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Abstract

The posterior visual pathway is commonly affected by multiple sclerosis (MS) pathology

that results in measurable clinical and electrophysiological impairment. Due to its highly

structured retinotopic mapping, the visual pathway represents an ideal substrate for inves-

tigating patho-mechanisms in MS. Therefore, a reliable and robust imaging segmentation

method for in-vivo delineation of the optic radiations (OR) is needed. However, diffusion-

based tractography approaches, which are typically used for OR segmentation are con-

founded by the presence of focal white matter lesions. Current solutions require complex

acquisition paradigms and demand expert image analysis, limiting application in both clini-

cal trials and clinical practice. In the current study, using data acquired in a clinical setting

on a 3T scanner, we optimised and compared two approaches for optic radiation (OR)

reconstruction: individual probabilistic tractography-based and template-based methods.

OR segmentation results were applied to subjects with MS and volumetric and diffusivity

parameters were compared between OR segmentation techniques. Despite differences in

reconstructed OR volumes, both OR lesion volume and OR diffusivity measurements in

MS subjects were highly comparable using optimised probabilistic tractography-based,

and template-based, methods. The choice of OR reconstruction technique should be

determined primarily by the research question and the nature of the available dataset.

Template-based approaches are particularly suited to the semi-automated analysis of

large image datasets and have utility even in the absence of dMRI acquisitions. Individual

tractography methods, while more complex than template based OR reconstruction, per-

mit measurement of diffusivity changes along fibre bundles that are affected by specific

MS lesions or other focal pathologies.
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Introduction

Precise localisation of focal pathology to function-specific regions within the central nervous

system (CNS) is a critical step toward defining biomarkers of MS disease activity and progres-

sion [1,2].

The visual pathways constitute an ideal model for probing patho-mechanisms of multiple

sclerosis (MS) in vivo since structural and functional properties of the visual system, which is

frequently affected by MS pathology, can be assessed by a number of objective, quantitative

techniques [3,4]. In the visual system, the retina, optic nerves, optic chiasm, optic tract, and

visual cortex can be relatively easily differentiated from surrounding structures, however seg-

mentation of the lateral geniculate nuclei (LGN) and optic radiation (OR) is challenging.

The ORs are a pair of dense white matter (WM) fibre bundles comprising axons that

originate from neurons located in lateral geniculate nucleus (LGN) and extend to the calcarine

cortex [5–8]. Axons within the OR are situated adjacent to the lateral ventricle in both hemi-

spheres and project in a primarily anterior-posterior orientation from the LGN to the visual

cortex. We have previously shown that the majority of subjects with MS have lesions within

the OR[9]. However, the OR is poorly identified on conventional T1/T2-weighted images.

While susceptibility-weighted imaging (SWI) [10] and phase difference enhanced imaging

(PADRE) [11] techniques, which exploit subtle magnetic heterogeneity between the OR and

its surrounding white matter fibre structures, more reliably delineate the tract, quantitative

techniques based on visualisation of tissue contrast using these sequences have not been vali-

dated in MS, where both focal (lesional) pathology and reduced fibre density (particularly in

Meyer’s loop and subcortical regions) may directly impact segmentation quality.

Currently, diffusion MRI (dMRI)-based tractography represents the principal technique for

mapping human WM fascicles. Application of dMRI to the visual pathways has yielded suc-

cessful OR segmentation using both deterministic tractography (DT) [12–16] and, more

recently, probabilistic tractography (PT) [17–28]. However, there has been also limited appli-

cation of tractography algorithms to MS cohorts. DT and PT algorithms were developed and

validated primarily in healthy controls and their performance in the presence of focal WM

pathology is suboptimal [29–31]. Unlike space occupying lesions (i.e. tumour or cyst), in

which reconstructed fibre paths are expected to travel around the relevant pathology, inflam-

matory demyelination within tracts does not likely alter expected location of surviving axons,

despite considerable alteration of the local structural environment. As measured by dMRI,

inflammatory demyelination commonly reduces fractional anisotropy, which, in turn, hinders

conventional tractography results.

