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Martina Pilátová,1,9 Jingqi Fu,2 David W. Walker,4,5 Rebecca Berdeaux,2,3 Frédéric Geissmann,1 and Marc S. Dionne1,*
1Centre for theMolecular and Cellular Biology of Inflammation and Peter Gorer Department of Immunobiology, King’s College London School

of Medicine, London SE1 1UL, UK
2Department of Integrative Biology and Pharmacology
3Graduate School of Biomedical Sciences

University of Texas Health Science Center at Houston, Houston, TX 77030, USA
4Department of Integrative Biology and Physiology
5Molecular Biology Institute
University of California, Los Angeles, Los Angeles, CA 90095, USA
6Present address: Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
7Present address: Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
8Present address: IMI Programme, UFR de Chimie et de Biologie, Université Joseph Fourier, 38 041 Grenoble Cedex 9, France
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SUMMARY

Infections disturb metabolic homeostasis in many
contexts, but the underlying connections are not
completely understood. To address this, we use
paired genetic and computational screens in
Drosophila to identify transcriptional regulators of
immunity and pathology and their associated target
genes and physiologies. We show that Mef2 is
required in the fat body for anabolic function and
the immune response. Using genetic and bio-
chemical approaches, we find that MEF2 is phos-
phorylated at a conserved site in healthy flies and
promotes expression of lipogenic and glycogenic
enzymes. Upon infection, this phosphorylation is
lost, and the activity of MEF2 changes—MEF2 now
associates with the TATA binding protein to bind a
distinct TATA box sequence and promote antimicro-
bial peptide expression. The loss of phosphorylated
MEF2 contributes to loss of anabolic enzyme expres-
sion in Gram-negative bacterial infection. MEF2 is
thus a critical transcriptional switch in the adult fat
body between metabolism and immunity.

INTRODUCTION

Metabolic regulation is tightly and ubiquitously linked with im-

mune responses and inflammatory signaling (Hotamisligil,

2006). Prolonged or excessive immune activation can drive

metabolic disruption and cause wasting of fatty and lean tissues.

This effect is seen in many human infections; it is particularly

prominent in Gram-negative sepsis and in persistent bacterial in-
fections such as tuberculosis (Schwenk and Macallan, 2000;

Tappy and Chioléro, 2007). Because of the many etiologies

behind infection-induced cachexia, numerous molecular mech-

anisms have been proposed to underlie this condition, with sig-

nals including lipid mediators and cytokines and transcription

factors including FOXO, NF-kB, AP-1, Stats, and nuclear recep-

tors acting singly or in combination (Tracey and Cerami, 1994;

Vallerie and Hotamisligil, 2010; Van den Berghe, 2002). It has

been a major challenge to the field to experimentally link any

one of these molecular mechanisms to observed metabolic

dysfunction following infection in vivo.

Chronic or acute infection disrupts systemic metabolism in

Drosophila as well as in vertebrates. We have previously shown

that infection with Mycobacterium marinum causes metabolic

disruptions in Drosophila resulting, in part, from a systemic loss

of AKT activity (Dionne et al., 2006). This promotes pathological

FOXOactivationandan inability toproducenewmetabolic stores.

Activation of the Toll pathway in the fly fat body, either genetically

or by infection, is sufficient to partially phenocopy this effect, both

at the level of AKT activity andmetabolic storage (DiAngelo et al.,

2009). Listeria infection causes similar metabolic pathology

(Chambers et al., 2012). The function of the link between immune

activation and loss of anabolic signaling activity is unclear, espe-

cially because FOXO is able to activate antimicrobial peptide

expression but is not required for resistance to infection (Becker

et al., 2010).Howother anabolic or catabolic pathwaysarealtered

by infection in flies is also unknown, though it is clear that there are

other common regulators of these processes, at least at the level

of the whole organism (Rynes et al., 2012).

We used a paired screening strategy to identify the pathways

and transcriptional networks that regulate host physiology in vivo

in response to infection. One screen used computational anal-

ysis of gene expression after different immune challenges to

identify coregulated genes and their predicted transcriptional
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Figure 1. Computational Predictions for

Transcriptional Regulators of Infection

(A) Diagram of our approach.

(B) Expression and predicted regulation of gene

clusters. Left, log2(infection/control) of the median

of each cluster in each infection condition (yellow

indicates increasedmRNA level after infection, blue

indicates decreased). Right, predicted transcrip-

tion-factor associations of each cluster, as well as

predictions derived from analysis of the entire sets

of transcripts up- and downregulated after

M. marinum infection. + indicates p % 0.02 (over-

represented sites), � indicates 0.98 % p (under-

represented sites). Genotypes: spz, spätzle (Toll

pathway)mutant;Rel,Relish (imdpathway)mutant.

Infections:Mm,M.marinum; fungus/fun.,Beauvaria

bassiana; septic injury, mixedM. luteus and E. coli.

See also Figure S1 and Tables S1 and S2.
regulators. The other screen involved testing mycobacterial

infection susceptibility of flies carrying targeted RNAi knock-

downs of transcription factors and signaling intermediates.

These screens converged on MEF2, a pleiotropic transcription

factor originally characterized as a key factor in muscle develop-

ment (Bour et al., 1995; Lilly et al., 1995; Molkentin et al., 1995).

