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Abstract

The in vivo efficacy of liposomal encapsulated ciprofloxacin in two formulations, lipoquin

and apulmiq, were evaluated against the causative agent of anthrax, Bacillus anthracis.

Liposomal encapsulated ciprofloxacin is attractive as a therapy since it allows for once daily

dosing and achieves higher concentrations of the antibiotic at the site of initial mucosal entry

but lower systemic drug concentrations. The in vivo efficacy of lipoquin and apulmiq deliv-

ered by intranasal instillation was studied at different doses and schedules in both a post

exposure prophylaxis (PEP) therapy model and in a delayed treatment model of murine

inhalational anthrax. In the mouse model of infection, the survival curves for all treatment

cohorts differed significantly from the vehicle control. Ciprofloxacin, lipoquin and apulmiq

provided a high level of protection (87–90%) after 7 days of therapy when administered

within 24 hours of exposure. Reducing therapy to only three days still provided protection of

60–87%, if therapy was provided within 24 hours of exposure. If treatment was initiated 48

hours after exposure the survival rate was reduced to 46–65%. These studies suggest that

lipoquin and apulmiq may be attractive therapies as PEP and as part of a treatment cocktail

for B. anthracis.

Introduction

Bacillus anthracis, the etiological agent of anthrax, is a spore-forming, gram-positive, rod

shaped bacterium. Humans are usually infected by exposure to diseased animals or their prod-

ucts, although exposure from bioterrorism (USA, 2001) or accidental release (Sverdlovsk,

USSR, 1979) has occurred. The route of exposure determines the disease caused: cutaneous,

gastrointestinal or inhalation anthrax. Cutaneous anthrax is the most common form of the dis-

ease in humans, which has a mortality rate approaching 20%, due to septicemia, if untreated

[1]. Inhalation anthrax has a mortality rate in humans of 45–80% even with antibiotic treat-

ment at onset of symptoms [1–3].

Inhalational anthrax develops when B. anthracis spores are deposited in the alveolar spaces

of the lung. The spores move, via a host carrier cell such as a macrophage or dendritic cell,

from the alveolar spaces to the lymph nodes, where the spores germinate into vegetative bacte-

ria [4–6]. Although, it has also been reported that spores can germinate in the lungs or within

PLOS ONE | https://doi.org/10.1371/journal.pone.0228162 January 24, 2020 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Stratilo CW, Jager S, Crichton M,

Blanchard JD (2020) Evaluation of liposomal

ciprofloxacin formulations in a murine model of

anthrax. PLoS ONE 15(1): e0228162. https://doi.

org/10.1371/journal.pone.0228162

Editor: Nupur Gangopadhyay, CCAC, UNITED

STATES

Received: July 31, 2019

Accepted: January 8, 2020

Published: January 24, 2020

Copyright: © 2020 Stratilo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: J. B. is an employee of

Aradigm Corp and has been named on Aradigm

patents. C.W.S., M.C. and S.J. declare no potential

conflict of interest. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

http://orcid.org/0000-0002-2271-7331
https://doi.org/10.1371/journal.pone.0228162
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228162&domain=pdf&date_stamp=2020-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228162&domain=pdf&date_stamp=2020-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228162&domain=pdf&date_stamp=2020-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228162&domain=pdf&date_stamp=2020-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228162&domain=pdf&date_stamp=2020-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228162&domain=pdf&date_stamp=2020-01-24
https://doi.org/10.1371/journal.pone.0228162
https://doi.org/10.1371/journal.pone.0228162
http://creativecommons.org/licenses/by/4.0/


host cells and move to the lymph nodes without a carrier cell [7–9]. Once in the lymph node

these bacteria replicate and produce exotoxins and a capsule, which results in bacterial escape

from the lymph node to the bloodstream, disseminating throughout the body causing systemic

disease [4, 8]. In humans, initial symptoms of respiratory anthrax are general flu like symp-

toms, lasting for two to three days. Sudden onset of acute illness is characterized by dyspnea,

stridor, and fever leading to respiratory distress followed by death within days. Early initiation

of treatment, including antimicrobials, is crucial for increased survivorship in animal models

and humans [10–12].