Therefore, template-based tract reconstruction may be an alternative approach to delineate

white matter fiber tracts in patients with MS [30–32]. Reference templates can be derived

either from post-mortem dissections [8] or dMRI-based tractography in healthy controls

[30,32]. Template-based approaches also permit tract-specific analysis in the absence of sub-

ject-specific diffusion data, simplifying post-processing pipelines and eliminating the need for

advanced image acquisitions. However, brain volume loss, dynamic ventricular enlargement,

and lesion activity (newly appearing/disappearing, enlarging/shriking) in MS critically impacts

the mapping of template-subject ROIs based on transformation matrices estimated by linear/

non-linear co-registration[30,31]. Additionally, comparability between tractography-based

and template-based tract specific analysis in MS has not been also been thoroughly investi-

gated, which is an important information for choosing the proper approach to investigate

microstructure changes along white matter fibres.

Therefore, in this study we quantitatively compared the effect of optimised OR reconstruc-

tion techniques, namely individual probabilistic tractography (PT-OR), normal control-based
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template reconstructed OR (Template-OR), and Jülich histological atlas-based template recon-

structed OR (Histology-OR) [8] on MS-associated measures of OR pathology.

Materials and methods

Thirty-five healthy participants (25 female, 10 male, mean age 36.8 years, SD = 14.62) and

seventy MS subjects with relapsing-remitting MS (45 female, 25 male, mean age 41.07 years,

SD = 10.44) were included in the study. The study was approved by the human research and

ethics committee at the University of Sydney, Sydney, Australia. All participants gave written

informed consent.

MRI data was acquired from all subjects with a 3.0 Tesla GE MR750 scanner (General

Electric, Milwaukee, WI, USA), using an 8-channel head coil. For each exam, whole brain

64-directions diffusion-weighted imaging was acquired with 2 mm isotropic resolution (TR/

TE = 8325/86 ms, b = 1000 s/mm2, number of b0s = 2). Additionally, whole brain sagittal

IR-FSPGR (TR/TE/TI = 7.2/2.7/450 ms, 1 mm isotropic acquisition matrix, FOV = 256 mm)

and sagittal FLAIR CUBE (TR/TE/TI = 8000/163/2180 ms, slice thickness 1.2 mm, acquisition

matrix: Freq. × Phase = 256 × 244) were collected.

Reconstruction of optic radiation using probabilistic tractography

All diffusion weighted imaging (DWI) was converted from DICOM to NIFTI format using the

dcm2nii tool from MRIcron Toolbox (v.06/06/2013, http://people.cas.sc.edu/rorden/mricron/

dcm2nii.html). DWI was corrected for motion and eddy-current distortion in FSL (FMRIB

Software Library; www.fmrib.ox.ac.uk/fsl). EPI susceptibility distortion was then corrected

by nonlinear co-registration to T1-weighted structural imaging using ANTS (Advanced Nor-

malisation Tools, http://picsl.upenn.edu/software/ants) after non-brain tissue was removed

using BET (Brain Extraction Tool, FSL). Tensor reconstruction and co-registration with

T1-weighted imaging were performed in MrDiffusion (MrVista, Stanford University, http://

web.stanford.edu/group/vista/cgi-bin/wiki/index.php/MrVista).

Seeding points at the LGN and calcarine sulcus were created manually for the reconstruc-

tion of OR using ConTrack PT [33] (Fig 1). To identify the LGN, which is nearly invisible on

structural T1-weighted images, optic tract fibres were followed from the optic chiasm using

DT (a 10 mm ROI placed on the optic chiasm was used to seed the deterministic algorithm).

The position of the LGN was inferred by the termination of optic tract fibres, at which point a

circular ROI (diameter 7 mm) was placed. An occipital cortex ROI covering the calcarine sul-

cus was manually drawn on the high resolution T1 structural image in each hemisphere using

the editable ROI function of FSLVIEW software. All manually placed ROIs were reviewed by

two experts (SK, CW).

ConTrack [33] PT was used to reconstruct bilateral OR for each participant. Cerebellum

was removed from tractography prior masks automatically to ensure OR fibre tracking was

confined to the cerebrum; and a segment of corpus callosum (CC) 3 mm in width, centred on

the mid-sagittal plane, was removed to avoid propagation of tracts into the contralateral hemi-

sphere. This pipeline was implemented by applying a constraining mask that was warped non-

linearly from ICBM 2009a standard brain with the cerebellum and CC removed. Then, an

initial 75000 fibres were generated between ipsilateral seeding points. Of these, 30000 fibres

were selected by thresholding to those with the highest tracking scores [33]. Finally, all recon-

structed ORs were reviewed by two experts (SK and CW) to ensure anatomic plausibility and

refined where necessary (Fig 1).
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Construction of optic radiation template from healthy controls

Following removal of non-brain tissue (Brain Extraction Tool, FMRIB software Library),

