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Abstract

Background: The role of type | IFNs in protecting against coronavirus (CoV) infections is not fully
understood. While CoVs are poor inducers of type | IFNs in tissue culture, several studies have
demonstrated the importance of the type | IFN response in controlling MHV infection in animals. The
protective effectors against MHV infection are, however, still unknown.

Results: In order to get more insight into the antiviral gene expression induced in the brains of MHV-
infected mice, we performed whole-genome expression profiling. Three different mouse strains, differing
in their susceptibility to infection with MHV, were used. In BALB/c mice, which display high viral loads but
are able to control the infection, 57 and 121 genes were significantly differentially expressed (> 1.5 fold
change) upon infection at 2 and 5 days post infection, respectively. Functional association network analyses
demonstrated a strong type | IFN response, with Irfl and Irf7 as the central players. At 5 days post
infection, a type Il IFN response also becomes apparent. Both the type | and Il IFN response, which were
more pronounced in mice with a higher viral load, were not observed in 129SvEv mice, which are much
less susceptible to infection with MHV. 129SvEv mice lacking the type | interferon receptor (IFNAR-/-),
however, were not able to control the infection. Gene expression profiling of these mice identified type |
IFN-independent responses to infection, with IFN-y as the central player. As the BALB/c and the IFNAR-
/- 129SvEv mice demonstrated very similar viral loads in their brains, we also compared their gene
expression profiles upon infection with MHV in order to identify type | IFN-dependent transcriptional
responses. Many known IFN-inducible genes were detected, several of which have previously been shown
to play an important protective role against virus infections. VWe speculate that the additional type | IFN-
dependent genes that we discovered may also be important for protection against MHV infection.

Conclusion: Transcriptional profiling of mice infected with MHV demonstrated the induction of a robust
IFN response, which correlated with the viral load. Profiling of IFNAR-/- mice allowed us to identify type
| IFN-independent and -dependent responses. Overall, this study broadens our present knowledge of the
type | and Il IFN-mediated effector responses during CoV infection in vivo.
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Background

Cytokines are key regulators that dictate many aspects of
innate and adaptive immunity. Induction of type I inter-
ferons (IFNs), a well-known subset of cytokines with anti-
viral activity, is triggered by a selection of cellular pattern
recognition receptors, including TLRs (Toll-like recep-
tors), RIG-I (retinoic acid-inducible gene 1), and MDA5
(melanoma differentiation-associated protein 5). These
receptors are activated in response to a range of pathogen-
specific factors, which includes double-stranded RNA pro-
duced during virus infection [1,2]. Secreted type I IFNs
(i.e. IFN-a and IFN-B), subsequently induce an antiviral
transcription program in the infected cell as well as in
adjacent cells, thereby magnifying the "danger" signal and
protecting against the infection.

The role of type I IFNs in controlling coronavirus (CoV)
infections is not well understood. A number of studies has
shown that CoVs, like the mouse hepatitis virus (MHV)
and the severe acute respiratory syndrome (SARS)-CoV,
are poor inducers of type I IFNs in cell culture, and even
escape from detection by cytoplasmic pattern recognition
receptors [3-8]. Consistently, virus-encoded IFN antago-
nistic functions have been described for both MHV and
SARS-CoV [9,10]. In vivo, however, MHV infection
appeared to induce the production of IFN-a in plasmacy-
toid dendritic cells (pDCs) by a TLR7-dependent mecha-
nism [11]. Moreover, MHV infections of primary
neuronal cultures and of the central nervous system
(CNS) induced IFN-B gene expression, indicating that the
production of type I IFNs in vivo is not limited to pDCs
[12,13]. Furthermore, neuronal cultures infected with
MHYV exhibited increased expression of several type I IFN-
induced transcription factors [14]. More recently, Roth-
Cross and co-workers reported that macrophages and
macrophage-like microglia cells produce IFN-B in the
CNS of MHV-infected mice in a MDA5-dependent man-
ner [15].

Several studies have demonstrated the importance of the
type I IEN response in controlling MHV infection in vivo.
The exogenous delivery of type I IFNs was shown to
inhibit MHV infection of and spread to the mouse brain
[16,17]. Consistently, infection of mice lacking the func-
tional type I IFN receptor (IFNAR-/-) with MHV resulted
in increased viral replication and extended tissue tropism
[11,17,18]. Although many type I IFN-responsive genes
have been identified [19], the protective effectors against
MHV infection are yet unknown [20].