Post exposure therapy protocols have been demonstrated in several animal models [13–15].

Most of these protocols include the use of a fluoroquinolone antibiotic, sometimes in combi-

nation with other antibiotics and/or post exposure vaccination [14, 15]. The inclusion of anti-

body based therapies has also been shown to improve survivorship in animal models [16, 17].

The Centre for Disease Control and Prevention (CDC) has provided guidance regarding post

exposure prophylaxis (PEP) and treatment options for anthrax. PEP of an asymptomatic per-

son includes antibiotic treatment using a fluoroquinolone antibiotic or doxycycline [18]. A

cocktail of drugs, including a fluoroquinolone antibiotic and an antibiotic that inhibits protein

synthesis, to supress anthrax toxin production, is recommended for treatment of B. anthracis
infections. If meningitis is possible or confirmed, a β lactam antibiotic is included in the cock-

tail [18].

Administering antibiotics to target specific tissues, such as inhaled antibiotics that allow for

delivering a relatively high concentration of drugs directly to lungs, would be an improvement

compared to traditional systemic treatments. This approach would target the antibiotics to the

lungs while plasma concentrations remain low, sparing the patient the potential side effects

and toxicity associated with systemic administration of these drugs [19–22]. Aradigm corpora-

tion has developed a liposomal encapsulated ciprofloxacin for inhalation delivery. Two formu-

lations have been developed; lipoquin containing only liposomal encapsulated ciprofloxacin

and apulmiq, containing a mix of free and encapsulated ciprofloxacin; the development of

these formulations have been reviewed [23]. Both drugs have been evaluated in human clinical

trials [23–27]. Apulmiq completed phase 3 clinical trials for treatment of non-cystic fibrosis

bronchiectasis patients with chronic Pseudomonas aeruginosa lung infections [28]. Once daily

dosing of this product provides high sustained concentrations of ciprofloxacin to the lungs

[29]. Liposome encapsulated drugs are ingested by phagocytic cells, including macrophages,

and may accumulate in the tissues of the mononuclear phagocyte system, this may be of thera-

peutic value for some bacterial pathogens [30–32]. Lipoquin and apulmiq have specifically

been shown to be phagocytized by macrophages and kill intracellular Mycobacteria avium and

M. abscessus in in vitro and mouse lung infection models [33].

Liposomal ciprofloxacin formulations have been evaluated for several biothreat agents

including Francisella tularensis, Yersinia pestis, and Coxellia burnetii [34–37]. All previous

studies have demonstrated that these formulations are useful therapies for the biological agents

of interest, both as a treatment and as a PEP [35–37]. This paper evaluates these two formula-

tions of liposomal encapsulated ciprofloxacin as post exposure prophylaxis and as treatments

in a mouse model of anthrax.

Materials and methods

Bacterial cultures and spores

The B. anthracis Ames strain is part of Defence Research and Development Canada—Suffield

Research Centre (DRDC–SRC) permanent collection. It was originally isolated in 1981 from a

dead cow in Texas. B. anthracis Ames spores were prepared according to the method of
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Leighton and Doi [38] with modification. The substantive changes to the protocol included:

the sporulation media used was a casein hydrolysate yeast extract (CCY) liquid medium, vege-

tative cells were killed by incubation in 50% ethanol, and a density gradient centrifugation in

Percoll (GE healthcare, USA) was used to clean the final spore prep [39]. Spores were con-

firmed by phase contrast microscopy and malachite green staining to be>99% dormant,

bright-phase spores. This stock spore suspension was stored at 4˚C and quantified by serial

dilution enumeration after overnight incubation at 35˚C on 5% sheep blood agar (SBA).