T1-weighted images for each of the 35 HCs in the study were non-linearly co-registered to

ICBM 2009a standard brain using ANTS to obtain the deformation maps. Individual PT-OR

in HCs were binarised, projected into ICBM standard space and then averaged voxel-wise to

construct the OR probability template, which was normalised according to the likelihood of a

voxel being present in the HC OR (0 = voxel present in 0/35 HC ORs; 1 = voxel present in 35/

35 HC ORs).

To facilitate visual comparison of individual binarised PT-ORs with the constructed OR

template, a binarised OR template was produced from the probability OR template. The OR

probability template was thresholded at different levels (assigning a value of 0 to voxels below

the probability thresholding value) and compared with PT-OR reconstructions using a Dice

Similarity Coefficient (DSC) to generate the optimal probability threshold prior to binarisa-

tion. Briefly, the OR probability map in ICBM standard space was thresholded from 1% to

99% with 1% increments; all thresholded OR templates were then individually mapped onto

HC brains in subjects’ native space using inversed deformation maps, and compared with indi-

vidual PT-OR using the DSC. The threshold that produced the largest mean DSC between

Template-OR and PT-OR among HC subjects was used to binarise the OR probability map

and generate the final OR binary template in ICBM standard space.

Fig 1. Optic radiation reconstruction pipeline using probabilistic tractography with ConTrack [33].

https://doi.org/10.1371/journal.pone.0191131.g001
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Whole brain volume assessment, thalamus masks and optic radiation

lesion analysis in subjects with multiple sclerosis

For all subjects with MS, FLAIR images were co-registered with T1-weighted structural images

using FLIRT from FSL Toolbox with 6-parameters transformation. Whole brain T2 lesion

masks were semiautomatically segmented from co-registered FLAIR scans by a trained analyst

using ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php). Prior to the calculation of

whole brain volume and the extraction of WM partial volume maps by using SIENAX (FSL)

[34], the “lesion-filling” tool (FSL) was applied to the T1-weighted images using the T2 lesion

masks to avoid tissue misclassification due to WM pathology [35]. “Lesion-filled” and skull-

stripped T1-weighted brain images were then non-linearly co-registered with ICBM 2009a

standard brain using ANTS to derive reference-subject space deformation matrices. The OR

template constructed from HCs (Template-OR) and from the Jülich histological atlas (Histol-

ogy-OR) were then non-linearly mapped to individual subjects’ space.

Both the Template-OR and Histology-OR masks are probability weighted, while the PT-OR

is derived from individual tractography and presented as a binarised mask. Prior to OR related

calculations, the thalamus was excluded by applying masks derived from FSL/FIRST analysis.

The calculation of all OR related measurements were performed in the subjects’ native space,

unless otherwise specified.

T2 lesion masks were overlaid with the three OR masks (PT-OR, Template-OR and Histol-

ogy-OR) to calculate OR lesion volumes and other OR lesion related metrics. For probability-

weighted OR masks (constructed from either the HC dataset as described, or from the Jülich

histological atlas), the OR T2 lesion volume was calculated with weighted probability as fol-

lows:

V ¼ r
Xn

i¼1

vioi

Where νi is the value of the voxels in the whole brain binarised T2 lesion masks (which is 1

in this case); ωi is the value of the corresponding voxel in the probability-weighted OR masks;

and r is the resolution of the voxel.

OR voxels that overlapped T2 lesions were classified as lesional OR, and OR voxels free of

visible T2 pathology as non-lesional OR. We propose lesional OR as a window for monitoring

de- and re-myelination and axonal loss in focal acute/chronic lesions; and non-lesional OR as

a platform to investigate microstructural changes in normal appearing white matter in MS.

Optic radiation diffusivity analysis

Co-registered axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD) and frac-

tional anisotropy (FA) maps were generated for each subject. OR masks, including entire OR,

lesional and non-lesional OR were co-registered and overlayed with diffusivity maps to calcu-

late the probability weighted mean as follows:

D ¼
Pn

i¼1
DioiPn

i¼1
oi

Where Di is the value of the voxel in the diffusivity map and ωi is the value of the corre-

sponding voxel in the probability-weighted OR masks
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Statistics

Statistical analysis was performed using SPSS 22.0 (SPSS, Chicago, IL, USA). One-way ANOVA

was used to assess differences between OR metrics estimated by different approaches, while Wil-

coxon Signed Rank test was used for pairwise comparison of data that was not normally distrib-

uted. Statistical agreement between methods was assessed with Pearson’s correlation coefficient

(r) and Bland-Altman plots. P values less than 0.05 were considered statistically significant.

