-
ces) at each session. Anatomical data were acquired with an
MPRAGE sequence (repetition time (TR) ¼ 1900 ms, echo time ¼
3.52 ms, flip angle ¼ 98). Due to the clinical and highly acute set-
ting, we encounter some variance in the acquisition parameters
for the functional data across patients and sessions (see
Supplementary Table S2 for details).

Motion

Due to a high motion likelihood in this patient population, we
carefully checked motion parameters to exclude all subjects
with motion parameters higher than 2 mm translation and 2 de-
gree of rotation within the whole range of data points based on
the acquired voxel size. To do so, we displayed the three trans-
lation and three rotation parameters across the whole run and
identified time-series with peaks above the threshold. We also
excluded all subjects with framewise displacement above
0.5 mm using FSL_motion_outliers in the FMRIB Software
Library (FSL) as suggested by Power et al. (2012).

Later in the processing pipeline, we used the three transla-
tion and three rotation parameters, their temporal difference,
square, and square of the differenced values identified with FSL
MCFLIRT (Jenkinson et al. 2002), as well as the aCompCor results
for white matter and cerebrospinal fluid (see below) using
mp_diffpow.sh as nuisance regressors to linearly regress out
motion. We decided to implement a regression approach in-
stead of censoring techniques as a preferred method to cope
with motion-related artifacts (Power et al. 2014). The main rea-
son why we did not use censoring is because this would inter-
rupt the continuous time-series (especially problematic when

Figure 1. Expected pattern of findings for each hypothesis. (A) Expected pattern if consciousness is the driving factor for changes in brain dy-
namics; significant differences between sessions only for the unconscious-conscious group and between groups only at the acute session. (B)
Expected pattern if behavioral responsiveness and not consciousness is the driving factor for changes in brain dynamics; *indicates significant
differences. Dotted line indicates a change in the state of consciousness.
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investigating dynamics of connectivity), lead to unequal num-
ber of time points across subjects, and substituting this fact by
means of replacing the particular time points may have broad
effects on identifying variance or similar states of covariance
across time (Power et al. 2015). Another major limitation is that
censoring does not correct for subtler influences of motion that
do not meet the arbitrary threshold of data to be censored.
Instead, to define nuisance regressors, we have implemented
an approach using principal component analysis on well-
defined masks of white matter and cerebrospinal fluid to define
nuisance regressors (referred to as anatomical CompCor or
aCompCor). This approach has shown to outperform other
approaches for resting-state analyses in general (Muschelli et al.
2014; Power et al. 2018) and for dynamic functional network con-
nectivity in particular (Vergara et al. 2017). As suggested by
Muschelli et al. (2014) as the optimal solution, we included the
number of principal components needed to explain 50% of the
variance in white matter and 50% of the variance in cerebrospi-
nal fluid (referred to as aCompCor50). Furthermore, it has been
recently shown that this strategy, when paired with stringent
data selection, is as effective as censoring (Parkes et al. 2018). In
addition, we have also implemented an independent compo-
nent analyses (ICA) to functionally parcellate the brain which,
as a side effect, extracts a signal that is to a large extent free of
noise and artefacts (Power et al. 2015).

Data preprocessing

Due to the high deformation of brains and severe lesions in
patients with traumatic brain injury, we scull-stripped the struc-
tural data using an optimized algorithm specifically suitable for
this population as implemented in optiBET (Lutkenhoff et al.
2014). Structural images were deobliqued using 3drefit with the
option -deoblique to remove oblique information from the image
header and reoriented into right-to-left posterior-to-anterior
inferior-to-superior (RPI) orientation using analysis of functional
neuroImages (AFNI) 3dresample with the option -orient RPI.
Then, the structural files were segmented into white matter,
gray matter, and cerebrospinal fluid using FSL FAST. Success of
segmentation results were verified visually for each image.

Our choice of preprocessing steps is roughly based on the
scripts of the 1000 Functional Connectomes Project (http://fcon_
1000.projects.nitrc.org) using FSL (Jenkinson et al. 2012) and
AFNI (Cox 1996). Details are outlined below.

First, resting-state fMRI data of all subjects were trimmed
using fslroi discarding the first 4 time points to allow for magne-
tization stabilization. Second, we performed slice-time correc-
tion to account for different acquisition timing using FSL
slicetimer specifying TR of data (option -r) and acquisition order
(option –odd). Third, we deobliqued the slice-time corrected data
to remove oblique information from the image header with
AFNI 3drefit with the option -deoblique. In a next step, we reor-
iented the images using 3dresample with the option -orient RPI.
Next, we generated the motion parameters to use as nuisance
regressors in subsequent analyses for motion correction (see
Motion section) using FSL mcflirt (Jenkinson et al. 2002) and
mp_diffpow.sh. We then created a brain-only mask by detecting
the edges of the brain and removing the skull using AFNI
3dAutomask dilating the mask outwards once (option -dilate 1).
Then, we applied this mask to the reoriented data with AFNI
3dcalc using the expression -expr “a*b” to zero out everything
outside of the brain. We then calculated and skull-stripped the
mean image of each subject using AFNI 3dTstat option -mean.
Then smoothing was performed with a 5 mm smoothing kernel

using fslmaths –kernel gauss –fmean. To eliminate any global dif-
ferences across subjects, we grand mean scaled the smoothed
data with fslmaths –ing 10000 –odt float.