In order to get more insight into the antiviral gene expres-
sion induced in the brains of MHV-infected mice, we per-
formed whole-genome expression profiling. Three
different mouse strains (BALB/c, 129SvEv and IFNAR-/-
129SvEv mice), differing in their susceptibility to infec-
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tion with MHV, were used. Previously, we have observed
that 129SvEv mice are significantly more resistant to infec-
tion via the intranasal route than BALB/c mice [17]. The
reason for the significant difference in susceptibility is not
known, but may be related to different antiviral immune
responses in these two mouse strains. Furthermore, gene
expression profiling of 129SvEv mice lacking the type I
IFN receptor, which are not able to control the MHV infec-
tion [11], allowed us to identify type I IFN-independent
transcriptional responses.

Results & discussion

We started by comparing the whole-genome expression
profiles in the brains of the BALB/c and the 129SvEv mice
upon infection with MHV. To this end, mice were inocu-
lated intranasally with 10¢ TCID;, of MHV strain A59 or
with PBS (control). Groups of mice (n = 4) were sacrificed
at 2 and 5 days post inoculation after which the brains
were harvested and total RNA was isolated. The extent of
virus replication was determined by quantitative reverse
transcriptase (RT)-PCR targeting MHV-specific RNA
sequences as described earlier [21]. Previously, we dem-
onstrated that the viral RNA load correlates well with viral
infectivity in tissue homogenates [17]. While no viral RNA
could be detected yet at 2 days post inoculation (data not
shown), viral RNA was observed in the brain of both
mouse strains at day 5 (Figure 1A). As expected, the BALB/
¢ mice displayed a much higher viral RNA load than the
129SvEv mice.

Next, the RNA extracts were processed for microarray anal-
ysis using the PBS-inoculated groups as the reference. In
total, 57 and 121 genes were significantly differentially
expressed (> 1.5 fold change) in BALB/c mice at 2 and 5
days post infection, respectively. In contrast, in the
129SvEv mice, no significant induction of gene expression
was observed. The results are depicted in Figure 1B as a
gene tree that was built based on the genes with a signifi-
cantly altered expression level in BALB/c mice at 5 days
post infection (i.e. expression-based cluster analysis).
From these data we were able to identify host genes, the
increased expression (> 1.5 fold) of which could already
be detected at day 2 (i.e. early genes; Figure 1C) or only at
day 5 (i.e. late genes; Figure 1D). The group of early-
induced transcripts contained many IFN-inducible genes,
including the well-known interferon regulatory factor 7
(Irf7), signal transducer and activator of transcription 1
(Stat1), and 2'-5' oligoadenylate synthetase (Oas) genes
(Additional file 1A). Within the cluster of "late" genes
(Additional file 1B) several chemokines (i.e. Ccl2, Ccl5,
Ccl7, Cxcl9, and Cxcl10) could be identified.

Next, in order to construct a functional association net-
work, we applied the STRING 8.0 software [22] to the list
of proteins encoded by the "early" and "late" genes. We
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Genome-wide expression profiling of the brains of BALB/c and 129SvEv mice infected with MHV. BALB/c and
[29SvEv mice were intranasally inoculated with PBS (control) or with MHV-A59. At day 2 and 5, mice (n = 4) were sacrificed
and the brains and livers were harvested. The PBS-groups (n = 4) were also sacrificed at 5 days post inoculation. (A) Viral RNA
(VRNA) levels within the brain were determined at 5 days post inoculation by quantitative RT-PCR targeting MHV-specific
sequences. Standard deviations are indicated (*P < 0.0001). (B) Microarray analysis was performed as described in the Material
& Methods section. The PBS-inoculated BALB/c or 129SvEv mice were taken as reference. Based on the significant alterations in
gene expression (> 1.5 fold change cut-off) within the brains of BALB/c mice at 5 days post infection, a cluster analysis (stand-
ard correlation) was performed resulting in the indicated gene tree (n = 121). The different conditions (i.e. mouse strains and
day post infection) are indicated. (C-D) From the the gene tree shown in panel B, clusters representing "early" and "late" genes
could be identified. For detailed information see the text and Additional file I. (E) The IFN-04, IFN-B 1, and IFN-y mRNA levels
were determined by quantitative RT-PCR. The fold changes after infection with MHV relative to the PBS-inoculated animals are
shown. Standard deviations are indicated.