Results

Construction of the optic radiation template

Reconstruction of the OR using PT was performed in all HC and MS subjects. Table 1 shows

demographics and baseline measurements for MS patients included in the study. The tem-

plate-OR constructed from 35 HCs is represented as a probability map in (Fig 2A1–2A3).

Topographic conformity with the Jülich histological atlas [8] was visually confirmed (Fig 2B1–

2B3); in particular, Meyer’s loop was clearly defined in the Template-OR (Fig 2D1–2D3). The

estimated volume of Template-OR and Histology-OR was 31.78 mL and 27.35 mL respectively,

relative to a whole standard brain volume of approximate 1511 mL in ICBM reference space.

The binarised template-OR was derived from the probability weighted OR template, opti-

mised using a threshold of 0.32, which produced a maximum average DSC (0.72) with individ-

ual PT-OR in HCs (S1 File). Fig 2C1–2C3 shows the binarised OR template, and Fig 2D1–2D3

shows the 3D reconstruction in ICBM space.

Fig 3 shows the individual PT-OR (Blue) and template-OR (Red) in HC subjects’ space and

the individual DSCs between the two OR methods.

Optic radiation reconstruction in subjects with MS

In subjects with MS, the mean volume of Template-OR was significantly larger than PT-OR

(31.64 vs 28.22 mL, oneway ANOVA, post-hoc Tukey HSD test, p<0.001) and Histology-OR

(31.64 vs 26.70 mL, oneway ANOVA, post-hoc Tukey HSD test, p<0.001), after normalisation

Table 1. MS subject characteristics.

Variable All MS subjects (N = 70)

Sex, n (%)

Female 45 (64.3)

Male 25 (35.7)

Age, mean ± SD, years 41 ± 10.44

Disease duration, mean ± SD, years 5 ± 4.78

SIENAX Normalised BV, mean ± SD (min–max), mL 1510 ± 89.0 (1260–1698)

Normalised PT-ORv, mean ± SD (min–max), mL 28 ± 7.3 (12–41)

Normalised Template-ORv, mean ± SD (min–max), mL 32 ± 3.4 (22–40)

Normalised Histology-ORv, mean ± SD (min–max), mL 27 ± 2.8 (19–34)

PT-ORv/BV, mean ± SD (min–max), % 1.9 ± 0.46 (0.9–3.0)

Template-ORv/BV, mean ± SD (min–max), % 2.1 ± 0.17 (1.6–2.5)

Histology-ORv/BV, mean ± SD (min–max), % 1.8 ± 0.14 (1.3–2.1)

T2 lesion volume, mean ± SD (min–max), mL 7 ± 9.1 (0.1–60)

SD, standard deviation; BV, brain volume; ORv, optic radiation volume; Normalised OR volumes were calculated by

multiplying the absolute OR volume with the scaling factor derived from SIENAX, which was estimated though

affine-registration with MNI152 spacing using the skull image.

https://doi.org/10.1371/journal.pone.0191131.t001
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by skull size. There was no significant difference between Histology-OR and PT-OR volume

(26.70 vs 28.22 mL, oneway ANOVA, post-hoc Tukey HSD test, p = 0.17). Pearson correla-

tions showed a high agreement between Template-OR derived and Histology-OR derived vol-

ume (r = 0.99, p<0.001), while neither correlated with tractography-based PT-OR volume (Fig

4). Bland-Altman plots also demonstrated consistency between Template-OR and Histology-

OR at both large and small OR volumes, but neither with PT-OR (Fig 4).

The standard deviation for Template-OR and Histology-OR was considerably lower com-

pared with PT-OR, indicating considerably lower inter-subject variability (from 26% in

PT-OR to 10.79% in Template-OR and 10.61% in Histology-OR). To minimise the effect of

methodology-related variability, we normalised OR volume by subjects’ brain volume rather

than skull size (to account for MS-related brain atrophy), which further reduced the inter-

Fig 2. (A1-A3) Template-OR constructed from 35 healthy controls using ConTrack probabilistic tractography [33],

represented as a probability map; (B1-B3) OR probability map derived from the Jülich histological atlas [8] (Histology-

OR); (C1-C3) OR binary template thresholded at 0.32 from probability map shown in A; (D1-D3) 3D view of OR

binary template.

https://doi.org/10.1371/journal.pone.0191131.g002
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subject variability coefficient for template-based techniques to 8.3% in Template-OR and 8%

in Histology-OR, while PT-OR variability remained as high (24.6%) (Fig 5).