Our data reveal that MEF2 regulates immune and metabolic

activities, as depletion of MEF2 in the fat body causes dramatic

failures of systemic anabolism and immune function. This results

from reduced expression of key metabolic enzymes and antimi-

crobial peptides, respectively. The choice between immune and

metabolic target genes is dictated by phosphorylation of MEF2

at a conserved site. In healthy animals, MEF2 is phosphorylated

at T20 and promotes expression of its metabolic targets,

whereas infection results in T20 dephosphorylation and associ-

ation with the TATA-binding protein (TBP) at a distinct TATA

sequence of immune targets.
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RESULTS

Computational and Functional
Screens Reveal Mef2 as a
Regulator of Infection
Susceptibility
To identify new factors in the response to

infection, we performed two screens. In

the first, we analyzed a large microarray

data set reflecting whole-fly gene expres-

sion at multiple times after several

different infections (for details, see Fig-

ure 1 and supporting material) (De Gre-

gorio et al., 2001, 2002; Dionne et al.,

2006). This data set included wild-type

animals as well as loss-of-function mu-

tants in the imd and Toll pathways, the

two primary microbe-detection systems

in the fly. These two pathways respond

to different microbes and share nomolec-

ular components but regulate overlap-

ping sets of target genes because each
culminates in activation of a distinct NF-kB family member

(Lemaitre and Hoffmann, 2007). We used fuzzy c-means clus-

tering to find clusters of genes coregulated across biological

conditions and then identified transcription factor binding sites

overrepresented in the vicinity of the genes within each cluster

(Figure 1 and Tables S1 and S2 available online). These binding

sites represent potential regulators of the associated genes.

This type of computational analysis affords direct identifica-

tion of transcriptional effectors, their targets, and regulated

physiologies simultaneously without prior knowledge. This is re-

flected in the fact that many of our coregulated groups of genes

correspond to clear biological functions. In keeping with our pre-

vious observation of metabolic dysregulation in Mycobacterium

marinum-infected flies, metabolic functions were overrepre-

sented in 6 of the 30 clusters (Figure S1), suggesting that the

shared transcriptional regulators of these clusters may have

important metabolic roles.
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Figure 2. Infection Susceptibility of Fat Body Mef2 Knockdowns
(A–D) Survival of Mef2 knockdown (w1118/Y ; c564/+ ; UAS-Mef2-IR/+) or

control (w1118/Y ; c564/+) flies after different infections. TwoMef2 knockdown

lines are shown for E. cloacae; all phenotypes were observed with both lines,

but only one line is typically shown for simplicity. p values for differences in

survival times between control and Mef2 knockdowns by log-rank test:

M. marinum 5,000 colony-forming units (CFU), p = 3.89*10�9;M. marinum 500

CFU, p = 9.35*10�14; Listeria, p = 0; E. cloacae, 15,549, p = 0; E. cloacae,

15,550, p = 0; Candida, p = 5.07*10�8.

(E) E. cloacae CFU per fly, input, and 7 hr after infection in driver-only controls

and two Mef2 knockdowns. Seven individual animals are shown for each

condition. Line indicates the median. Points or lines in gray exceeded the

maximum range of the assay (109 CFU/fly).

(F) M. marinum numbers per fly assayed by qRT-PCR after an initial infection

with 5,000 CFU. Values are mean ± SEM.

See also Figure S2.
To test in vivo function of predicted regulators, we performed

a secondary functional screen, testing time to death after

M. marinum infection in flies with ubiquitous or fat-body-specific

RNAi knockdown of 29 transcription factors or signals associ-

ated with specific factors predicted to directly regulate gene

clusters after infection. Five genes gave clear survival pheno-

types; of these, Mef2 was particularly intriguing, being associ-

ated both with immune-response genes (cluster P) and with

metabolic activities (cluster X). We further analyzed Mef2 as a

potential nodal point between immune activation and metabolic

disruption.

Mef2 Regulates Susceptibility to Infection
The fat body, a homolog of mammalian liver and adipose tissue,

is both the primary source of the inducible humoral immune

response and the site of metabolic stores in the fly. Because

strong loss-of-function mutants in Mef2 are embryonic lethal

(Bour et al., 1995; Lilly et al., 1995), we tested animals with

Mef2 RNAi knockdown driven by c564, a driver strongly ex-

pressed in the fat body (Hrdlicka et al., 2002). Flies carrying fat

body Mef2 RNAi exhibited a significant reduction in survival

time after a high-dose M. marinum infection compared with

driver-only controls (Figure 2A). This survival effect was strength-

ened at lower bacterial doses.

To determine whether MEF2 is generally required for survival

after infection, we assayed survival of fat body Mef2 knock-

downs after other infections. In addition to M. marinum, these

animals were compromised in response to a second intracellular

pathogen, Listeria monocytogenes (Figure 2B). Moreover, unlike

wild-type animals, they were killed by infection with either Enter-

obacter cloacae or Candida albicans (Figures 2C and 2D). De-

fense against these infections is mediated specifically by the

imd and Toll pathways, respectively (Gottar et al., 2006). Sensi-

tivity of flies lacking fat body Mef2 to E. cloacae, in particular,

was similar to that of imd pathway mutants (Figure S2A) (Gottar

et al., 2006; Hedengren et al., 1999). This could be explained if

these flies lacked the fat body, but we found no visible reduction

in fat body mass or decrease in c564-driven GFP expression

(Figure S2B). All phenotypes were tested with a second Mef2

knockdown line, which gave similar or identical results in all

cases (Figure 2C and data not shown). Both lines eliminated

detectable fat body MEF2 protein when driven with c564 (Fig-

ure S2C). Other fat body drivers recapitulated the susceptibility

to E. cloacae (Figure S2D), and the susceptibility resulting from

Mef2 knockdown was rescued by coexpression of wild-type

Mef2 (Figure S2E).