Registration

We did not register the individual subject’s images into stan-
dard Montreal Neurological Institute (MNI) space since in
patients with lesions and deformations this procedure is highly
prone to error. Thus, we decided to create a study-specific aver-
age template instead to register all subjects into the same space.
To do so, we performed a six-step approach: (i) we randomly
picked the structural image of one subject as a reference image
and registered the structural images of all other subjects to the
selected image using FSL FLIRT –dof 12; (ii) we calculated the av-
erage image from all the registered images including the refer-
ence image using FSL fslmaths with the –add and the –div (total
number of subjects) as well as the –odt float option; (iii) We then
registered the original functional images from all subjects to
their structural images using FSL FLIRT –dof 6; (iv) all original
structural images were registered to the average template using
FSL FLIRT; (v) we then concatenated the mat files using con-
vert_xfm; (vi) then the functional images were registered into
the average template space using FSL FLIRT. A linear transfor-
mation using FLIRT was chosen since it resulted in the best out-
comes and the fewest loss of subjects due to processing failure
in comparison with non-linear methods such as FSL FNIRT and
ANTSapplytransforms (data not shown).

Brain parcellation using independent component
analysis

A graphical presentation of the processing steps and data analy-
ses to investigate time-varying network properties is shown in
Fig. 2. First, we performed ICA using the GIFT toolbox (http://mia
lab.mrn.org/software/gift/index.html) to parcellate the brain
into components, i.e., regions of interest as implemented in
Allen et al. (2014). We have chosen this form of parcellation (also
see our previous publications, e.g., Crone et al. 2015) as opposed
to anatomical-based or functional-based standard atlases, be-
cause the brains we are investigating are severely damaged.
The normalization procedure warping the severely damaged
brain into standard MNI space is, as mentioned above, a subop-
timal solution and should be avoided if possible. It is also prob-
lematic to assume that the anatomical or functional
parcellation resulting from the average of young and healthy
brains adequately represents the functional partitioning that
can be found in a brain that has been disrupted and subject to
reorganization due to traumatic brain injury. Thus, we defined
the regions of interest at an individual level based on the indi-
vidual functional covariance using group ICA. We ran ICA with
100 components using ICASSO randinit with 10 runs, the
Infomax algorithm, and a PCA Expectation Maximization with
stacked data sets, a floating point precision, 1000 numbers of
iterations, and two reduction steps. The data have been inten-
sity normalized and scaled to percent signal change. Then, the
components were visually inspected to exclude all components
of noise and artifacts resulting in 43 components/regions of in-
terest (see Supplementary Fig. S1 for all components included).

Assessing time-varying network properties using a slid-
ing time window approach

Since brain function is not stationary and recent work has
found growing evidence for a significant association between
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brain dynamics and the state of consciousness, we used time-
varying network properties as our brain measure of interest
(please see Discussion section for a thorough debate on brain
dynamics). For reasons of comparability and because there is
yet no consensus on which is the best approach to investigate
temporal dynamics (Preti et al. 2017; Lurie et al. 2019), we imple-
mented the same sliding-window approach as described in
Barttfeld et al. (2015) and in Allen et al. (2014) using the dynamic
functional network connectivity (dFNC) toolbox integrated in
GIFT (http://mialab.mrn.org/software/gift/index.html). We
specified all 43 selected components to be included in further
analyses and sorted these regions of interest according to the
network they belong to, based on a similar organization scheme
as presented in Allen et al. (2014). As described in the Motion
section above, we used the six motion parameters, their tempo-
ral difference, square, and square of the differenced values, as
well as the outliers as covariates to be regressed out from each

time course. In addition, we also used age as a covariate. Using
a sliding window approach, covariance matrices were computed
from windowed segments of the time-course of the regions of
interest as computed in the previous step. We used a tapered
window with a size of 20 TRs (Leonardi and Van De Ville 2015)
with a Gaussian (r¼ 3 TRs) and a slide in steps on 1 TR (number
of repetition ¼ 10) resulting in 185 windows. Previous studies
have shown that windows between 30 and 60 s are best suited
to capture fluctuations in resting-state data and that different
window lengths (when chosen within this limit) do not result in
different findings (Preti et al. 2017). To promote sparsity and ad-
dress the problem of a limited window size (Xu and Lindquist
2015), we estimated covariance from the regularized precision
matrix placing a penalty on the L1 norm with 10 numbers of
repetition. We despiked and detrended (option 3) the data using
a high-frequency cutoff at 0.15 Hz. In addition, we specified the
TR for each data set separately.