The mean ± SD (min–max) dice similarity coefficient between methods for OR delineation

were 0.58 ± 0.053 (0.42–0.67), 0.36 ± 0.044 (0.25–0.44) and 0.41 ± 0.007(0.39–0.43) for PT-OR

vs. Template-OR, PT-OR vs. Histology-OR and Histology-OR vs. Template-OR, respectively.

We next investigated the association between OR volume and conventional measures of

disease burden in MS, including normalised brain volume (NBV) and total brain lesion vol-

ume. As expected, template- and histology-based OR volumes correlated well with NBV

(r = 0.655, p<0.001 and r = 0.665, p<0.001, respectively), while the association with PT-OR

volume was less robust (r = 0.372, p = 0.002). In addition, total brain lesion volume signifi-

cantly correlated with Template-OR and His-OR volume (r = -0.612, p<0.001) (r = -0.611,

p<0.001), while no association was found with PT-OR volume (r = -0.155, p = 0.201).

Fig 3. Comparison of Template-OR (Red) and PT-OR (Blue) for all 35 healthy controls in subjects’ native space.

Prior to non-linearly mapping the Template-OR from ICBM space to the subjects’ native space, the probability

weighted template-OR (in ICBM space) was thresholded at 32% and binarised. DSC are labelled at the bottom right

corner of each pair of ORs.

https://doi.org/10.1371/journal.pone.0191131.g003

Fig 4. Comparison of OR volume estimation by PT-OR, Template-OR and Histology-OR.

https://doi.org/10.1371/journal.pone.0191131.g004
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Optic radiation lesion volume estimation in subjects with MS

Fig 6 shows the lesion distribution along the optic radiation of 70 MS subjects. Lesions were

more frequent in the middle part of the OR adjacent to the lateral ventricle, compared with the

anterior and posterior parts of the OR. Wilcoxon Signed Rank test was conducted to compare

the OR lesion differences between three methods. There was no statistically significant differ-

ence found (p = 0.723) between lesion volume estimated by PT-OR (median 0.482ml) and

Template-OR (median 0.581ml), but both methods produced larger lesion volumes than those

derived from Histology-OR approaches (median 0.368, p<0.001). There was a high correlation

between the volume of OR lesions estimated by the three methods (Fig 7).

The differences between PT-OR and Template-OR were consistent at all lesion volume lev-

els, while Histology-OR tended to underestimate OR lesion volume in MS subjects comparing

to PT-OR and Template-OR.

As shown in Fig 8, there were significant correlations between normalised OR volume and

OR lesion volume for Template-OR (r = -0.54, p<0.001) and Histology-OR (r = -0.54,

p<0.001), but not PT-OR (r = -0.011, p = 0.928). The correlation coefficient of whole brain

lesion and normalised brain volume was -0.67 (p<0.001).

Optic radiation diffusivity estimation in subjects with MS

Table 2 summarises the average of diffusivity indices (AD, RD, MD and FA) in the entire OR,

lesional OR and non-lesional OR. There was generally a good agreement between OR

Fig 5. Inter-subject variability of OR volume estimated by PT-OR (blue), template-OR (Green) and Histology-

OR.

https://doi.org/10.1371/journal.pone.0191131.g005

Fig 6. Lesion distribution along the optic radiation in subjects with multiple sclerosis.

https://doi.org/10.1371/journal.pone.0191131.g006
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diffusivity measures derived using all three reconstruction techniques (Table 3). There was no

significant difference between three OR techniques for all diffusivity measurements, with the

exception of AD and MD for PT-OR vs Histology-OR in all the three OR measurement catego-

ries, between Template-OR and Histology-OR for the entire OR AD and between Template-

Fig 7. Comparison of OR lesion volume estimated by PT-OR, Template-OR and Histology-OR. The total lesion volume is shown as logarithmic values.

https://doi.org/10.1371/journal.pone.0191131.g007

Fig 8. Correlations between OR volumes and OR lesion volumes.

https://doi.org/10.1371/journal.pone.0191131.g008

Table 2. OR diffusivity measurement.