Page 3 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:350

also included known interactors of our hits in this analy-
sis, while proteins that did not demonstrate any known
interactions were excluded for clarity. The results are
shown in Figure 2A and 2B. Functional association net-
work analysis of the proteins encoded by the "early" genes
revealed two main modules. One module contained sev-
eral proteins involved in antigen presentation, while the
other module contained numerous proteins involved in
the type I IFN response. The key player in this latter mod-
ule appeared to be Irf7, which is the master regulator of
type 1 [IFN-dependent responses [23]. Functional associa-
tion network analysis of the proteins encoded by the
"late" genes revealed a large network of proteins involved
in host-pathogen interactions. Although the microarray
analyses did not reveal the induction of IFN-y gene expres-
sion itself, IFN-y appeared at a central position in the net-
work. In addition, the induction of a type I IFN response
was also evident from this network as demonstrated by
the presence of the transcription factors Irf1 and Irf8, both
of which demonstrated elevated mRNA levels upon MHV
infection. In conclusion, these results demonstrate that
MHV infection induces a robust IFN response both at 2
and 5 days post infection, in which the transcription fac-
tors Irf7, Irf1, and Irf8 appear to be the key players. At 5
days post infection, a type II IFN response also becomes
apparent.

To confirm and extend these observations, we next ana-
lyzed the induction of type I and II IFN gene expression
(i.e. IFN-a4 and IFN-B1, and IFN-y, respectively) by using
quantitative RT-PCR. In agreement with the microarray
expression profiles, significant induction of these type I
and II IFNs could only be detected in the MHV-infected
BALB/c animals (Figure 1E). The observation that the
BALB/c mice, unlike the 129SvEv mice, exhibited abun-
dant expression of IFN-responsive genes upon MHV infec-
tion appears counter intuitive as the 129SvEv mice are
much more resistant to the infection than the BALB/c
mice. Apparently, the resistance of 129SvEv mice to MHV
infection is not controlled by a more robust IFN response.
The reason for the observed difference in susceptibility
between the different mouse strains after intranasal inoc-
ulation is not known. MHV-A59 was recently shown to
replicate efficiently in the liver of 129SvEv mice after intra-
peritoneal inoculation [11]. Interestingly, the resistance of
129SvEv mice after intranasal inoculation is not restricted
to infection with MHYV, as it was also observed for vesicu-
lar stomatitis virus [24].

The microarray expression profiles described above sug-
gested that the induction of an IFN response correlates
with the viral load within the brain. To confirm this, we
examined the data of the individual BALB/c mice at 5 days
post infection in more detail. Clearly, the animals with the
highest viral loads (mouse 2 and 4; Figure 3A), also dis-
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played significantly higher levels of induction of type I
and II IEN expression (Figure 3B). Likewise, the amplitude
of the gene expression profiles (Figure 3C and Additional
file 2) of the individual mice also correlated with the viral
loads in the brain. These observations are in agreement
with results obtained by the profiling of SARS-CoV-
infected macaques [25]. Also in that study a positive cor-
relation between virus load and the induction of gene
expression was observed. A few genes (n = 6), including
ISG20, showed an inverse correlation with the viral load.
We currently have no explanation for this observation as
expression of ISG20 is known to be induced by type I IFNs
[26,27]. Interestingly, ISG20 has been shown to exhibit
antiviral activity against other viruses [28,29].

To study the role of type I IFN-independent and -depend-
ent gene expression in the control of MHV infection in vivo
in more detail, we next made use of the IFNAR-/- mice
[30]. These mice are highly susceptible to MHV infection
as compared to the parental 129SvEv mice [11,17].
Indeed, when these mice were inoculated intranasally
with 10°¢ TCIDs, of MHV-A59, viral RNA levels in their
brains became much higher than in animals from the
parental strain at 5 days post infection (Figure 4A). Inter-
estingly, at this time point the viral RNA levels in the
IFNAR-/- mice were comparable to those in the brains of
the BALB/c mice. However, efficient dissemination of the
infection, resulting in high viral loads in the liver as deter-
mined by quantitative RT-PCR, was only observed in the
IFNAR-/- mice and not in the wild-type mice, which dis-
played viral RNA levels just above background (Figure
4B). Thus, in agreement with previous studies, a type I
IFN-dependent response is required to inhibit virus dis-
semination [11,15].