Figure 2. Data processing steps to analyze time-varying network dynamics. (A) Spatial group independent component analysis (ICA) using 100
components to define the nodes of the graphs; time course of the 43 remaining independent component networks were further processed in-
cluding detrending, multiple regression of 18 realignment parameters, and a high-frequency cutoff at 0.15 Hz. (B) Sliding-window approach
(width ¼ 20 TR) with a 43 � 43 correlation matrix for each of the windows. (C) Network metrics for each window included node strength and
clustering coefficient using the brain connectivity toolbox. (D) To investigate time-varying network organization, the variance across time is
assessed for each metric.
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Network metrics

We focused on two network metrics, node strength and cluster-
ing coefficient (see Discussion section for the rationale of
choice). Node strength is a measure of centrality at the local
level quantifying the influence, and thus, the capability for in-
formation integration of every node within the network.
Clustering coefficient is a higher order term measuring the de-
gree to which nodes and their nearest neighbors tend to cluster
together revealing therefore the amount of segregation. To cal-
culate each metric, we first normalized the correlation matrix
(r) using the algorithm, weight_conversion (W, “normalize”),
provided by the Brain Connectivity Toolbox (Rubinov and
Sporns 2010). We calculated node strength (strengths_und_-
sign.m) and clustering coefficient (clustering_coef_wu_sign.m)
with the Brain Connectivity Toolbox (Rubinov and Sporns 2010)
for the whole brain as well as for our four specific regions within
the basal ganglia-thalamo-cortical circuit, i.e., medial frontal
cortex, posterior cingulate cortex, thalamus, and globus pal-
lidus. For the frontal regions of interest, we took the mean of all
included components representing medial frontal areas. For the
posterior cingulate cortex, thalamus, and the globus pallidus,
we identified the component corresponding the most with our
region of interest (see Supplementary Fig. S1). For further analy-
ses, we focused on the metrics for the positive correlations only,
since the interpretation of positive correlations is straightfor-
ward in contrast to negative correlations. Instead of investigat-
ing differences between brain states, we used the summary
statistic variability for the assessed metrics because previous
work suggests that identification of states is less reliable and
may be sensitive to features of data acquisition that vary be-
tween subjects (Choe et al. 2017). Because of the severe injury in
patients’ brains, we expect especially in our cohort to find more
variation between subjects than between groups.

Testing patterns in the data

In this study, we implemented different approaches to test the
pattern of data: (i) non-parametric frequentist testing, (ii) per-
mutation frequentist testing, (iii) effect sizes, and (iv) Bayesian
testing. Because of the low number of subjects per cell, non-
normal data, and unequal variances, we used non-parametric
tests in JASP (JASP Team (2019); Version 0.11. 1), i.e., the Mann–
Whitney or the Welch test for independent data and the
Wilcoxon for paired data. To address the above mentioned
issues (i.e. especially the small sample size), we also verified our
results with permutation t-tests in R (paired.perm.test in
Broman library and oneway_test in Coin library). All P-values
were corrected for multiple comparisons for the different met-
rics and regions using false discovery rate (FDR) (Benjamini and
Hochberg 1995) to increase power due to our small sample size.
Please note that we did not correct for the multiple tests be-
tween cells because we are not interpreting the results of each
test but the overall pattern. Given the relatively small sample
size of the analyzed cohort, we also included a parallel effect
size analysis in JASP in order to estimate the size of all signifi-
cant effects. Finally, to be able to confirm our pattern (rejection
of the null hypothesis for the acute session and for the uncon-
scious–conscious group as well as confirmation of the null hy-
pothesis for the follow-up session and the conscious–conscious
group), we additionally used Bayesian statistics in JASP for all
cases that demonstrate the pattern of interest. Bayesian analy-
sis allows to evaluate which of the hypotheses (alternative or
null) are more likely given the data, and thus, provides evidence
for or against a specific hypothesis. We ran Bayesian

independent (Mann–Whitney) and paired t-tests (since there is
no Bayesian non-parametric option for paired data in JASP) for
each comparison, respectively, calculating the Bayes factor to
quantify evidence either for the alternative hypothesis (for com-
parisons between groups at the acute session and within groups
for the unconscious–conscious group) or for the null hypothesis
(for comparisons between groups at the follow-up session and
within groups for the unconscious–conscious group). We used
the default prior Cauchy with a scale of 0.707 (Wagenmakers
et al. 2018). Incorporating the prior knowledge resulting from
the frequentist testing, we specified the direction of the test for
all comparisons. We also applied a robustness analysis in cases
in which it was applicable (paired data) to quantify the eviden-
tial impact of the width of r for the Cauchy prior distribution
(Wagenmakers et al. 2018).

Low-level behavioral responsiveness versus high-level
behavioral responsiveness

To further assess the relationship between brain dynamics and
behavioral responsiveness, we also compare brain dynamics be-
tween two groups of patients which, despite including both con-
scious patients, demonstrate very different levels of behavioral
responsiveness. Based on a previously introduced taxonomy
(Bruno et al. 2011), we subcategorize the conscious patients (for
the acute session only) by distinguishing those who exhibit
“high-level behavioral responses (i.e. command following, intel-
ligible verbalizations or non-functional communication),” re-
ferred to as minimally conscious state “plus” (MCSþ), from
those who exhibit “low-level behavioral responses (i.e. visual
pursuit, localization of noxious stimulation or contingent be-
havior such as appropriate smiling or crying to emotional stim-
uli),” referred to as MCS “minus” (MCS�). We then separated the
patients into two groups including only MCSþ in the high-level
behavioral responsiveness group and the others in the low-level
responsiveness group. If brain dynamics are indeed a reflection
of the state of consciousness and not of behavioral responsive-
ness (and implied cognitive functioning), despite the very differ-
ent behavioral profile of the two patient groups, they ought not
to differ significantly in their brain dynamics. The same analy-
ses were applied as described in the paragraph above.