PT-OR Template-OR Histology-OR

OR L NL OR L NL OR L NL

Mean AD (SD) ×10−3mm2/s 1.19 (0.047) 1.46 (0.171) 1.17 (0.034) 1.18 (0.038) 1.44 (0.154) 1.16 (0.029) 1.15 (0.030) 1.38 (0.133) 1.13 (0.025)

Mean RD (SD) ×10−3mm2/s 0.65 (0.054) 0.82 (0.120) 0.63 (0.038) 0.64 (0.052) 0.80 (0.109) 0.63 (0.038) 0.63 (0.047) 0.78 (0.096) 0.62 (0.037)

Mean MD (SD) ×10−3mm2/s 0.83 (0.049) 1.03 (0.129) 0.81 (0.030) 0.82 (0.045) 1.01 (0.117) 0.81 (0.029) 0.80 (0.039) 0.98 (0.102) 0.79 (0.028)

Mean FA (SD) 0.38 (0.030) 0.37 (0.050) 0.38 (0.031) 0.38 (0.030) 0.37 (0.044) 0.38 (0.030) 0.37 (0.030) 0.37 (0.041) 0.37 (0.030)

L: lesional OR; NL: non-lesional OR; AD: Axial Diffusivity; RD: Radial Diffusivity; MD: Mean Diffusivity; FA: Fractional Anisotropy

https://doi.org/10.1371/journal.pone.0191131.t002
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OR and Histology-OR for non-lesional AD/MD (Table 3). Diffusivity differences between dif-

ferent OR segmentation techniques were consistently small across low and high values.

Detailed evaluation of statistical precision and accuracy between different methods, including

linear regression and Bland-Altman plots, is provided in Figs 9, 10 and 11.

Table 3 shows the strong correlation of diffusivity measurement among three methods

(p<0.001), except relatively lower agreement between PT-OR vs Template-OR/Histology-OR

for non-lesional OR AD.

Discussion

In this study, we investigated the compatibility of tractography-based and template-based

techniques with optimisation to delineate OR in MS patients and their potential impact on

measurement of MS pathology in the posterior visual pathways. We enhanced previously

described [30,31] analysis pipelines to yield outputs from both individual tractography and

template-based analysis of the OR, while minimising the impact of focal MS lesions. To

achieve this, 1) PT was used for superior performance in the presence of WM lesions and

more realistic reconstruction of Meyer’s loop compared with DT; 2) non-linear co-registra-

tion of reference and subject scans was applied to maintain topographic integrity of WM

structures and facilitate valid inter-subject comparison; 3) susceptibility-induced EPI

distortion was corrected for accurate mapping of lesions and tractography seeding ROIs

derived from FLAIR/T1weighted images to dMRI maps; 4) “lesion filling” was performed to

reduce the impact of variation in lesion patterns on co-registration between standard tem-

plate and individual subjects; and, 5) unlike previous methods [31], free of FA threshold was

applied to avoid inadvertent exclusion of severely damaged tissues and inflamed oedematous

lesions.

The main findings of the study may be summarised as follows:

The template-based approach yielded the largest OR volume with the smallest inter-subject

variability. This approach also showed the highest correlation with NBV and total brain lesion

volume, and displayed a relatively larger OR lesion load.

Conversely, individual probability-based tractography resulted in a significantly smaller

mean OR volume that did not correlate with Template-OR or His-OR derived volumes.

PT-OR volume was weakly associated with NBV and did not correlate with total brain lesion

load.

These discrepancies are in part attributable to the particular methodology of OR delinea-

tion. For example, correlation between OR and brain volume is inherent to the template-based

technique, since it is based on non-linear transformation of the OR template, which is in turn

related to the shape and size of occipital lobe. Hence, the size of the projected OR is expected

to be proportional to the degree of tissue loss both within the OR and surrounding WM

Table 3. Agreement between three methods in diffusivity measurement.

r (PT-OR vs Template-OR) r (PT-OR vs Histology-OR) r (Template-OR vs Histology-OR)

OR L NL OR L NL OR L NL

AD 0.81 0.97 0.64 0.74 0.89 0.59 0.96 0.94 0.96

RD 0.99 0.96 0.98 0.98 0.86 0.97 0.99 0.92 0.99

MD 0.97 0.97 0.92 0.94 0.89 0.90 0.99 0.94 0.98

FA 0.91 0.93 0.91 0.91 0.93 0.91 0.99 0.81 0.99

L: lesional OR; NL: non-lesional OR; AD: Axial Diffusivity; RD: Radial Diffusivity; MD: Mean Diffusivity; FA: Fractional Anisotropy

https://doi.org/10.1371/journal.pone.0191131.t003
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structures. It is difficult to exclusively measure OR volume given that co-registration is based

on T1/T2 structural imaging, where limited contrast between the OR and surrounding WM

impedes the generation of accurate OR- specified deformations during non-linear co-registra-

tion. On the other hand, non-OR tissue loss has limited impact on the reconstruction of the

OR by individual tractography based on WM tensors that provide contrast between OR and

surrounding WM. Segmentation using PT-OR may, therefore, more accurately reconstruct

individual ORs despite the manual fibre cleaning (an essential element of probabilistic tracto-

graphy) and the effect of focal lesion-associated decreases in anisotropy inevitably causes

higher variability of PT-derived OR volume.