Whole-genome expression profiling of brains of the
IFNAR-/- mice revealed the significantly induced expres-
sion of 73 genes (> 1.5 fold) at 5 days post infection. In
contrast, at day 2, hardly any alterations in gene expres-
sion could be detected in these knock-out mice (Addi-
tional file 3). Figure 4C shows an expression-based cluster
analysis of these 73 genes for the wild-type and IFNAR-/-
mice. Comparison of the complete expression profiles of
these mice revealed that the transcriptional profile at day
5 in the IFNAR-/- mice has a larger similarity with the pro-
file at day 2 of the parental 129SvEv mice than with that
of the knock-out mice at day 2 post infection (Figure 4C).
This observation may suggest the presence of an early host
response to infection with MHV in the parental mice, even
though no significant induction (> 1.5 fold) of gene
expression could be detected (Figure 1B). Such a response,
may not be evident in transcriptional profiles of whole
organs, but might only be apparent at the cellular level.
We speculate that early decisive events are happening in
initial target cell populations such as DCs and macro-
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Figure 2

Early and late transcriptional responses to infection with MHV. (A) The early gene expression network. The "early"
genes listed in Additional file | A (n = 57) were subjected to functional association network analysis by using the public STRING
8.0 database http://string.embl.de/. Indicated is the confidence view of the analysis. Stronger associations are symbolized by
thicker lines. (B) The late gene expression network. The "late” genes listed in Additional file IB (n = 64) were subjected to
functional association network analysis as described above. In both panels, the key players in the network (i.e. Irf7 for panel A

and IFN-y, Irfl, and Irf8 for panel B) are indicated in red.
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BALB/c t=5

fold change

Induction of gene expression correlates with the viral load. vVRNA (panel A) and IFN-a4, IFN-B1, and IFN-y mRNA
(panel B) levels within the brains of the individual BALB/c mice (mouse 1—4) at 5 days post infection were determined as
described in the legend of Figure |. (C) Microarray data analysis of the individual BALB/c mice (mouse |—4). The gene tree
shown (n = 96) is based on the significant alterations at 5 days post infection while applying an expression cut-off (> 2.0 fold).

For detailed information see Additional file 2.

phages [31]. These responses could prevent extensive viral
replication very early after infection, thereby reducing
subsequent type I IEN responses.

As the knock-out mice lack a functional type I IFN recep-
tor, the upregulation of gene expression observed in these

mice apparently occurs independently of type I IFN sig-
nalling. Not much is known yet about type 1 IFN-inde-
pendent responses to infection. The observation that the
transcriptional upregulation of Irfl was independent of
type I IFN signalling is consistent with the notion that
IFN-y can also induce expression of this gene [32,33].
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Figure 4

The type | IFN receptor-independent expression profile within the brains of IFNAR-/- mice after MHYV infec-
tion. IFNAR-/- [29SvEv mice were intranasally inoculated with 10¢ TCIDg, of MHV-A59 or treated with PBS (control). At day
5, mice (n = 4) were sacrificed and the brains and livers were harvested. (A and B) The vVRNA levels within brains and livers
were determined as described in the legend of Figure |. Standard deviations are indicated (*P < 0.0001). Also depicted are the
VRNA levels for the parental 129SvEv mice and BALB/c mice. (C) Total RNA samples obtained from the brains of PBS- or
MHV-inoculated IFNAR-/- mice were processed for microarray analysis as described in the legend to Figure |. Based on the
significant alterations (> 1.5 fold change cut-off) in gene expression within the brains of the IFNAR-/- mice at 5 days post infec-
tion (n = 73) a gene tree was build. The different conditions (i.e. mouse strain and day post infection) are indicated. See Addi-
tional file 3 for details. Note that the different conditions are also clustered according to their similarities in the complete gene
expression profile.
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Likewise, we also observed increased transcription of
Ifitm1 and Ifitm3 independent of type I IFN signalling,
again corresponding with the literature [34,35]. Interest-
ingly, the expression of various genes encoding proteins
involved in antigen presentation (i.e. H2, B2m, Psmb8,
Psmb9, and Ctss) was also increased in the absence of type
I IFN signalling. Psmb8 and Psmb9 encode immunopro-
teasome subunits which facilitate antigen presentation to
CD&+T cells after virus infection, a process that is prima-
rily regulated by IFN-y [36]. Furthermore, also the expres-
sion of the major histocompatibility complex class II
(MHC 1I) invariant chain, also called CD74 [37], was
increased upon infection of the knock-out mice. These
data are in agreement with the observation that the induc-
tion of genes involved in antigen processing is independ-
ent of STAT1 activation by IFN-a [38]. We also observed
the transcriptional upregulation of the 3 isoforms of met-
allothionein (Mt1, Mt2, and Mt3), which encode proteins
known to scavenge toxic metals [39]. The induction of
these genes, which was not apparent in either wild-type
mice, could reflect an acute-phase reaction in the brain of
MHV-infected IFNAR-/- mice, which likely contributes to
pathogenesis as has been shown for other viruses [40-42].