Stationary network metrics

Finally, we also compare the network dynamics results
obtained with the sliding-window approach described above to
the results obtained from a more conventional “stationary” ap-
proach—i.e. an approach in which each network metric is calcu-
lated over the full length of the time-series (as opposed to being
calculated over each of the 185 windows obtained from each
time-series). Consequently, in the stationary approach—which
can be thought of as a windowed approach with only one win-
dow encompassing the full time-series—the dependent variable
is the value of each network metric itself rather than the vari-
ance of network metrics across 185 windows. All other aspects
of the analysis (e.g. calculation of network metrics and statisti-
cal comparisons) were carried out as in the dynamics analysis
described above.

Results
Behavioral assessment

According to the behavioral assessment using the GCS
(Teasdale and Jennett 1974) and the GOS-E (Jennett et al. 1981) at
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the acute and follow-up session, respectively, we divided the
patients into the unconscious–conscious group (N¼ 10) and the
conscious–conscious group (N¼ 8). The ANOVA testing the
effects on general behavioral responsiveness as measured by
the total score revealed a significant effect for group (F¼ 4.398,
P¼ 0.044), for session (F¼ 69.123, P< 0.001), and no interaction
effect (F¼ 0.629, P¼ 0.434) (see Fig. 3). These findings confirm
the dissociation of the state of consciousness and the level of
behavioral responsiveness.

Dynamic functional connectivity

As shown in Fig. 4 and Table 1, the pattern of differences we ob-
served across groups and time points conforms exactly to the
expected “consciousness pattern” (cf. Fig. 1A) at the whole brain
level, for medial frontal cortex, posterior cingulate cortex, and
globus pallidus, but not for thalamus.

At the whole brain level (Fig. 4A), we observe a trending dif-
ference between groups at the acute session (P¼ 0.064 for the
clustering coefficient and P¼ 0.81 for the node strength) but not
at the follow-up session (P¼ 0.997 for the clustering coefficient
and P¼ 0.997 for the node strength). Between sessions, we
found a significant difference in the unconscious–conscious
group (P¼ 0.015 for the node strength, and a trend, P¼ 0.059, for
the clustering coefficient) but not for the conscious–conscious
group (P¼ 0.999 for the clustering coefficient and P¼ 0.999 for
the node strength).

The same pattern was observed for the medial frontal cortex
(Fig. 4B). We see a significant difference between groups at the
acute session (P¼ 0.036 for the clustering coefficient and a
trend, P¼ 0.052 for the node strength) but not at the follow-up
session (P¼ 0.997 for the clustering coefficient and P¼ 0.997 for
the node strength). Between sessions, we found a significant
difference in the unconscious–conscious group (P¼ 0.032 for the
clustering coefficient and P¼ 0.015 for the node strength) but
not for the conscious–conscious group (P¼ 0.999 for the cluster-
ing coefficient and P¼ 0.999 for the node strength).

The posterior cingulate cortex (Fig. 4C) also showed signifi-
cant differences between groups at the acute session (P¼ 0.033

for the clustering coefficient and P¼ 0.009 for the node strength)
but none at the follow-up session (P¼ 0.997 for the clustering
coefficient and P¼ 0.997 for the node strength). We also found a
significant difference between sessions in the unconscious–
conscious group (P¼ 0.032 for the clustering coefficient and
P¼ 0.034 for the node strength) but no differences between ses-
sions for the conscious-conscious group (P¼ 0.999 for the clus-
tering coefficient and P¼ 0.999 for the node strength).

In the globus pallidus (Fig. 4D), we found a significant differ-
ence between groups at the acute session (P¼ 0.015 for the clus-
tering coefficient and P¼ 0.033 for the node strength) but not at
the follow-up session (P¼ 0.997 for the clustering coefficient
and P¼ 0.997 for the node strength). Between sessions, we
found a significant difference in the unconscious–conscious
group (P¼ 0.032 for the clustering coefficient and P¼ 0.032 for
the node strength) but not for the conscious–conscious group
(P¼ 0.999 for the clustering coefficient and P¼ 0.999 for the node
strength).

Interestingly, the thalamus did not show the “consciousness
pattern” (Fig. 4E). There was no significant difference between
groups neither at the acute session (a trend, P¼ 0.064, for the
clustering coefficient and P¼ 0.257 for the node strength) nor at
the follow-up session (P¼ 0.997 for the clustering coefficient and
P¼ 0.997 for the node strength). Between sessions, there was also
no significant difference in the unconscious–conscious group
(P¼ 0.138 for the clustering coefficient and a trend, P¼ 0.059 for
the node strength) nor in the conscious–conscious group
(P¼ 0.999 for the clustering coefficient and P¼ 0.999 for the node
strength). All P-values reported above are FDR corrected.

As expected, the permutation t-tests confirm the non-
parametric findings (see Supplementary Table S3).

The effect size analysis also confirms the pattern found in the
frequentist analyses with all significant comparisons between
groups and sessions demonstrating a high effect with at least
0.625 and at least 0.425 for all trending comparisons (see Table 1).