The larger OR lesion volume derived by the template-based technique, which yields the

largest OR volume, is also not surprising, since MS lesions have a periventricular predomi-

nance and commonly involve the OR.

Fig 9. Comparison of OR diffusivity metrics between PT-OR and Template-OR approaches. Row (a), (c), (e) are scatter plots with linear fitting; x-axis is

PT-OR measurement and y-axis is Template-OR measurement. r is the Pearson’s correlation coefficient. Row (b), (d), (f) are Bland-Altman plots for comparing

two methods. x-axis is the mean of PT-OR and Template-OR measurements. y-axis is the difference between PT-OR and Template-OR measurements.

https://doi.org/10.1371/journal.pone.0191131.g009
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Previous studies have compared tractography and template-based techniques to assess MS-

related brain pathology. Lagana et al., [32] studied the corpus callosum in MS and concluded

that individual tract-based (deterministic) analysis is more sensitive than atlas-based methods

for measuring MS disability related structural changes, particularly in small cohorts. Reich

et al., [31] applied a template-based method [30] to both healthy controls and patients with MS

and yielded results comparable with those obtained using a conventional DT approach on cor-

pus callosum, optic tract, corticospinal tract and OR. However, brain volume loss and dynamic

ventricular enlargement in MS critically impacts the mapping of template-subject ROIs based

on transformation matrices estimated by linear co-registration, the technique used in the

Reich study [31]. Moreover, the FA thresholds chosen in this study (FA> 0.13 to streamline

tractography inclusion criteria; FA< 0.25 to remove CSF partial volume contamination)

Fig 10. Comparison of OR diffusivity metrics between PT-OR and Histology-OR approaches. Row (a), (c), (e) are scatter plots with linear fitting; x-axis is

PT-OR measurement and y-axis is Histology-OR measurement. r is the Pearson’s correlation coefficient. Row (b), (d), (f) are Bland-Altman plots for comparing

two methods. x-axis is the mean of PT-OR and Histology-OR measurements. y-axis is the difference between PT-OR and Histology-OR measurements.

https://doi.org/10.1371/journal.pone.0191131.g010
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could potentially ‘remove’ not only chronic destructive MS lesions, but also acute, severely

inflamed edematous lesions.

A number of advanced diffusion tissue models have recently been applied to improve trac-

tography outcomes in OR segmentation, with particular attention to the quality of Meyer’s

loop reconstruction. Meyer’s loop comprises the inferior OR fascicles that abruptly change ori-

entation at the temporal pole, thereby posing significant challenges for tractography algo-

rithms. Thus, Kammen et. al [36] reported a fully-automated pipeline for OR reconstruction

using fibre orientation distribution (FOD) [37,38] with high order spherical harmonics

(SPHARM) on multi-shell high angular resolution diffusion imaging (HARDI) data from the

Human Connectome Project (HCP) [39,40]. This pipeline generated Meyer’s loop

Fig 11. Comparison of OR diffusivity metrics between Template-OR and Histology-OR approaches. Row (a), (c), (e) are scatter plots with linear fitting; x-axis

is Template-OR measurement and y-axis is Histology-OR measurement. r is the Pearson’s correlation coefficient. Row (b), (d), (f) are Bland-Altman plots for

comparing two methods. x-axis is the mean of Template-OR and Histology-OR measurements. y-axis is the difference between Template-OR and Histology-OR

measurement.

https://doi.org/10.1371/journal.pone.0191131.g011
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reconstruction and retinotopic organisation of the OR consistent with a post-mortem dissec-

tion study [41]. Chamberland et al. developed a technique that employs additional ROIs based

on anatomicallyexpected OR fibre orientation [42], and demonstrated superior delineation of

Meyer’s loop compared with conventional tractography.

