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The number of studies using G. mellonella as a model host for human pathogens has increased significantly in the last
few years. Important studies were published from different countries for evaluating the pathogenesis of bacterial and
fungal infections and for exploring the host defenses against pathogens. Therefore, standardized conditions for the use
of G. melonella larvae need to be established. Recent research showed that the deprivation of G. mellonella larvae of food
during the experiment caused a reduction in immune responses and an increased susceptibility to infection, suggesting
that incubating of larvae in the presence or absence of nutrition may affect the results and comparisons among different
laboratories.

Larvae of the greater wax moth Galleria
mellonella have recently been used as
model hosts for studying pathogenic
microorganisms as an alternative to verte-
brates. A positive correlation between
virulence and host response has generally
been found in both invertebrate and
mammalian host models for a range of
microorganisms, such as Acinetobacter
baumanii,1,2 Francisella tularensis,3

Pseudomonas aeruginosa,4,5 Yersinia pseudo-
tuberculosis,6 Staphylococcus aureus,7

Streptococcus pyogenes,8 Streptococcus
mutans,9 Enterococcus faecalis,10,11 Candida
albicans12 and Cryptococcus neoformans.13

In 2010, Fuchs and colleagues14

reported in Virulence several methods for
using Galleria mellonella as a model host to
study fungal pathogenesis. First, these
authors described a number of the benefits
of using G. mellonella larvae as a model
host that are not easily achieved with
invertebrate models such as Caenorhabditis
elegans and Drosophila melanogaster. For
example, the larvae of G. mellonella can be
maintained at 37°C. This characteristic is
very important, because it allows micro-
organisms to be studied under the tem-
perature conditions at which they are

pathogenic to human hosts. Another
benefit of the G. mellonella model is the
multiple options for facile delivery of the
pathogen, such as topical application, oral
delivery and injection. Among these
methods, injection offers the benefit that
fungi can be injected directly into the
larval hemocoel and therefore larvae
receive a known amount of pathogens.
Moreover, the G. mellonella model is not
restricted to studies that examine aspects of
the pathogenesis of fungal infections but
also recommends itself to the study of
host defenses against fungal pathogens.
G. mellonella have an innate immune
system comprised of different types of
hemocytes, which play a role in fungal-
pathogen defense.

Next, Fuchs et al.14 presented in detail
various methods to study fungal virulence
and the association of fungal cells with
insect hemocytes using Candida albicans
and Cryptococcus neoformans to illustrate
the use of this model. These authors
showed that G. mellonella can be used to
monitor fungal pathogenicity by a survival
assay. Larvae can also be utilized to observe
differences in fungal cell filamentation
post-infection. For this experiment, the

fat body and other internal structures of
G. mellonella can be collected, fixed with
formalin, and prepared for histological
sectioning. Furthermore, the authors
demonstrated how fungal cell-hemocyte
associations can be evaluated using fluor-
escence-activated cell sorting (FACS) ana-
lysis. The study by Fuchs et al.14 has great
value to the scientific community, because
the protocols presented for the G. mello-
nella infection model can be adapted to
the study of other fungal and bacterial
pathogens.

In this context, Olsen and colleagues8 in
2011 published in Virulence the first study
to describe G. mellonella as model host for
group A streptococcus (GAS, S. pyogenes).
To test the hypothesis that G. mellonella is
a suitable model host to study GAS
pathogenesis, the authors infected larvae
with serotype M3 strain MGAS315. The
genome of this strain has been sequenced,
and it is representative of highly virulent
serotype M3 GAS strains that cause severe
invasive disease in humans. In addition,
strain MGAS315 has been extensively
studied in previous experiments using
mice and monkeys. All larvae infected
with strain MGAS315 had distinct signs of
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invasive infection, including melanization,
rapid death and formation of a destructive
abscess-like lesion at the site of inocu-
lation. These abscesses comprised a dense
central core of necrotic tissue and GAS
microorganisms surrounded by a well-
organized outer band of host hemocytes,
coagulated hemolymph and extracellular
melanin pigment. According to the
authors, these findings are similar to the
histopathology that is commonly observed
in mouse and monkey models of GAS
necrotizing fasciitis and in humans with
severe soft tissue infections. Therefore,
these results showed that G. mellonella
larvae are useful host organisms for studing
GAS pathogenesis.

In the same year, Virulence published
another interesting study related to the
G. mellonella model, in which this insect’s
immune response to infection was exten-
sively explored by Fallon and colleagues.15

In this study, the authors demonstrated
that prior exposure of G. mellonella larvae
to non-lethal doses (1 � 104 or 1 � 105) of
Aspergillus fumigatus conidia increased
the larval survival rate when a lethal
dose (1 � 107) was administered 24 h
later, suggesting that the inoculation of
G. mellonella with non-lethal doses of
A. fumigatus conferred a significant pro-
tective response against a subsequent lethal
inoculum. According to Fallon et al.,15

insects do not have an immune system
that is analogous to the adaptative immune
response of mammals in terms of antibody
generation, but they do have the capa-
city to mount an immune response in

anticipation of a subsequent infection that
has some elements that are similar to the
function of the adaptive immune response
in mammals. This study significantly
contributes to research exploring G. mello-
nella as a model host, because an under-
standing of the mechanisms employed by
insects to withstand infection is critical to
their successful use as models for human
pathogens.

Thus, we have observed that G. mello-
nella as a model for the study of infectious
diseases has achieved increasing acceptance
among scientific researchers, and the use of
this invertebrate model in medical research
extends to many laboratories around the
world. Recently, important studies were
published from different countries, such as
the US,12,16,17 Ireland,15,17,18 Canada,19 the
United Kingdom,20 Spain,21 Germany,22,23

Brazil,24 Tunisia,25 Greece,26 South
Korea,27 Poland,28 Italy29 and Norway.30

Therefore, studies need to be developed to
determine standardized conditions for the
propagation and maintenance of G. mello-
nella larvae.

In this issue of Virulence, Banville and
colleagues31 have published a study to
evaluate the effect of nutritional depriva-
tion on the ability of larvae to withstand
infection. The objective of this study was
to establish standardized conditions for
larval treatment for in vivo testing, given
that some researchers incubate larvae with
a food source during experiments, while
others do not. The authors observed that
larvae deprived of nutrition for 7 days
demonstrated increased susceptibility to

infection with the fungal pathogen
C. albicans. Starved larvae demonstrated a
slight reduction in hemocyte density, but
the hemocytes from starved larvae were as
effective at killing C. albicans cells as those
from unstarved larvae. Hemolymph from
starved larvae showed reduced expression
of a range of antimicrobial peptides and
immune proteins. Banville et al.31 con-
cluded that the deprivation of G. mello-
nella larvae of food leads to a reduction in
cellular and immune responses and an
increased susceptibility to infection, indic-
ating that researchers utilizing G. mello-
nella for the study of human pathogens
should specify whether food is provided to
the larvae to allow valid comparisons
between results from different laboratories.

According to the studies cited above, it
is evident that the number of studies using
G. mellonella as a model host has increased
significantly in the last few years. In
addition, there has been an improvement
in the techniques used with this model,
which allows further possibilities for the
development of other studies. Certainly,
the articles published in Virulence repres-
ent an important scientific contribution
for the advancement of research utilizing
G. mellonella as a model host for human
pathogens.
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