The Bayesian analysis also supports the general pattern (see
Supplementary Fig. S2). In most cases in which the alternative
hypothesis (H1) is favored, we find moderate (in some cases
even strong) evidence demonstrating that the alternative hy-
pothesis is at least 3� or more likely than the null hypothesis
(H0). The robustness analysis confirms moderate evidence
across different widths r (see Supplementary Fig. S3). In cases in
which the null hypothesis (H0) is favored, evidence is between
anecdotal and moderate meaning that the null hypothesis is at
least around 2� more likely. The robustness analysis demon-
strates that as the width r increases, the Bayes factor increases
as well ranging between anecdotal and moderate (see
Supplementary Fig. S3).

Low-level behavioral responsiveness versus high-level
behavioral responsiveness

Consistent with the above reported results, when we compared
brain dynamics for patients differing only in their level of be-
havioral responsiveness (i.e. high-level versus low-level), we
failed to observe any significant difference between groups or
between sessions. Supplementary Fig. S4A–E shows the results
from the non-parametric testing and Supplementary Table S3
the results from the permutation t-tests.

Stationary functional connectivity

Intriguingly, when testing for differences in metrics for station-
ary functional connectivity in contrast to dynamic functional

Figure 3. Gain in level of responsiveness of both patient groups.
Means and confidence intervals for behavioral responsiveness of
both groups (unconscious-conscious and conscious-conscious) is
shown for both sessions as assessed with the inferred GOS-E at the
acute session and the GOS-E at the follow-up session.
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Figure 4. Pattern of differences in time-varying network interaction of clustering coefficient and node strength. Box plots for the whole brain (A),
the medial frontal cortex (B), the posterior cingulate cortex (C), the globus pallidus (D), and the thalamus (E) displaying the median, maximum
and minimum value, as well as the quartiles. FDR-corrected P-values are displayed at the top for the conscious–conscious group, at the bottom
for the unconscious–conscious group, on the left side for the acute session and on the right side for the follow-up session. Black bars indicate a
difference between groups, gray bars no difference.
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connectivity, we also could not detect any differences between
groups at either session nor between sessions in either group
(see Supplementary Fig. S5A–E for results from the non-
parametric t-tests and Supplementary Table S3 for the results
from the permutation t-tests).

The results for the effect size confirm the findings of the fre-
quentist analyses failing to reveal the pattern of interest (see
Supplementary Table S4).

Discussion

This study was designed to address the question of whether
brain dynamics are best interpreted as neuronal correlates of
the state of consciousness (as so far only assumed in previous
studies) or whether they rather reflect the level of behavioral re-
sponsiveness (and implied cognitive functioning). For example,

a recent study in a large sample of patients and anesthetized
healthy volunteers has identified a complex dynamic pattern of
coordinated and anti-coordinated fMRI signals that character-
izes conscious subjects in contrast to unconscious subjects
(Demertzi et al. 2019). However, the reported differences in the
state of consciousness are confounded by a simultaneous im-
provement of behavioral responsiveness as it is the case in
most studies in this field. Despite including a clever comparison
across two patient groups with different states of consciousness
(as revealed by functional MRI) but matching assessment of be-
havioral responsiveness (as revealed by bedside clinical assess-
ment), the comparison is still limited by the same confounding
factor. Although the two patient groups appear behaviorally
matched, the fact that patients in one group could voluntarily
engage in a complex mental activity (e.g. “imagine playing
tennis”) indicates a state of cognitive-motor dissociation
(Demertzi et al. 2019). Given the high cognitive demand of

Table 1. Main results for the dynamic network interaction analyses.

Brain area Comparison p pcorr r Effect size BF1 BF0

Whole brain clustering
coefficient

Acute between groups 0.051 0.064 0.475 Medium 1.511 0.662
Unconscious–conscious within group 0.053 0.059 0.6 Large 1.739 0.575
Follow-up between groups 0.829 0.997 0.075 Negligible 0.415 2.408
Conscious–conscious within group 0.999 0.999 0 Negligible 0.391 2.56

Whole brain node strength Acute between groups 0.073 0.081 0.425 Medium 1.534 0.652
Unconscious–conscious within group 0.003 0.015 0.927 Large 23.77 0.042
Follow-up between groups 0.408 0.997 0.250 Small 0.498 2.008
Conscious–conscious within group 0.547 0.999 0.278 Small 0.477 2.098

MFC clustering coefficient Acute between groups 0.018* 0.036* 1.209* Large 2.235 0.447
Unconscious–conscious within group 0.019 0.032 0.745 Large 5.356 0.187
Follow-up between groups 0.696 0.997 0.125 Small 0.453 2.208
Conscious–conscious within group 0.742 0.999 0.167 Small 0.447 2.237

MFC node strength Acute between groups 0.031 0.052 0.425 Medium 1.823 0.548
Unconscious–conscious within group 0.003 0.015 0.927 Large 17.0 0.059
Follow-up between groups 0.573 0.997 0.175 Small 0.443 2.309
Conscious–conscious within group 0.383 0.999 0.389 Medium 0.406 2.463