Therefore, new tractography algorithms potentially improve the performance of individual

tract-based approaches. However, while sophisticated tractography delineates the OR with

increased precision and accuracy, advanced pipelines may require demanding MRI acquisition

techniques and complex tissue modelling, limiting their applicability to multicentre clinical

trials in which MRI centre selection is primarily determined by the capacity of study sites to

recruit subjects. For example, the multi-shell acquisitions used in the HCP would be difficult

to deploy in a clinical environment.

One major advantage of template-based WM segmentation is that it reduces the minimum

acquisition requirements for performing tract-specific analysis and may even be applied to

datasets with no dMRI sequences (or with sub-optimal diffusion acquisitions including retro-

spective analyses). Template-based WM tract segmentation is likely to require significantly

less image analysis expertise and computational power than individual tractography-based

analysis. Typically, it includes following steps: data format conversion, brain extraction, non-

linear registration and template mapping. Additional steps for MS images include lesion

analysis and lesion filling. The pipeline is highly automatable and particularly applicable to

large datasets. In the present study, we have specifically addressed concerns regarding the

reliability of using the Jülich histological atlas for template-based mapping and tract specific

analysis.

Conversely, individual tractography-based methods typically require more complex pipe-

lines and involve extensive manual QA when compared with template-based OR reconstruc-

tion. In general, the image processing pipeline includes the following steps: data format

conversion, dMRI pre-processing (Eddy current, movement and EPI susceptibility distortion

correction), tensor reconstruction, rigid co-registration with T1/T2 weighted images, place-

ment of seeding ROIs and tractography followed by manual fibre cleaning. Although fully

automated methods have been developed for seeding ROIs and tractography [36], close quality

assurance with expert knowledge of anatomy and neuroimaging is imperative. Significant vari-

ations in pathology, such as NBV and focal white matter lesions, further challenge automated

tractography algorithms and limit their applicability to diseases such as MS. Despite this, indi-

vidual tractography-based methods remain valuable. Thus, while template-based methods

present WM structures as a cluster of voxels devoid of the fibre “pathway” information (ROI-

type analysis), fibre-based tractography provides connectivity information, and facilitates the

construction of diffusivity profiles [43] along fibre bundles. Additionally, in conditions charac-

terised by localised brain pathology, fibre-based tractography permits separation of the OR

into ‘lesional’ and ‘non-lesional’ fibres, as defined by the presence or absence of lesions at any

point along specific OR fibres, to quantitate tissue damage beyond but also relevant to focal T2

lesions in applications such as the analysis of Wallerian and retrograde neurodegeneration

[44,45]. Both mechanisms of degeneration potentially contribute to progressive irreversible tis-

sue loss in MS [44,46,47]. ‘Lesional’ fibres can be further separated into those traversing the

lesion, proximal to the lesion (between cell body and lesion, to study retrograde neurodegen-

eration) and distal to the lesion (between lesion and axon terminal, to study Wallerian neuro-

degeneration) [44]. “non-lesional” fibres, on the other hand, identify normal appearing white

matter that is unrelated to distant lesions, while maintaining topological conformity with adja-

cent lesional fibresreducing inter- and intra-subject variability[44,48].

A potential approach that combines the merits inherent to both methods could include

non-linear OR template mapping using deformation matrices derived from non-linear co-

The optic radiation in multiple sclerosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0191131 January 17, 2018 15 / 19

https://doi.org/10.1371/journal.pone.0191131


registration between WM tensors (or the OR FA map), rather than T1/T2 structural images.

This hypothetical pipeline may avoid the complexity of tractography and its inherently high

variance, while maintaining the integrity of WM tract structure that is lost when segmentation

is attempted using T1/T2 structural images. However, tools to interpolate the tensors within

focal WM lesions and remove their impact on non-linear co-registration (analogous to lesion-

filling tools for T1 structural images) are yet to be developed. Additionally, the application of

free water elimination tools [49], which remove the isotropic component from lesions, may

further reduce the impact of lesions on tensor based co-registrations.

Conclusion

The application of ConTrack probabilistic tractography and template-based OR reconstruc-

tion techniques in subjects with MS yields comparable OR lesion volumes and diffusivity mea-

surements, despite differences in the OR volume estimation. The choice of OR reconstruction

technique should be determined primarily by the research question and the nature of the avail-

able dataset. Template-based approaches are particularly suited to the semi-automated analysis

of large image datasets and have utility even in the absence of dMRI acquisitions. Individual

tractography methods, while more complex than template-based OR reconstruction, permit

measurement of the diffusivity profile along fibre bundles that are affected by specific MS

lesions or other focal pathology.
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