We constructed a functional association network by
applying the STRING 8.0 software [22] to the list of pro-
teins encoded by the type I IFN-independent genes (Addi-
tional file 3). We also included known interactors of our
hits in this analysis, while proteins that did not demon-
strate any interactions were again excluded for clarity. The
result is shown in Figure 5. The analysis revealed IFN-y as
the central player in the type I IFN-independent antiviral
network as this protein appeared to link a number of
smaller modules. The induction of IFN-y gene expression
could be confirmed using quantitative RT-PCR (data not
shown). The finding that IFN-y-mediated transcriptional
responses are not dramatically affected in the absence of
type I IFN signalling is in agreement with reports referred
to above and with a recent publication by Ireland et al.
[18], which shows that IFN-y expression is significantly
induced in the CNS of MHV-infected IFNAR-/- mice.
While the production of IFN-y by NK cells plays a major
role in the protection against infection with MHV [43-47],
the IFN-y-mediated transcriptional responses that we
observed were not protective against acute MHV infection
in the IFNAR-/- mice.

Several studies have shown that MHV [11,15,17] as well
as several other viruses [48-50] replicate to much higher
levels (up to 10> fold difference) in IFNAR-/- mice than in
their wild-type counterparts. In this study we show that a
strong correlation exists between the amplitude of type I
and I1 IFN host responses with the viral load. The huge dif-
ferences in virus replication between wild-type and
IFNAR-/- mice therefore do not permit a fair comparison
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between gene expression profiles of these mice, with the
aim of identifying type I IFN-dependent responses.
Indeed, as no significant gene expression is observed in
the wild-type 129SvEv mice, a comparison with the
expression profile of the IFNAR-/- mice only provides
information about type I IFN-independent and not IFN-
dependent responses. We now observe, in agreement with
our previous study, that the brain of BALB/c and IFNAR-/
- 129SvEv mice contain very similar MHV loads at day 2
and 5 post infection [17]. Since the type I IFN-responsive
pathway is very well conserved among many different spe-
cies [51], we considered it acceptable to compare the gene
expression profiles of these mice with the aim of identify-
ing type-I1 IFN-dependent responses, although comparing
transcriptional profiles of wild-type and IFNAR-/- mice
from a different genetic background should obviously be
done very cautiously. Ideally, a comparison between wild-
type BALB/c and IFNAR-/- BALB/c mice would have been
more accurate. While the induced expression of a number
of genes was similar for the two mouse strains (i.e. type I
IFN signalling-independent gene-expression), that of
other genes was only observed in the BALB/c mice (i.e.
tentative type I IFN signalling-dependent gene expres-
sion). The expression of yet other genes appeared to be
partially dependent of type I IFN signalling: increased
expression of these genes was observed in the IFNAR-/-
mice, but much more so in the BALB/c mice.

Genes, the expression of which was upregulated (> 1.5
fold) in the BALB/c mice but not significantly changed in
the IFNAR-/- mice upon infection with MHV, were tenta-
tively designated as type I IFN-dependent. Genes, the tran-
scriptional upregulation of which was at least 2 times
higher in the BALB/c mice than in the IFNAR-/- mice, were
also added to the list of tentative type I IFN-dependent
genes. As expected, this set of genes (n = 82) contained
many known IFN-responsive genes like Isg20, Ifit1, Ifit3,
Isgf3g, Mx2 and Ubell (Additional file 4). Functional asso-
ciation network analyses showed Irfl and Irf7 to be the
key players in the network (Additional file 5). Several of
the tentative type I IFN-dependent genes (including Mx2
and Ubell) have previously been shown to play an impor-
tant protective role against virus infections [52-56]. We
speculate that other genes present in this list may also be
important for full protection against MHV infection.