We then assayed bacterial numbers in animals infected with

E. cloacae orM.marinum. In each case, more bacteria were pre-

sent in Mef2 knockdown animals (Figures 2E and 2F). The dra-

matic increase in E. cloacae number suggests that the effect

on this infection may be fully accounted for by defects in bacte-

ricidal activity. By contrast, the modest difference observed in

M. marinum number suggests that, in a more complex, chronic

infection, MEF2 is also important in tolerance of pathology.

Mef2 Is Required for Normal Fat and Glycogen Storage
As mentioned earlier, our data set included many genes encod-

ing metabolic activities. Cluster X, a predicted MEF2 target
Cell 155, 435–447, October 10, 2013 ª2013 The Authors 437
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Figure 3. Metabolic Effects of Mef2 Knock-

down

(A) Expression of genes encoding enzymes of

triglyceride and fatty acid synthesis, glucose up-

take, and glycogen synthesis in control (w1118/Y ;

c564/+), Mef2 knockdown (w1118/Y ; c564/+ ;

UAS-Mef2-IR/+), and rescued (w1118/Y ; c564/

UAS-Mef2.HA ; UAS-Mef2-IR/+) flies, assayed by

qRT-PCR. mRNA levels are normalized to the

control genotype (w1118/Y ; c564 / +) and

expressed as log2. Values are mean ± SD. Signif-

icance levels: *p < 0.01 and **p < 0.001 by heter-

oscedastic unpaired two-tailed t test.

(B) Total triglyceride, glycogen, and free glucose

measured by colorimetric enzymatic assay inMef2

knockdown flies compared with driver-only con-

trols.

(C) Neutral lipids stained by oil red O in driver-only

control andMef2 knockdown fat body. Red, oil red

O; blue, DAPI. Scale bars, 20 mm.

See also Figure S3 and Table S3.
cluster, contained several key metabolic enzymes, including

acetyl-CoA carboxylase (ACC), diacylglycerol acyltransferase

(mdy), and fat body hexose kinase (Hex-C). In addition to being

repressed by M. marinum infection, cluster X was rapidly and

transiently downregulated 3–6 hr after septic injury (infection

with a mixture of nonpathogenic Gram-positive and Gram-nega-

tive bacteria), with most genes returning to baseline within 24 hr

(Figure 1B). In addition to genes in cluster X, genes encoding key

anabolic enzymes in clusters Y and AA, as well as unclustered

genes, were repressed after either M. marinum infection or sep-

tic injury. These observations led us to examine the effects of

MEF2 on the expression of cluster X genes—and other anabolic

enzymes showing similar expression—in the absence of

infection.

Mef2 knockdown reduced expression of numerous key en-

zymes in fatty acid and triglyceride synthesis, including ACC,

mdy, fatty acid synthase (FASN/CG3523), ATP citrate lyase

(ATPCL), glycerol-3-phosphate dehydrogenase (Gpdh), glycerol

kinase (Gk), and the mitochondrial citrate transporter (sea) (Fig-

ure 3A). A similar pattern was apparent for the enzymes of fat

body glucose uptake and glycogen synthesis, including Hex-C,

Tret1-1 (one of two GLUT family members highly expressed in

fat body [Chintapalli et al., 2007]), phosphoglucose mutase

(Pgm), UDP-glucose pyrophosphorylase (UGP), glycogen syn-

thase (GlyS/CG6904), and the glycogen branching enzyme

(AGBE) (Figure 3A, black bars). The expression of almost all

these genes was rescued by coexpression of wild-type Mef2

(Figure 3A, gray bars); for a few targets, this rescue was partial,

likely because the RNAi targeted the rescue transgene as well as

the endogenous locus. Genes that were incompletely rescued or
438 Cell 155, 435–447, October 10, 2013 ª2013 The Authors
that showed paradoxical repression in the

rescue-containing animals (FASN and

Hex-C) could also be repressed by induc-

ible expression of a Mef2-engrailed

repressor fusion (Blanchard et al., 2010),

confirming their dependence on Mef2

for expression (Figure S3A). However,
the fat body was intact and continued to express glycogen

phosphorylase (GlyP), GFP driven by c564, and other fat-body-

enriched genes, indicating that Mef2 is not required for develop-

ment, survival, or overall identity of this tissue (Figures 3A

and S2).

In keeping with reduced expression of enzymes of glycogen-

esis (Hex-C, Pgm, UGP, GlyS, and AGBE) and lipogenesis

(sea, ATPCL, ACC, FASN, Gpdh, Gk, and mdy), unchallenged

Mef2 knockdown flies were almost entirely devoid of triglyceride

and glycogen (Figures 3B, 3C, S3B, and S3C). These animals

contained normal levels of free glucose and trehalose, suggest-

ing that, even without glycogen or triglyceride stores, they can

regulate circulating sugar (Figure 3B). These metabolic pheno-

types could be seen, though more weakly, with a second fat

body driver (Figures S3D and S3E; data not shown). Other fat

body drivers may give weaker phenotypes because they knock

down Mef2 less efficiently or because c564 also knocks down

Mef2 in other tissues (for example, the gut, which is lipogenic

and parts of which also exhibit c564-driven expression). As

would be expected,Mef2 knockdown animals died more rapidly

than wild-type flies when starved (Figure S3F). However, they

were not generally stress sensitive, exhibiting normal survival un-

der either hyperoxia or heat stress (Figures S3G–S3J).