Antibiotics

Ciprofloxacin (CIPRO, Bayer, USA), lipoquin (liposomal ciprofloxacin for inhalation) (Ara-

digm, USA) and apulmiq (dual release ciprofloxacin for inhalation) (Aradigm, USA) were

used in this study. CIPRO (Bayer, USA) 20 mg ciprofloxacin base/mL and lipoquin 50 mg

expressed as ciprofloxacin HCl/mL were used as provided. Apulmiq 35 mg, expressed as cipro-

floxacin HCl/mL, was prepared by mixing equal volumes at a 50:50 ratio of lipoquin (50 mg

ciprofloxacin HCL/mL) and CIPRO (20 mg ciprofloxacin HCL/mL).

Animals

Pathogen-free female BALB/c mice (Charles River Laboratories, Quebec, Canada) weighing

approximately 20 g were used throughout the study. Animals were sorted randomly into

groups of five per cage. Animals were housed in Allentown NexGen EDGE cage system with

Micro Barrier top with enrichment. Animals were allowed access to food and water ad libitum
and housed in groups of five in 12 hour light–dark cycles.

Ethics statement

All procedures were performed in accordance with protocols approved by the Defence

Research and Development Canada Suffield Research Centre Institutional Animal Care and

Use Committee, and met or exceeded the standards of the Canadian Council on Animal Care

(CCAC).

Intranasal infection in BALB/c mice

The 50% lethal dose of B. anthracis Ames spores (LD50) in BALB/c mice was 3.4 x 104 colony-

forming units (CFU) when challenged via intranasal installation, which is in agreement with

other published work [40]. Mice (BALB/c) (n = 5/group) were anesthetized with isoflurane

and challenged via the intranasal (i.n.) route with approximately 10 LD50 B. anthracis Ames

spores. Mice receiving the challenge dose displayed no symptoms until approximately 48

hours post exposure. Mice could display limited symptoms (hunching, piloerection, orbital

tightening) up to two days prior to acute symptoms including laboured irregular breathing

and lethargy, which would indicate end state infection and the mice being euthanized [41, 42].

To verify final bacterial concentrations and installation doses, serial diluted and plated colonies

were enumerated after overnight incubation at 35˚C on 5% sheep blood agar (SBA).

Antibiotic efficacy in vivo
Apulmiq (50 mg/kg or 10 mg/kg) or lipoquin (50 mg/kg or 10 mg/kg) were administered once

daily to mice anesthetized with isoflurane via the intranasal (i.n.) route. Ciprofloxacin (30 mg/

kg) was administered twice daily to mice via intraperitoneal (i.p) injection. Both treatments

were compared to phosphate buffer saline (PBS) controls.
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For study one, a post exposure prophylaxis (PEP) therapy model was used; in which groups

of five infected mice (three replicates) were treated with a 10mg/kg or a 50 mg/kg dose at 24 hr

post-challenge and continued for 7 days. In the second study, a treatment model was used; in

which groups of five infected mice (three replicates) were treated 48 hr post-challenge (at the

onset of the first symptoms of infection) with a 50 mg/kg of apulmiq or lipoquin and contin-

ued for 7 days. In the third study, a post exposure prophylaxis (PEP) therapy model was used;

groups of five infected mice (three replicates) were provided therapy with a 50mg/kg dose at

24 hr post-challenge and continued for 3 days. In all studies, animals were evaluated post ther-

apy for at least 30 days.

To assess bacterial burden control mice were culled as acute symptoms developed at which

time livers, lungs, and spleens were harvested and processed to determine bacterial loads. Mice

that survived to end of experiment were euthanized and livers, lungs, and spleens were excised,

and the homogenates were plated on SBA to determine the bacteria load based on the presence

of B. anthracis.

Data analysis

For all experiments, Kaplan-Meyer survival curves were compared by the log-rank (Mantel-

Cox) test using Prism Version 6.01, GraphPad Software. In vivo experiments were repeated

three times using groups of five. Significance of lung CFU vs. control mice were calculated

using Student’s t Test for unpaired data.