PCC clustering coefficient Acute between groups 0.01 0.033 0.65 Large 4.038 0.248
Unconscious–conscious within group 0.019 0.032 0.745 Large 4.376 0.229
Follow-up between groups 0.203 0.997 0.375 Medium 0.711 1.407
Conscious–conscious within group 0.844 0.999 0.111 Small 0.355 2.814

PCC node strength Acute between groups 0.0009 0.009 0.85 Large 10.301 0.097
Unconscious–conscious within group 0.024 0.034 0.709 Large 4.835 0.207
Follow-up between groups 0.897 0.997 0.05 Negligible 0.45 2.22
Conscious–conscious within group 0.148 0.999 0.611 Large 0.742 1.347

GP clustering coefficient Acute between groups 0.003 0.015 0.75 Large 7.41 0.135
Unconscious–conscious within group 0.01 0.032 0.818 Large 2.092 0.478
Follow-up between groups 0.999 0.999 0 Negligible 0.419 2.384
Conscious–conscious within group 0.547 0.999 0.278 Small 0.506 1.975

GP node strength Acute between groups 0.013 0.033 0.625 Large 3.88 0.258
Unconscious-conscious within group 0.014 0.032 0.782 Large 2.549 0.392
Follow-up between groups 0.315 0.997 0.3 Medium 0.532 1.879
Conscious-conscious within group 0.945 0.999 0.056 Negligible 0.407 2.457

Thalamus clustering coefficient Acute between groups 0.051 0.064 0.475 Medium 1.339 0.747
Unconscious–conscious within group 0.138 0.138 0.418 Medium 0.876 1.141
Follow-up between groups 0.762 0.997 0.1 Small 0.484 2.066
Conscious–conscious within group 0.742 0.999 0.167 Small 0.432 2.313

Thalamus node strength Acute between groups 0.257 0.257 0.2 Small 0.693 1.442
Unconscious–conscious within group 0.053 0.059 0.6 Large 1.717 0.582
Follow-up between groups 0.237 0.997 0.35 Medium 0.636 1.571
Conscious–conscious within group 0.547 0.999 0.278 Small 0.364 2.746

P represents the uncorrected P-value for the Mann–Whitney (independent data) and Wilcoxon test (paired data), respectively; pcorr represents the FDR corrected P-

value; r represents the rank biserial correlation coefficient for the effect size; BF1 represents the Bayes factor for the alternative hypothesis; BF0 represents the Bayes

factor for the null hypothesis; GP, globus pallidus; PCC, posterior cingulate cortex; MFC, medial frontal cortex. *indicates that the Welch test and Cohen’s d for effect

size has been used due to unequal variances.
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mental imagery even for healthy subjects, patients successfully
performing such a task must exhibit significant residual cogni-
tive functioning, e.g., sufficient working memory, language
comprehension, and attention span (Pearson et al. 2015).
Consequently, the higher probability of a complex dynamic pat-
tern in patients with cognitive-motor dissociation can still be
attributed to differences in residual cognitive functioning as op-
posed to differences in the state of consciousness.

The present study is the first to specifically address this con-
flation by dissociating differences in the state of consciousness
from differences in behavioral responsiveness. Even though a
precise dissociation is not possible due to the non-linear proper-
ties of recovery in cognitive function (please see the Limitation
section for a detailed discussion of this problem), our results
provide very strong evidence supporting previous claims that
brain dynamics are mainly associated with the state of con-
sciousness as opposed to the level of behavioral responsiveness
(and implied residual cognitive functioning). The results match
exactly the four-pronged pattern we expected to observe if in-
deed the state of consciousness is the driving force of time-
varying network properties (compare Fig. 1A to Fig. 4A–D).
While we found significant differences, both within and be-
tween patient groups, when there was a qualitative change in
state of consciousness, we could not detect any such difference
when there was a quantitative change in the level of behavioral
responsiveness but not in consciousness. This pattern was ob-
served at the overall whole-brain level as well as in key sub-
regions selected on the basis of prior literature (Schiff 2010) and
confirmed by a set of multiple analysis strategies including
non-parametric and permutation frequentist statistics as well
as Bayesian statistics. In contrast, none of the analyses revealed
the “general behavioral responsiveness” pattern (see Fig. 1B). To
further confirm the pivotal role of the state of consciousness in
the observed pattern (in contrast to behavioral responsiveness),
we divided the patients in two groups based on their level of be-
havioral responsiveness rather than the state of consciousness.
Consistent with the above results, the groups do not differ in
their dynamic network metrics despite differences in behavioral
responsiveness which provides further evidence that brain dy-
namics best reflect the state of consciousness in contrast to the
level of behavioral responsiveness.

Interestingly, the thalamus was the only tested region that
did not follow this pattern. These results are especially intrigu-
ing considering previous findings suggesting a reduced role of
the thalamus in recovery of the state of consciousness (Crone
et al. 2017, 2018). However, it is possible that a more subtle effect
might be observable with a larger sample, even though the ef-
fect size analysis confirms that changes in time-varying net-
work properties are related to changes in the state of
consciousness in all regions that show significant results.