These data suggest that the statistical association of pre-

dicted Mef2 sites with genes encoding key metabolic activities

reflects a requirement for Mef2 in normal expression of these

genes and thus in normal metabolic function. Although MEF2

may regulate its metabolic targets indirectly, we favor direct

regulation, as 12/13 of the identified metabolic target genes

have high-quality MEF2 binding sites within their 50 or 30 flanking
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Figure 4. Effects of Mef2 Knockdown on

Infection-Induced Gene Expression

Expression of antimicrobial peptides in control,

Mef2 knockdown, and rescued flies 3 or 6 hr after

injection of mixedM. luteus and E. coli assayed by

qRT-PCR and normalized to uninjected controls

(Drosophila genotypes as in Figure 3A). Values are

mean ± SD. Significance levels: *p < 0.01 and **p <

0.001 by heteroscedastic unpaired two-tailed

t test.

See also Figure S4.
regions or in introns (Table S3). The severe metabolic defect in

Mef2 knockdown animals likely contributes to their short lifespan

after mycobacterial infection by decreasing their ability to with-

stand infection-induced wasting.

Mef2 Knockdown Impairs Humoral Immune Responses
AlthoughMef2 has not previously been described as an immune

regulator in Drosophila, our computational analysis also associ-

ated Mef2 sites with cluster P, which contains many genes

known to be targeted by NF-kB-like factors upon activation of

the imd or Toll pathways, including the antimicrobial peptides

Defensin, Metchnikowin, Drosocin, and Attacin A. These genes

are typically strongly induced within 3 hr of septic injury.

To test whether MEF2 regulates these genes, we examined

antimicrobial peptide response to septic injury in fat body Mef2

knockdown flies. We again infected flies with a mixture of the

imd agonist Escherichia coli and the Toll agonist Micrococcus

luteus. These are strong agonists of the respective pathways

but do not rapidly kill flies in which detection pathways are

mutated, permitting us to assay gene expression at late times

after infection. Fat bodyMef2 knockdown flies exhibited dramat-

ically reduced induction of AttA, CecA1, Def, Dpt, Dro, Drs, IM4,

and Mtk in response to this mixed infection (Figure 4, compare

black bars to white bars). Again, this could be rescued by coex-
Cell 155, 435–447,
pression of wild-typeMef2 (Figure 4, gray

bars), and again, the few genes that were

not completely rescued also exhibited

reduced induction in flies carrying an

inducible Mef2-EnR transgene (Fig-

ure S4A). This block was heterogeneous;

at least one antimicrobial peptide, Lister-

icin, was entirely unaffected (Figure 4).

We observed similar results in animals

that received single infections with either

bacterium (Figure S4B). That both Toll

and imd target genes were affected in

response to an infection activating both

pathways indicates that the role of

MEF2 is not specific to either pathway.

MEF2 and TBP Physically Interact
upon Infection to Bind AMP TATA
Boxes
To clarify the requirement for Mef2 in

expression of its immune targets, we
examined the requirement for individual MEF2 sites near antimi-

crobial peptides. We cloned putative regulatory regions (�1.5 kb

50 to the ATG) from Drosocin and Metchnikowin upstream of

enhanced GFP (eGFP). This region included NF-kB, DEAF-1,

and GATA sites previously shown to regulate Mtk expression

(Reed et al., 2008; Senger et al., 2004) aswell asmultiple putative

MEF2 sites. In each case, a predicted MEF2 site overlapped the

TATA box (Dro site 3 andMtk site 2) (Figures 5A and S5). Individ-

ual putative MEF2 binding sites were mutated in these con-

structs, keeping the core TATA sequences intact; each Mef2

mutant TATA sequence replicated a naturally occurring, func-

tional TATA box not predicted to bindMEF2.We initially analyzed

reporter activity of wild-type and mutant constructs in S2* cells

treated with lipopolysaccharide (LPS) (commercial LPS contains

sufficient peptidoglycan to potently activate the imd pathway

[Kaneko et al., 2004]) (Figure S5). Both Dro-GFP and Mtk-GFP

were strongly induced by LPS, as expected. Distal MEF2 sites

were important for Dro reporter activity, but both Mtk and Dro

reporters required theMEF2-TATA box for normal induction (Fig-

ure S5). To test in vivo responses to infection, we made trans-

genic flies carrying the same eight GFP reporters, each inserted

into the AttP2 site. Uninfected, these animals exhibited weak or

no GFP fluorescence, but E. coli injection induced strong fat

body GFP activity in flies carrying the wild-type reporters
October 10, 2013 ª2013 The Authors 439
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Figure 5. An Infection-Inducible MEF2-TBP

Complex Binds AMP TATA Boxes

(A) Requirement for MEF2 and TBP sites in AMP

regulation measured by eGFP fluorescence in

transgenic flies carrying indicated reporters 8 hr

after E. coli injection (general genotype: w1118; ;

AMP-eGFP[AttP2]/+). Twomale flies are shown for

each condition. In site maps, matches to theMEF2

consensus are capitalized, and matches to the

TATA consensus are underlined.

(B) MEF2 and TBP coimmunoprecipitate from

whole flies 3 hr after E cloacae infection; this

association is eliminated in Tak1 mutants, but not

in Dif; Rel double mutants.

(C) MEF2 and TBP bind theMtk TATA box. The top

indicates EMSA with 40 bp oligonucleotides cor-

responding sequences surrounding the wild-type

or non-MEF2-binding mutant (DM) TATA box.