Results

The in vivo efficacy of lipoquin and apulmiq delivered by intranasal instillation was studied at

different doses and schedules in both a post exposure prophylaxis (PEP) therapy model (ther-

apy initiated 24 hours after exposure) and in a delayed treatment model of murine inhalational

anthrax (treatment initiated 48 hours after exposure, approximately at the onset of first symp-

toms in this model). Unencapsulated free ciprofloxacin delivered via the inhalation route has a

very short half-life, approximately one hour, and is not an effective antimicrobial [43, 44]. It is

also very irritating and not well tolerated by the animal models; therefore it was not included

as a control in the experimental plan [37].

Mice in the ciprofloxacin treatment groups received ciprofloxacin at 30 mg/kg (b.i.d.) via

the i.p. route of administration. This dosing regimen was selected to ensure that the plasma

area under the curve (AUC) for a 24 hour period was similar in mice compared to the human

label dose (11.6 μg hr/g compared to 10.7 +/- 2.6 μg hr/g) [37, 45]. Both lipoquin and apulmiq

were administered at 50 mg/kg and 10 mg/kg doses for PEP and 50mg/kg for the treatment

model. These doses were chosen for consistency between earlier studies, with the lower dose

approximating a human dose based on plasma concentrations [35–37].

Efficacy study 1

The efficacy of ciprofloxacin, lipoquin and apulmiq was evaluated in a post-exposure prophy-

laxis model after a lethal B. anthracis Ames challenge. Mice were challenged with 10 LD50 of B.

anthracis Ames, and were treated as described, 24 hours after exposure for seven days. Three

replicates of the experiment occurred. The survival curves for the ciprofloxacin, lipoquin and

apulmiq cohorts differed significantly (p<0.0001) from the vehicle control cohort (Fig 1).

Median time to end state infection for control animals was 4 days post challenge, all control

animals succumbed or reached end state infection by day six. Percent survival 30 days post

therapy for each cohort was ciprofloxacin (87%), lipoquin (87%) and apulmiq (90%). Survival

of mice that received a reduced daily dose of the lipoquin or apulmiq of 10 mg/kg for seven
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days was 80% for both formulations and not significantly different at the end of the experiment

from mice that were dosed at 50 mg/kg for seven days (Fig 1).

Efficacy study 2

The efficacy of ciprofloxacin, lipoquin and apulmiq as a treatment model after a lethal B.

anthracis challenge was investigated. Mice were challenged with 10 LD50 of B. anthracis Ames

and were dosed, as described, 48 hours after exposure for seven days. The survival curves for

the ciprofloxacin, lipoquin and apulmiq cohorts differed significantly (p<0.0001) from the

vehicle cohort (Fig 2). The median survival for the vehicle control cohort was 3 days with all

control animals reaching end point by day 7. All three treatments provided increased survival,

lipoquin (46%), apulmiq (65%) and ciprofloxacin (64%) until the end of the experiment com-

pared to controls (p<0.0001). It should be noted that the majority of animals who succumb to

infection did not survive until the end of treatment cycle (day nine).

Efficacy study 3

To further evaluate the efficacy of liposomal antibiotics as a therapy for B. anthracis a dose

sparing study was undertaken. Mice were challenged with 10 LD50 of B. anthracis Ames and

were treated, as described, 24 hours after exposure for three days. The survival curves for the

ciprofloxacin, apulmiq and lipoquin cohorts differed significantly (p<0.0001) from the vehicle

cohort (Fig 3). All three therapies provided increased survival, lipoquin (87%), apulmiq (60%)

and ciprofloxacin (67%) until the end of the experiment compared to controls (p<0.0001).

The median survival for the vehicle control cohort was 4 days with all animals succumbing by

day 6.

Upon study completion, spleens, livers, and lungs from surviving mice were excised and

the homogenates were plated on SBA to determine the presence of B. anthracis. Consistent

Fig 1. The efficacy of ciprofloxacin, lipoquin and apulmiq was evaluated in a post-exposure prophylaxis model after a lethal B. anthracis Ames challenge.