The present results also touch upon the ongoing debate
whether frontal or posterior regions are the “hot spot” of conscious-
ness (Boly et al. 2017; Dienes et al. 2017). While the present design
was not designed to test the sufficiency of either brain regions for
the emergence of consciousness, our findings do indicate that both
seem to play a critical role for dynamic network organization un-
derlying the state of consciousness. We would also like to empha-
size in this context that the present study focuses on brain
function underlying the state of consciousness as opposed to con-
scious processing of stimuli and subjective conscious experience
(Dehaene and Changeux 2011) since these two concepts should be
clearly distinguished regarding the ongoing debate.

In addition, we also report that a stationary representation
of functional connectivity properties, in contrast to its dynamic

representation, does not sufficiently reflect the state of con-
sciousness. In fact, when adopting a stationary, time-invariant
approach to estimating properties of neural functional connec-
tivity, we could not detect any significant difference across
groups and between sessions. While this finding is interesting,
and tackles an important methodological question, a general in-
vestigation of brain dynamics goes beyond the scope of this
study and specific research is needed focusing on adequate
methodological approaches to provide deeper insight into this
issue.

Consistent with prior studies, we also find that the variabil-
ity in the variance of functional connectivity properties from
subject to subject is lowest in the group of unconscious patients
and highest for the group of patients that are conscious.

Finally, interpretation of these findings should be mindful of
a number of limitations. First, brain dynamics in fMRI resting
state have been a subject of debate regarding their neuronal ori-
gin, methodological implementation, and reliability (Abrol et al.
2017; Lehmann et al. 2017; Liegeois et al. 2017; Preti et al. 2017;
Kucyi et al. 2018; Laumann et al. 2018; Miller et al. 2018;
Thompson 2018; Lurie et al. 2019). Although there is a need for
more thorough investigations in the future (Preti et al. 2017;
Lurie et al. 2019), a large body of work has already demonstrated
a neurophysiological basis of brain dynamics in fMRI data (de
Pasquale et al. 2010; Tagliazucchi et al. 2012; Thompson et al.
2013) as well as its reproducibility (Abrol et al. 2017; Choe et al.
2017; Vidaurre et al. 2018). Moreover, most criticism regarding
whether brain dynamics are biological meaningful is directed
towards their role as a correlate of cognitive processing itself
and content of cognition (Laumann et al. 2018, see also
Discussion in Lurie et al. 2019). With respect to the state of
arousal and consciousness, there seems to be much more con-
sensus on the fact that brain dynamics may indeed be reflective
of these fundamental state changes. Even though part of this
complex activity remains during total loss of consciousness
(Keilholz et al. 2013), significant differences have been demon-
strated between different states (Chang et al. 2013; Hutchison
et al. 2013, 2014; Amico et al. 2014; Hall et al. 2014; Tagliazucchi
et al. 2014; Tagliazucchi and Laufs 2014; Barttfeld et al. 2015;
Hudetz et al. 2015; Laumann et al. 2018; Demertzi et al. 2019).

Second, one should be mindful of the fact that recovery of
consciousness and responsiveness is not a linear process and
that the linear relationship between these two quite distant
time points as indicated by the straight lines in Fig. 1, although
necessary for this approach, is most certainly an oversimplifica-
tion; and although the quantitative measure of the gain of be-
havioral responsiveness did not significantly differ between
groups, there might be qualitative differences which we could
not observe. Differences in quality, as demonstrated by the on-
going debate concerning accurate diagnoses in patients with
disorders of consciousness (e.g. Childs et al. 1993; Andrews et al.
1996; Owen et al. 2006; Schnakers et al. 2009), are difficult to as-
sess and compare. The findings of this study rely on the as-
sumption that the absolute changes in the level of
responsiveness are comparable, and thus, follow a linear trend
at either end of the scale. However, the reality is probably a
much more complex, non-linear development, especially re-
garding the recovery of cognitive function. We know little about
the trajectory of changes in cognitive function during recovery
from severe brain injury. Most likely, changes in cognitive func-
tion at the lower end of the scale are of critical importance and
not directly comparable to changes at the higher end of the
scale in a quantitative sense. Thus, these non-linear changes
are still an issue in the present study and may confound our
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results. In this sense, the conclusions of this study should be
considered with a grain of salt and in the context of the limita-
tions intrinsic to the experimental study dissociating conscious-
ness from other aspects of behavioral responsiveness in
patients who do not have the ability to express themselves
(Monti and Owen 2010).

Third, to verify the four-pronged pattern we expected to ob-
serve if the state of consciousness is the driving force of time-
varying network properties, we implemented additional
Bayesian hypothesis testing which allows to specifically quan-
tify evidence in favor of either hypothesis in contrast to fre-
quentist statistics which are exclusively designed to quantify
evidence against a pre-specified null hypothesis that is sought
to be rejected. However, when testing how likely the null hy-
pothesis is given the data, the Bayes factor is quite low in most
cases and reaches only anecdotal to moderate evidence
depending on the width of the prior. To deal with the very small
numbers of subjects per cell, we have additionally implemented
permutation testing for the frequentist statistics. However, JASP
does not provide an equivalent Bayesian approach. A very small
Bayes factor (close to 1) may suggest a not sufficient amount of
data for the analyses (Dienes 2014). This may also play into ac-
count explaining the weak evidence of the Bayesian approach.
Altogether though, the Bayesian analyses confirms the general
pattern that all our analyses reveal supporting the conclusion
that time-varying network properties depend rather on the
state of consciousness than on the general level of
responsiveness.