Nuclear extracts are all from cells expressing

MEF2-HA. All lanes are from the same gel and

used the same extracts. The bottom indicates a

similar experiment, showing that anti-HA and anti-

TBP antibodies can inhibit formation of the same

complex.

(D) TATA box sequences from (top) unbiased 890-

TATA sample; (bottom) 27 AMPs and AMP-like

factors.

(E) Correlation of flanking residues in the 890-TATA

sample. Asterisks indicate significant enrichment

relative to unconstrained sample (*p < 0.01; **p <

0.001; assayed by binomial test).

See also Figure S5 and Tables S4 and S5.
(Figure 5A). The requirement for MEF2 sites in vivo was similar to

that in vitro; in particular, the MEF2-TATA site was required in

each case (Figure 5A).

We then tested whether MEF2 and TBP interacted directly by

immunoprecipitating endogenous MEF2 from whole-fly lysates.

In adult flies infected with the imd agonist E. cloacae or a mixture

of M. luteus and E. coli, TBP coimmunoprecipitated with MEF2

(Figure 5B and data not shown). When stimulated by

E. cloacae, this association required the imd-activated JNKKK

Tak1 but was unimpaired in Dif; Rel double mutants, suggesting
440 Cell 155, 435–447, October 10, 2013 ª2013 The Authors
a requirement for JNK signaling, but not

NF-kB, in MEF2-TBP complex formation

after Gram-negative infection (Figure 5B).

We next asked whether the MEF2-TBP

complex could bind the putative MEF2-

TATA site. The Dro MEF2-TATA site

(TCTATATAAAGC) was a near-perfect

match to the ideal MEF2A site as defined

by SELEX (KCTAWWWWTAGM) (Pollock

and Treisman, 1991), so we focused on

the more divergent Mtk MEF2-TATA site

(GCTATAAAAGC). This site eliminates

one of the central A/T nucleotides in the

MEF2 consensus, changing the spacing

between the two putative half-sites.

When assayed by EMSA, the Mtk core

promoter was bound by nuclear extracts
from S2R+ cells transfected with Mef2-HA, causing two distinct

complexes to form: complex 1, at lower apparent molecular

weight, was strong and consistently present, whereas the

amount of complex 2 varied from experiment to experiment,

though it was always less abundant than complex 1 (Figure 5C).

Mutation of the putatively MEF2-binding C and G nucleotides

flanking the TATA box eliminated both complexes. Complex 1

was also eliminated by preincubation of extracts with antibodies

to either HA or TBP, indicating that this complex containedMEF2

and TBP together bound to the Mtk TATA sequence.



To test the generality of these observations, we examined the

promoters of 30 antimicrobial peptides (AMPs) and other im-

mune-inducible small peptides (Table S4). Of these 30 genes,

27 had a TATA box, defined as TATAWA with the initial T

between�57 and�11 nucleotides relative to the annotated tran-

scription start site (TSS). The consensus sequence defined by

these 27 TATA boxes, CTATAWAAGM, is identical to the Mtk

MEF2-TATA box (Figure 5D and Table S4). 17/27 AMP TATAs

match this consensus; 3/27 instead match the Dro site, CTATA

TAAAGC. The remaining seven TATA boxes include at least

one nonconsensus nucleotide in the C...AGM flanks. The Mtk

and Dro-like sites were found on peptides from many structural

families, implying that this is not an ancestral sequence main-

tained by lack of counterselection. Conversely, the 13 metabolic

genes shown in Figure 3A had a total of 27 TSSs; of these, 5 had

TATA boxes, none of which matched the extended consensus

associated with antimicrobial peptides.

We then examined roughly 15,000 unique promoters drawn

from four databases of precisely mappedDrosophila TSSs (Hos-

kins et al., 2011; Ni et al., 2010; Rach et al., 2009; Schmid et al.,

2006). This identified 890 TATA-containing promoters, with

TATA boxes defined by the same criteria used for antimicrobial

peptides (Table S5). The median TATA box position was 31 nu-

cleotides upstream of the TSS (25–75 percentile range, 30–33

nucleotides) (Figure S5B). This set of TATA boxes contained 13

sequences that had been in our ‘‘training set’’ of AMPs and

AMP-like peptides; these were not removed—and the other

AMP TATAs were not added to this set—to avoid functionally

biasing the represented genes. AMP promoters were more likely

to contain a TATA box than those in the unbiased set (27/30

TATA-containing AMP promoters versus 890/15,000 TATA-con-

taining promoters in the unbiased analysis). Unlike AMP TATA

boxes, the 890 unbiased TATA boxes showed little nucleotide

preference outside the core TATAWA, except a preference for

A or T in the immediate 30 position (Figure 5D).

If the nucleotides flanking the core TATAWAmotif permit regu-

lation of TATA usage via MEF2-TBP interaction, then the identi-

ties of these nucleotides should be correlated—the presence of

a 50 C should predict the presence of a 30 AGM and vice versa.

We examined the relationships among flanking nucleotide posi-

tions within the 890 unbiased TATA boxes. In each case, TATA

boxes that fit theMtk-like TATA consensus at one flanking nucle-

otide weremore likely to match this consensus at other positions

as well. For example, in the initial set, 27.1% of TATA boxes con-

tained a C directly 50 of the TATAWA core. Fixing the nucleotide

30 of the TATAWA as A increased this representation to 34.2%,

fixing the two 30 nucleotides as AG gave a further increase to

38.3%, and fixing the three 30 nucleotides as AGM increased

the representation to 41.4% (Figure 5E).