Balb/c mice were challenged with 10 LD50 of B. anthracis Ames, and were treated as described, 24 hours after exposure for seven days. Therapeutic efficacy of

intranasal delivered apulmiq and lipoquin (once daily) was compared at 50 mg/kg and 10 mg/kg versus intraperitoneal delivered ciprofloxacin (b.i.d.) and PBS-

treated control mice. Graphs show the survival of mice following 7 days of therapy. All treatments improved survival compared to PBS (P< 0.001). There was no

significant difference between the two concentrations of lipoquin and apulmiq administered.

https://doi.org/10.1371/journal.pone.0228162.g001
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with this murine model of inhalational anthrax, residual B. anthracis were recovered from

lungs of surviving mice (day 35 of experiment) that had received therapy. Although the bacte-

rial counts were significantly less than lungs isolated from control animals (Fig 4). The bacte-

rial loads of lungs isolated from mice from the various treatments group were not significantly

different between groups. No bacteria were recovered from the spleens and livers of surviving

mice that had received therapy. Control animals, which had succumbed to infection, had large

numbers of bacteria isolated (mean numbers) from their liver (4.4 x107 CFU), lungs (5.5 x107

CFU) and spleen (2.8 x 107 CFU). Positive lung results with negative spleens and livers are

consistent with the infectious model post therapy [46].

Discussion

Post exposure prophylaxis and treatment of anthrax includes antibiotic therapy, usually com-

prised of a fluoroquinolone antibiotic alone or as part of a cocktail. New formulations of cipro-

floxacin, lipoquin and apulmiq, may be attractive alternatives to oral fluoroquinolones for

treatment of anthrax, due to their dosing route, schedule, and attractive pharmacokinetics.

Lipoquin and apulmiq are liposome encapsulated and administered via inhalation, and were

developed for treating chronic lung infections and evaluated in human clinical trials [23, 26,

28]. Earlier work has demonstrated that the maximum concentration (Cmax) for an intranasal

dose of lipoquin was approximately 100 fold higher in the lung and the AUC within the lungs

for a 24 hour period for intranasal lipoquin was approximately 1000 fold higher compared to a

dose of ciprofloxacin via the oral route [35]. Administration of the two drugs, lipoquin and

apulmiq directly into the airway in mice provides a lung dose 20 fold higher than an i.p. dose

of ciprofloxacin while offering a 10 fold reduction in systemic exposure [37]. Therefore, deliv-

ering antibiotics directly to the airway and lungs, enables higher antibiotic concentration at

the site of infection or initial mucosal entry of the infectious agents as well as lower systemic

exposure, reducing the chance of side effects, including microbiome impacts from therapy.

Fig 2. The efficacy of ciprofloxacin, lipoquin and apulmiq was evaluated in a treatment model after a lethal B. anthracis Ames challenge. Balb/c mice were

challenged with 10 LD50 of B. anthracis Ames, and were treated as described, 48 hours after exposure for seven days. Efficacy of mice (n = 5x3) versus PBS-treated

control mice was evaluated. Therapeutic efficacy of intraperitoneal delivered ciprofloxacin (b.i.d.) and intranasal delivered apulmiq and lipoquin (once daily) were

compared. All treatments improved survival compared to PBS (P< 0.001).

https://doi.org/10.1371/journal.pone.0228162.g002
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Furthermore, providing an antibiotic formulation after a biological agent exposure may pre-

vent the establishment of an infection and the appearance of symptoms since a large sustained

targeted dose of antibiotic is provided directly to the site of initial exposure.