Fourth, severe brain injury patients are often prone to high
rates of in-scanner motion and wide-spread lesions. Given the
known deleterious effects of motion and distortions on network
metrics, we have excluded patients with higher motion and se-
vere lesions. While the above strategy resulted in loss of a large
part of our original sample, it does ensure that the data are of
high quality in this patient population (similar to what is stan-
dard in experimental studies using high-quality healthy-subject
data). Nevertheless, in-scanner motion is a critical issue for
studies investigating functional connectivity (Power et al. 2012;
Satterthwaite et al. 2012; Van Dijk et al. 2012) including brain dy-
namics (Laumann et al. 2018). And although one study has
shown that motion does not seem to influence brain dynamics
to a critical amount (Abrol et al. 2017), it is important to empha-
size that we followed the most recent recommendations for a
successful minimization of motion effects using specific data
preprocessing steps (Power et al. 2018) (for more detailed infor-
mation see Motion section).

Fifth, since complexity and the specific structure of the net-
work are of significant importance for theories of consciousness
(Baars 1988; Dehaene and Changeux 2011; Lau and Rosenthal
2011; Tononi et al. 2016), we investigated the dynamics of spe-
cific network properties that describe qualitative aspects of
brain interaction in a quantitative way. Similar to time-varying
properties, we believe that the fundamental state of a person
such as whether he is conscious of his environment or not may
be directly reflected by changes in the structure of the network,
in contrast to the more subtle changes that occur at different
levels of cognition and motor responses. We focused on only
two network metrics, node strength and clustering coefficient
for the following reasons: considering the small sample size
and the sheer vast number of properties one can assess, we de-
cided to assess a limited number of metrics as opposed to
assessing all potential measures and then selecting the best
post hoc or enforcing a large multiple-comparison correction. We
settled on these two measures because they are among the

most common metrics implemented in brain research and have
been used in previous research investigating temporal dynam-
ics (Yu et al. 2015) while also being appropriate measures to re-
flect upon the network’s ability to segregate and integrate
information at the local level. Of course, other metrics have also
been employed in the context of the study of consciousness
[e.g. normalized characteristic path length (Monti et al. 2013)
and modularity (Crone et al. 2014)]. However, since we were es-
pecially interested in the network properties of specific nodes in
the basal ganglia-thalamo-cortical circuit, global measures such
as modularity which cannot be calculated locally could not be
applied.

Sixth, due to the acute clinical setting in the intensive
care unit, subsets of our data were acquired with different
MRI parameters. However, it has been shown that correlation
estimates are very stable across spatial resolution (i.e. voxel
size), temporal resolution (i.e. TR), and duration of data acqui-
sition (exceeding 5 min) (Van Dijk et al. 2010). Furthermore,
analyses also confirm that there are no significant differences
in the TR between groups and sessions (P� 0.5 for all
comparisons).

Seventh, because we had a specific prediction as to the pat-
tern we ought to observe if brain dynamics are a reflection of
one’s state of consciousness, we implemented our hypothesis
testing as the conjunction of four independent tests (see Fig. 1).
Of course, other approaches could have been applied.
Specifically, a mixed-design ANOVA could have been an appro-
priate approach for a between-groups design with repeated
measures. However, this approach would not necessarily be
able to test the patterns of interest because in case of a non-
significant interaction testing simple effects would not be justi-
fied. Yet, the simple effects are required to test the expected
pattern. Especially given the lower degrees of freedom in an
ANOVA design and the small sample size, a significant interac-
tion is not necessarily expected. Thus, a joined test of between-
and within-subjects t-test was deemed the appropriate choice
for this specific analysis.

Eighth, in the context of severe brain injury behavioral scales
such as the Coma Recovery Scale-Revised (Giacino and Kalmar
2006; Giacino et al. 2012) have been shown to be more sensitive
to a patient’s state of consciousness (Schnakers et al. 2006) as
compared to the GCS. However, due to the acute setting, the
GCS is generally considered more appropriate. In the follow-up
session, the vast majority of the patients had recovered to a
level of behavior exceeding the Coma Recovery Scale-Revised’s
and GCS’ ceiling scores, thus, making either scale not suitable
for most patients. In consequence, we were not able to test dif-
ferences for the distinctive subscales which would have pro-
vided more information regarding specific aspects of behavioral
responsiveness.

In conclusion, we believe that it is important to reinforce a
more hypothesis-driven and experimental approach in re-
search on the state of consciousness. In addition to the com-
mon correlative and exploratory studies in this field, such an
approach enables a much more justified interpretation of
findings, and thus, provides further insight into the neuronal
correlates of impaired consciousness. Following this ap-
proach, this is the first study attempting to provide experi-
mental data supporting the wide-spread assumption that
brain dynamics are sensitive to states of consciousness in
patients after severe brain injury, and therefore, may be a
promising target for future studies to identify a surrogate bio-
marker of consciousness based on task-free neuroimaging
(Monti and Lutkenhoff 2016).
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