We extracted from our set of TATA-containing promoters

those matching the Mtk-like or Dro-like consensus. This gave

88 genes (Table S5). In addition to antimicrobial peptides, this

list contained other infection-regulated genes and genes

involved in responses to a variety of stresses. It also contained

larval cuticular proteins, genes involved in sensory development

or function, and 13 different uncharacterized small proteins with

predicted secretory signals. The Gene Ontology terms ‘‘humoral

immune response,’’ ‘‘immune response,’’ ‘‘defense response,’’
and ‘‘antimicrobial humoral response’’ were overrepresented

among genes with MEF2-TATA sequences as compared with

the full set of 890 TATA-containing genes (Bonferroni-corrected

p < 0.01).

These data together indicate that infection drives formation of

a MEF2-TBP complex that can bind the TATA box of many anti-

microbial peptides and is required for normal transcriptional in-

duction of these genes. That the flanking nucleotide positions

do not vary independently and the MEF2-TBP TATA box is over-

represented on immune genes both suggest that the MEF2-TBP

TATA box represents a previously uncharacterized discrete gene

regulatory element.

MEF2 Is Phosphorylated In Vivo at T20 to Regulate
Association with TBP
The mechanisms by which the infection-inducible MEF2-TBP

complex might be regulated and its potential function in MEF2

regulation of metabolic targets were unclear. We returned to

our microarray data to directly compare expression of the meta-

bolic and immune genes we had identified as Mef2 regulated.

After bacterial infection, these genes were strikingly counterre-

gulated; when the antimicrobial genes were induced, expression

of themetabolic geneswas lost. This was especially pronounced

3 and 6 hr after septic injury and in late-stage mycobacterial

infection (Figure 6A). This observation suggested that MEF2

modification might underlie a choice between immune and

metabolic targets.

MEF2 activity can be regulated by several mechanisms,

including phosphorylation by p38 MAP kinase, a calcineurin-

regulated acetylation/sumoylation switch, and an indirect mech-

anism involving phosphorylation-regulated recruitment of class II

histone deacetylases (Berdeaux et al., 2007; Han et al., 1997;

Shalizi et al., 2006; Zhang et al., 2002). In agreement with previ-

ous work (Chen et al., 2010; Dijkers and O’Farrell, 2007), neither

p38 nor calcineurin significantly altered immune competence in

adult flies (data not shown).

MEF2 phosphorylation at T20, within the DNA-binding

domain, can promote binding of MEF2 to a consensus MEF2-

dimer binding sequence that does not contain a central TATAWA

(Wang et al., 2005). The T20 region is conserved in Drosophila,

C. elegans, and all mouse and human MEF2 homologs, and it

matches a crude consensus site for AKT and p70 S6 kinase (Fig-

ure 6B). Using a phosphomotif antibody (Moritz et al., 2010), we

found that MEF2 T20 phosphorylation was detectable in extracts

from whole-adult Drosophila and was reduced in flies that had

received weak or strong immune challenges (PBS injection or

mixed infection with M. luteus and E. coli, respectively)

(Figure 6C).

To test the relevance of this phosphorylation in transcriptional

complex formation, we generated flies that inducibly expressed

HA-tagged wild-type MEF2, nonphosphorylatable MEF2 (T20A),

or phosphomimetic MEF2 (T20E) specifically in the fat body. One

week after eclosion, these flies were shifted from 18� to 29� to

drive Mef2*.HA expression. Because all transgenes were in-

serted into the same site, Mef2* constructs were expressed at

similar levels (Figure S6A).

We tested whether T20 directly regulated the association of

MEF2 with TBP by immunoprecipitating fat-body-expressed
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Figure 6. T20 Phosphorylation Regulates MEF2-TBP Association

(A) Counterregulation ofMef2 targets after infection. Data are frommicroarrays discussed in text. Expression levels are normalized to uninfected controls. Values

are mean ± SD.

(B) The Mef2 T20 region is conserved in flies, humans, and C. elegans and matches an AKT/p70 S6 kinase consensus site.

(C) EndogenousMEF2 immunoprecipitated fromwhole flies is phosphorylated at T20; this phosphorylation is reduced by PBS injection or by infection with mixed

M. luteus and E. coli. Top indicates immunoprecipitated MEF2 probed with anti-MEF2 antibody; below indicates the same blot probed with anti-phospho-

RXRXXS/T* antibody; bottom indicates quantification of phospho-T20-MEF2 from the blot shown, normalized to total MEF2 and to the level in unmolested flies.

(D) Immunoprecipitation (IP) of inducible fat-body-expressedwild-type, T20A, or T20EMEF2.HA from flies either uninfected or infected 3 hr previously with mixed

E. coli andM. luteus, probedwith anti-HA (top) or for coimmunoprecipitated endogenous TBP (bottom). Genotype:w1118/Y ; c564/+ ; UAS-Mef2*.HA/tub-Gal80ts.

(E) T20 can be phosphorylated by p70 S6K in vitro. Purified GST or GST-MEF2tide fusions (wild-type or T20A) were incubated with 32P-g-ATP with or without

recombinant kinases and resolved by SDS-PAGE. Top indicates 32P autoradiogram; bottom indicates Coomassie blue stain.

(F) p70S6KThr398phosphorylation is reducedby infection. Top indicates representativewesternonwhole-fly lysatesprobedwith theantibodies indicated; bottom

indicates quantification of phospho-S6K normalized to tubulin from three independent experiments. Values aremean ±SD. Infections: Ec = E. coli (Gram-negative

imd agonist);Ml =M. luteus (Gram-positive Toll agonist). Uninjected animals were anaesthetized alongside injected animals but were otherwise unmolested.