Conclusion

Transcriptional profiling of mice infected with MHV dem-
onstrated the induction of a robust IFN response, which
correlated with the viral load. Profiling of IFNAR-/- mice
allowed us to identify type I IFN-independent and -
dependent responses. Overall, this study broadens our
present knowledge of the type I IFN-mediated effector
responses during CoV infection in vivo.
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functional association network analysis by using the STRING 8.0 database as described in the legend of Figure 2. The key player

in the network, IFN-y, is indicated in red.

Methods

Mouse infection experiments

6-8 week old BALB/c were obtained from Charles River
Laboratories, while type I IFN receptor knock-out mice
(IFNAR-/-) [30] and the parental 129SvEv mice were
obtained from B&K Universal Ltd. Mice were inoculated
intranasally with 106 TCIDs, of MHV strain A59 and sacri-
ficed at the indicated time-points for organ dissection.
Control animals were treated with PBS. The study proto-

col was approved by the animal ethics committee of the
Utrecht University, and all experiments were performed in
accordance with accepted institutional and governmental
policies.

Tissue homogenization and isolation of total RNA

Whole brains and livers were dissected from the MHV-
infected and control mice. The tissues were added to Lys-
ing Matrix D tubes (MP Biomedical), containing 1 ml of

Page 9 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:350

RNApro™ solution (Q-BlOgene), and processed using a
FastPrep instrument (MP Biomedical). The tissues were
homogenized at 6,000 rpm for 40 sec and immediately
placed on ice. Subsequently, the homogenates were cen-
trifuged at 14,000 rpm for 10 minutes at 4°C and super-
natants were harvested and stored at -80°C. Total RNA
was isolated from the homogenates using the TRIzol rea-
gent (Invitrogen) according to the manufacturer's proto-
col. RNA was further purified using the RNeasy mini-kit
with subsequent DNasel treatment on the column (Qia-
gen). RNA integrity was determined by spectrometry and
by a microfluidics-based platform using a UV-mini1240
device (Shimadzu) and a 2100 Bioanalyzer (Agilent Tech-
nologies), respectively.

Quantitative RT-PCR

1 pg of total RNA was reverse transcribed into cDNA using
0.5 uM oligo(dT) primers and 20 U of M-MuLV-Reverse
transcriptase (Fermentas) in a total reaction volume of 20
pl for 1 h at 37°C. Subsequently, gene expression levels of
type 1 and II IFNs (i.e. IFN-a4 [NM_010504.2], IFN-B1
[NM_010510.1], and IFN-y [NM_008337.3], respec-
tively), were measured by quantitative PCR using Assay-
On-Demand reagents and equipment (PE Applied Biosys-
tems), according to the manufacturer's instructions. The
quantitative PCR reactions were performed in a total reac-
tion volume of 20 pl containing 10 pl Tagman® Universal
PCR Master Mix (2x), 5 ul ¢DNA, 1 pl TagMan® Gene
Expression Assay Mix (20x), and 4 pl water using an ABI
Prism 7000 sequence detection system under the follow-
ing conditions: 95°C for 10 mins, followed by 40 cycles
of 95°C for 15 secs and 60°C for 1 min. For all assays, we
performed "no-RT" (reaction using total RNA as the sub-
strate) and "no template" (reaction using water as the sub-
strate) controls. In both cases, omitting cDNA from the
reaction resulted in a lack of PCR product generation. All
assays were analyzed with ABI Prism 7000 Software
v1.2.3f2 (PE Applied Biosystems). The comparative Ct-
method was used to determine the fold change for each
gene (primer efficiencies were similar for both the endog-
enous control primer set and genes of interest primer sets
[data not shown]). Note that the Ct values of all samples
were within the limits of the standard curves (data not
shown). The housekeeping gene GAPDH
(NM_008084.2) was used as a reference in all experi-
ments, since expression of this gene was found constant
among samples. The amounts of viral RNA were deter-
mined by quantitative RT-PCR as described before [21].