When mice were treated for seven days starting at 24 hr post-challenge, the mice treated

with apulmiq, lipoquin or ciprofloxacin had 87–90% mean survival. In contrast, when therapy

started at 24 hr after exposure and continued for 3 days, the lipoquin-treated groups had the

highest mean survival rate (87%) compared to mean survival for apulmiq and ciprofloxacin

(60% and 67% respectively). One possible explanation for lipoquin treatment having better

efficacy shortly after exposure than apulmiq and free ciprofloxacin (i.p.) is that it has the high-

est resultant dose of ciprofloxacin in liposomal form, i.e., 50 mg/kg (100% of drug) vs. 35 mg/

kg (71% of drug) for apulmiq and 0 mg/kg (0% of drug) for free ciprofloxacin. Encapsulated

antibiotics are phagocytosed by macrophages therefore allowing the antibiotic to be in close

proximity to the newly germinated B. anthracis vegetative cells in the macrophages and during

the outgrowth of spores in the draining lymph nodes [7, 9].

When dosing of the encapsulated ciprofloxacin was reduced to 10 mg/kg for seven days

the survival rates of the treated mice did not significantly change (80% for both formulations

at 10 mg/kg vs 87% and 90% for lipoquin and apulmiq respectively at 50 mg/kg). When ther-

apy was delayed until 48 hrs post challenge, the efficacy of the encapsulated formulations was

reduced as did the efficacy of systemic treatment with traditional i.p. ciprofloxacin. At this

time point lipoquin, apulmiq, and ciprofloxacin had 46–65% mean survival at end of the

experiment. The relative efficacy of the antibiotics was not significantly different; apulmiq

had the highest survival rate in both the groups that were treated for seven days. Earlier ther-

apy (initiation at 24hrs vs 48hrs) did offer significantly improved survival rates for lipoquin

(p<0.009), and were marginally improved for apulmiq (p<0.048) treatment groups but not

for ciprofloxacin (p<0.069) treatment groups. This may be due to the development of a

Fig 3. The efficacy of ciprofloxacin, lipoquin and apulmiq was evaluated in a post-exposure prophylaxis model after a lethal B. anthracis Ames challenge.

Balb/c mice were challenged with 10 LD50 of B. anthracis Ames, and were treated as described, 24 hours after exposure for three days. Efficacy of mice (n = 5x3)

versus PBS-treated control mice. Therapeutic efficacy of intraperitoneal delivered ciprofloxacin (b.i.d.) and intranasal delivered apulmiq and lipoquin (once daily)

were compared. All treatments improved survival compared to PBS (P< 0.001).

https://doi.org/10.1371/journal.pone.0228162.g003
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systemic infection; therefore targeted therapy to the site of initial infection would no longer

be as effective.

Both apulmiq and lipoquin attain high efficacy (i.e., survival of 87–90%) against inhala-

tion B. anthracis Ames infection in mice if therapy is initiated within 24 hours of exposure. If

length of the treatment period was extended and vaccination was provided during the ther-

apy period high survival would be likely [14]. The eradication of the spores that remain in

the lungs or protective immunity would need to be acquired to ensure protection from resid-

ual spores.

In conclusion, inhaled encapsulated forms of ciprofloxacin, lipoquin and apulmiq, may be

an attractive alternative to traditional oral fluoroquinolone antibiotics for PEP and treatment

of pulmonary anthrax. Encapsulated ciprofloxacin has improved or equal efficacy as a PEP or

treatment for anthrax in a mouse model and has a more attractive dosing schedule compared

to oral ciprofloxacin in humans. Future studies that deliver these drugs in an aerosol form to

additional animal models, including nonhuman primates, for prophylaxis and treatment of

bacterial biothreat agent infections, should refine the efficacy of this drug as a general pre and

post exposure prophylaxis and treatment for these agents of interest.

Fig 4. Bacterial load of lungs from surviving mice 30 days post therapy compared to lungs of treatment control mice (PBS) who succumb to

infection. S1, S2, S3 refers to study number referenced in results. C is ciprofloxacin, A is apulmiq, and L is lipoquin. There was no significant difference

in lung bacterial load between any treatment groups. All treatment groups were significantly different than PBS control group (p<0.001).

https://doi.org/10.1371/journal.pone.0228162.g004
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