See also Figure S6.
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MEF2*.HA either before or 3 hr aftermixed infection. Aswas seen

for the endogenous protein, wild-type MEF2.HA associated with

endogenous TBP only after infection (Figure 6D). Nonphosphor-

ylatable MEF2 associated with TBP even in the absence of infec-

tion; this association was strengthened by infection, suggesting

that otherMEF2 or TBPmodifications also contribute to complex

formation. In contrast, phosphomimetic MEF2 was not observed

to associate with TBP either before or after infection.

We wished to identify a kinase or kinases responsible for

MEF2 T20 phosphorylation in the Drosophila fat body. Others

have observed MEF2C T20 phosphorylation by protein kinase

A (PKA) and AKT (Wang et al., 2005). As PKA activation inhibits

glycogenesis and promotes lipolysis and as AKT activity is

reduced by infection in Drosophila, we initially focused on

AKT as a likely T20 kinase. However, we were unable to

observe phosphorylation of this site by AKT in vitro (Figure 6E).

Like AKT, p70 S6 kinase (S6K) is broadly anabolic in its effects

and is activated by nutrient signals. S6K shares with AKT its

preference for substrates with arginine at �5 and �3 (Alessi

et al., 1996). T20 was efficiently phosphorylated by recombinant

S6K in vitro (Figure 6E), and systemic S6K activation (measured

by phosphorylation at T398, corresponding to T389 in human

S6K) was reduced in flies that had received infections with

Toll or imd agonists (Figure 6F). A similar effect was seen during

the last 3 days of life in flies infected with M. marinum (Fig-

ure S6B). S6K is thus a plausible in vivo MEF2 T20 kinase

and may be responsible for promoting expression of the en-

zymes of lipogenesis and glycogenesis in healthy, well-fed

animals.

T20 Regulates the Ability of MEF2 to Promote Distinct
Target Genes and Physiologies
Together, these data suggested that loss of MEF2 T20 phos-

phorylation might cause the loss of anabolic transcripts seen

after infection and that loss of T20 phosphorylation might be

permissive for antimicrobial peptide expression. To test this

model, we measured expression of immune and metabolic

MEF2 targets in uninfected and infected animals inducibly

expressing wild-type Mef2, Mef2T20E, Mef2T20A, or driver-only

controls. In most cases, overexpression of wild-type MEF2

had small effects on either the loss of metabolic transcripts or

the induction of antimicrobial peptides after infection when

compared to the effects of infection in driver-only controls (Fig-

ures 7A and S7). Expression of nonphosphorylatable MEF2

enhanced expression of antimicrobial peptides (by as much

as 6-fold, in the case of Defensin) after either M. luteus or

E. cloacae infection but had little effect on most metabolic

genes. Conversely, expression of phosphomimetic MEF2 had

little general effect on antimicrobial peptides and did not coun-

teract the loss of most anabolic transcripts after M. luteus infec-

tion but rescued levels of anabolic transcripts after E. cloacae

infection.

Together, these data indicate that T20 phosphorylation can

regulate the association of MEF2 with TBP, switching MEF2

betweenmetabolic and immune functions. The loss of metabolic

gene expression driven by imd pathway activation (typically

caused by Gram-negative bacterial infection) stems, at least in

part, from the loss of T20-phosphorylated MEF2.
DISCUSSION

Here, we identifyMef2 as a factor critical for energy storage and

the inducible immune response in the Drosophila fat body. Many

infection-induced antimicrobial peptides depend on Mef2 for

normal expression. In consequence, flies lacking Mef2 activity

in the fat body are severely immunocompromised against a

variety of infections. Mef2 sites are also associated with genes

encoding key enzymes of anabolism, and Mef2 is required for

normal expression of these genes; consequently, flies lacking

Mef2 function in the fat body exhibit striking reductions in the

total levels of triglyceride and glycogen. These two groups of

target genes are counterregulated during infection; the anabolic

targets of Mef2 are reduced in expression when antimicrobial

peptides are induced. We show that fat body MEF2 can exist

in two states with distinct physiological activities. In uninfected

animals, MEF2 is phosphorylated at T20 and can promote the

expression of its metabolic targets. In infected animals, T20 is

dephosphorylated, and MEF2 associates with the TATA-binding

protein to bind a compound MEF2-TATA sequence found in the

core promoters of antimicrobial peptides. The loss of T20-phos-

phorylated MEF2 promotes the loss of anabolic transcripts in

flies with Gram-negative bacterial infection. These data, taken

together, suggest that the central role of MEF2 in promoting

fat body anabolism and immune activity reflects a switch be-

tween distinct transcriptional states regulated, at least in part,

by differential affinity for TBP determined by T20 phosphoryla-

tion (Figure 7B).

The signaling mechanisms regulating T20 phosphorylation

and MEF2-TBP association are clearly of critical importance.

The ability of p70 S6K to phosphorylate this residue is congruent

with the ability of S6K to enhance anabolism and repress catab-

olism in response to nutrient signals (Laplante and Sabatini,

2012). However, others have shown T20 phosphorylation by

PKA, suggesting that T20 phosphorylation may be regulated

by more than one pathway in vivo (Wang et al., 2005). The role

of TAK1may be similarly complex. TAK1 is required for formation

of the MEF2-TBP complex upon Gram-negative infection, but

this effect may be indirect. For example, reduced S6K phosphor-

ylation after infection may result from insulin resistance driven by

TAK1 via JNK (Chen et al., 2002; Hirosumi et al., 2002). TAK1-

dependent JNK activation is required for normal AMP induction

in vivo (Delaney et al., 2006), but it remains possible that some

novel pathway is the critical connection between TAK1 and

MEF2-TBP complex formation.