Microarray hybridizations

The microarray experiments were performed as described
previously [5]. Briefly, mRNA was amplified from 1 pg of
total RNA by c¢DNA synthesis with oligo(dT) double-
anchored primers, followed by in vitro transcription using

http://www.biomedcentral.com/1471-2164/10/350

a'T7 RNA polymerase kit (Ambion). During transcription,
5-(3-aminoallyl)-UTP was incorporated into the single
stranded cRNA. Cy3 and Cy5 NHS-esters (Amersham Bio-
sciences) were coupled to 2 pug cRNA. RNA quality was
monitored after each successive step using the equipment
described above. Corning UltraGAPS slides, printed with
a Mouse Array-Ready Oligo set (Operon; 35,000 spots),
were hybridized with 1 ug of each alternatively labeled
cRNA target at 42°C for 16-20 h. Two independent dye-
swap hybridizations (4 arrays) were performed for each
experimental group. After hybridization the slides were
washed extensively and scanned using the Agilent
G2565AA DNA Microarray Scanner.

Statistical analysis

After data extraction using Imagene 5.6 Software (BioDis-
covery), Lowess normalization [57] was performed on
mean spot-intensities in order to correct for dye and print-
tip biases [58]. The microarray data was analysed using
ANOVA (R version 2.2.1/MAANOVA version 0.98-7)
http://www.r-project.org[59]. Briefly, in a fixed effect
analysis, sample, array and dye effects were modelled. P-
values were determined by a permutation F2-test, in
which residuals were shuffled 5,000 times globally. Genes
with P < 0.05 after family wise error correction were con-
sidered significantly changed. Cluster analysis (standard
correlation) was performed with GeneSpring GX 7.2 soft-
ware (Silicon Genetics). When indicated, the confidence
level was increased by applying a fold change cut-off. The
resulting genelists were subjected to Genespring 7.2 soft-
ware for further analysis.

ArrayExpress accession numbers

MIAME-compliant data in MAGE-ML format as well as
complete descriptions of protocols have been submitted
to the public microarray database ArrayExpress http://
www.ebi.ac.uk/arrayexpress/ with the following accession
numbers: microarray layout, P-UMCU-8; gene expression
data of MHV-infected mice, E-MEXP-2081; protocols for
total RNA isolation and mRNA amplification, P-MEXP-
34397; cRNA labeling, P-MEXP-34400 and P-MEXP-
35534; hybridization and washing of slides, P-MEXP-
34401; scanning of slides, P-MEXP-34430; data normali-
zation, P-MEXP-34431.
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Additional material

Additional file 1

Gene expression profiles in the brain of MHV-infected mice. (A) Early
genes (n=57), and (B) Late genes (n = 64). The induction of expression
for each gene in infected animals relative to the PBS-inoculated animals
is indicated for the different conditions (i.e. mouse strain and day post
infection).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-350-S1.pdf]

Additional file 2

Differentially expressed genes per BALB/c mouse. The induction of gene
expression at day 5 for 96 genes relative to the PBS-inoculated animals is
indicated for the four individual BALB/c mice. Differential gene expres-
sion correlates with the viral load.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-350-S2.pdf]

Additional file 3

Type I IFN-independent genes. The induction of differential gene expres-
sion (2 1.5 fold) in the brain of MHV-infected IFNAR-/- mice at day 5
relative to the PBS-inoculated animals is indicated. The relative expres-
sion of these genes in the parental 129SvEv mice after infection with
MHV is also shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-350-83.pdf]

Additional file 4

Tentative type I IFN-dependent genes. List of genes the expression of
which was upregulated (> 1.5 fold) in the BALB/c mice but not signifi-
cantly changed in the IFNAR-/- mice upon infection with MHV. Genes,
the transcriptional upregulation of which was at least 2 times higher in
the BALB/c mice than in the IFNAR-/- mice, were also added to the list.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-350-54.pdf]

Additional file 5

Tentative type I IFN-dependent gene expression network. The genes
listed in Additional file 4 (n = 82) were subjected to functional association
network analysis by using the public STRING 8.0 database http://
string.embl.de/. Indicated is the confidence view of the analysis. Stronger
associations are symbolized by thicker lines. The central players in the net-
work (i.e. Irfl and Irf7) are indicated in red.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-350-85.tiff]
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