In mammals, in addition to hematopoietic roles, Mef2c regu-

lates B cell proliferation upon antigen stimulation (Khiem et al.,

2008; Wilker et al., 2008), and Mef2d regulates IL2 and IL10 in

T cells (Liopeta et al., 2009; Pan et al., 2004). The possibility

that Mef2 family proteins might be important direct activators

of innate responses has not previously been examined. We

show thatMef2 is a core transcriptional component of the innate

immune response of the adult fly. Equally, vertebrate Mef2 fam-

ily proteins are critical regulators of muscle metabolism, acti-

vated by physical activity to promote expression of PGC-1a

and the glucose transporter Glut4 (Handschin et al., 2003;

Thai et al., 1998; Wu et al., 2001). Glut4 regulation by MEF2 is

known in adipose tissue as well as in muscle (Thai et al.,
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Figure 7. T20 Phosphorylation Regulates Mef2 Target Choice in Infected Flies

(A) Effects of inducible fat body expression of wild-type, T20A, or T20EMef2 assayed by qRT-PCR.Genotypes are as in Figure 6D.Mef2 expressionwas activated

beginning 16 hr before infection. Left indicates the effect of infection in driver-only controls; right indicates changes due tomisexpression ofMef2mutants. Overall

significance of changes is assayed by Wilcoxon signed-rank test. All measurements are the mean of three biological replicates.

(B) Model. The position of Tak1 is unresolved: though shown upstream of S6K inactivation, it could also promote MEF2-TBP interaction in parallel with S6K

inactivation.

See also Figure S7.
1998); it is an intriguing possibility that MEF2 is as important a

regulator of adipose metabolism in vertebrates as we show it

to be in flies.
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Infection-induced metabolic disruption leading to cachexia is

present in vertebrates as well as in insects, most notoriously in

Gram-negative sepsis and persistent bacterial infections such



as tuberculosis (Schwenk and Macallan, 2000; Tappy and Chio-

léro, 2007). Our data suggest that wasting seen after infection

may be due, in part, to the requirement for MEF2 to serve

different transcriptional functions in different conditions; the

MEF2 immune-metabolic transcriptional switch may be a mech-

anistic constraint that forces the fly into metabolic pathophysi-

ology in contexts of persistent immune activation. Alternatively,

the loss of MEF2-driven anabolic transcripts due to infection

may be productive, either by altering systemic energy usage

or by increasing the production or release of one or more antimi-

crobial metabolites. Recent work has highlighted a distinction

between ‘‘resistance’’ type immune mechanisms, in which the

host attempts to eradicate an invading organism, and ‘‘toler-

ance’’ type mechanisms, in which the host response is oriented

toward reducing the damage done by infection (Schneider and

Ayres, 2008). The distinct metabolic and immune requirements

for MEF2, combined with the obligation on the part of the host

to raise some measure of resistance to systemic infection,

may limit the achievable level of tolerance in persistent

infections.

EXPERIMENTAL PROCEDURES

Fly Culture, Stocks, and Infections

Flies were maintained at 25�, 60% relative humidity, and on food containing

10% w/v Brewer’s yeast, 8% fructose, 2% polenta, and 0.8% agar. Adult

males were collected soon after eclosion and transferred to fresh food to

age prior to treatment. All phenotypes shown were observed with VDRC

Mef2-IR lines 15549 and 15550, which gave essentially identical results.

5- to 10-day-old adult male flies were injected with 50 nl of bacterial suspen-

sion or vehicle as described (Dionne et al., 2003). For survival, dead flies were

counted at 24 hr intervals or more frequently. Survival analyses were repeated

at least three times, always showing qualitatively similar results. Minimum

cohort size was 20 flies.

Antimicrobial peptide reporter expression was assayed in live flies using a

Leica M205 FA. Photographs were taken and processed using identical

settings.

Microarrays

Experimental aspects of array analysis have been described (De Gregorio

et al., 2001, 2002; Dionne et al., 2006). Data were reanalyzed using the

BioConductor suite in R.

Clustering of Probes, Binding-Site Predictions, and Functional

Predictions

We analyzed only probes significantly regulated (fold change > 1.5, p < 0.01) in

end-stage M. marinum samples (Dionne et al., 2006). Probes were clustered

by multiple rounds of fuzzy c-means clustering using MFuzz (Futschik and

Carlisle, 2005).

For each cluster, extended gene regions (gene sequence including introns

and UTRs, plus 2,000 bases flanking sequence) were analyzed with CLOVER

(Frith et al., 2004), using Drosophila chr 3R as background sequence.

Binding sites were tested against 20 false clusters of genes (genes selected

randomly from those represented on the Affymetrix Drosophila Genome 1

array and treated the same as true clusters). Sites predicted to regulate

more than two false clusters were eliminated from consideration.

Functional predictions were from Generic GO Term Finder (http://go.

princeton.edu/cgi-bin/GOTermFinder).

Biochemistry

EMSA, immunoprecipitation, kinase assays, and western blots were per-

formed according to standard protocols as described in the Extended Exper-

imental Procedures.
Quantitative Real-Time RT-PCR

Performed as previously described (Clark et al., 2011; Dionne et al., 2006). All

data shown were the result of three to six biological replicates. Oligonucleo-

tides are listed in Table S6.
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