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* sjevelazco@gmail.com

Abstract

Ecological niche modeling (ENM) is a broadly used tool in different fields of plant ecology.

Despite the importance of edaphic conditions in determining the niche of terrestrial plant

species, edaphic data have rarely been included in ENMs of plant species perhaps because

such data are not available for many regions. Recently, edaphic data has been made avail-

able at a global scale allowing its potential inclusion and evaluation on ENM performance for

plant species. Here, we take advantage of such data and address the following main ques-

tions: What is the influence of distinct predictor variables (e.g. climatic vs edaphic) on differ-

ent ENM algorithms? and what is the relationship between the performance of different

predictors and geographic characteristics of species? We used 125 plant species distributed

over the Neotropical region to explore the effect on ENMs of using edaphic data available

from the SoilGrids database and its combination with climatic data from the CHELSA data-

base. In addition, we related these different predictor variables to geographic characteristics

of the target species and different ENM algorithms. The use of different predictors (climatic,

edaphic, and both) significantly affected model performance and spatial complexity of the

predictions. We showed that the use of global edaphic plus climatic variables generates

ENMs with similar or better accuracy compared to those constructed only with climate vari-

ables. Moreover, the performance of models considering these different predictors, sepa-

rately or jointly, was related to geographic properties of species records, such as number

and distribution range. The large geographic extent, the variability of environments and the

different species’ geographical characteristics considered here allowed us to demonstrate

that global edaphic data adds useful information for plant ENMs. This is particularly valuable

for studies of species that are distributed in regions where more detailed information on soil

properties is poor or does not even exist.
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Introduction

Ecological niche and species distribution modeling (ENM and SDM, respectively) are widely-

used tool in different fields of plant ecology, including the prediction of new populations of

rare species [1]; or potential distribution of invasive species [2]; informing conservation prac-

tices for threatened taxa [3,4]; estimating the effect of climatic change on species distributions

[5,6]; describing macroecological patterns [7] and studying past species distributions under a

paleobiological approach [8]. Despite the broad application of ENMs in botanical studies,

debates surrounding several aspects of ENMs continue to date. One of the most important of

these aspects relates to the actual data used in ENMs [9].

Data used for conducting ENMs can be grouped in two sets: biogeographical data about the

distribution (or presence/absence) of species (i.e. occurrence records) and environmental data

(i.e. predictor variables) used to predict those distributions [10]. ENM performance is sensitive

to several characteristics of these two datasets [11–21]. For example, regarding biogeographical

data, ENMs can be affected by different aspects of the species’ distributional patterns and their

sampling such as: prevalence (considered here as the ratio between the quantity of presence

and absences), range size and spatial autocorrelation [11,12,22]; which in turn are related to

the available sample size [14], data biases along road networks or cities [20,23], geographical

accuracy [15] and environmental variability captured by the records [13]. All of these aspects

can interact with the environmental data selected to fit the ENMs, and affect model accuracy

[21,24] and resultant suitability [19]. Even if occurrence data were bias-free, environmental

data can still severely affect ENM performance, especially if inappropriate environmental vari-

ables are used as predictors [25].

Choosing a particular environmental variable for ENM depends on the modeling purpose

and its biological significance to the species under study [26]. Obviously, different species may

have particular constraints related to their dependency on environmental factors and no single

variable is expected to be equally meaningful for all species. For instance, variables related to

soil properties are considered to be particularly important in determining the distribution of

plant species, but have little direct effect on the distribution of the majority of animal species

[27]. Considering this plant-soil relationship, predictors can be grouped, following [28], in: (i)

resource, matter and energy consumed by an organism, such as oxygen, water, macronutrients

and micronutrients; (ii) variables that have direct physiological importance, such as pH, cation

exchange capacity, aluminum concentration, hydromorphic condition; and (iii) indirect vari-

ables that do not have important physiological effects, such as porosity, bulk density, texture

(clay, silt and sand fraction) and soil depth.

In contrast with climatic variables commonly used for ENMs, which describe environmen-

tal variation at regional scales (a.k.a. “macroclimatic” variables; e.g. CHELSA; [29]), edaphic

variables vary at local scales and with great complexity [30]. For example, within the same

landscape, climatic conditions can be very homogenous throughout while soil properties can

vary widely according to different parental material [31], topographic position [32] or land-

use [33]. Indeed, there are several examples in the literature where soil properties control the

distribution of plant species or the structure, composition, and physiognomy of a community

within an otherwise climatically homogeneous geographical extent. For instance, mangrove

distribution is strongly influenced by soil properties such as salinity, acidity, hydromorphy

and nutrient supply [34]. Swamp forests, like the Caxeitais (dominated by Tabebuia cassinoides
(Lam.) DC.) of the Brazilian coast, are mainly distributed over organic and hydromorphic

soils [35]. The halophyte vegetation from Chile and Europe is restricted to continental salines

[36,37]. Furthermore, soil scarcity can also determine natural plant formations such as those

inhabiting rocky outcrops [38]. Narrow plant endemics are also frequently associated with
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specific types of soil, rock, and bedrock [39]. Even certain soil nutrients can determine the

distributional transition from one vegetation type to another, such as that between Neotropical

seasonal forests and savannas where the concentration of aluminum or potassium define the

structure of these vegetation types [40,41].

Consequently, it is clear that edaphic conditions play an important role in determining the

niche of terrestrial plant species [25,42]. Accordingly, several studies have tested the effect of

including edaphic variables in ENMs for plant species such as the importance of soil nutri-

tional variables for predicting plant distribution [43]; the improvement of plant ENMs perfor-

mance when using physical and chemical soil data [21,24]; and the effect of both landscape

and edaphic data in predicting future plant distributions under climate change scenarios

[9,44]. All of these studies reinforced the idea that plant ENMs could be improved by using a

single or a group of edaphic variables. Unfortunately, edaphic variables are still not frequently

used as predictors in plant ENMs, which continue to be limited to climatic variables [42]. One

reason for this lack of consideration of edaphic variables in plant ENMs may be related to the

geographical extent for which these data are available. Such availability has been usually

restricted to certain countries or regions (e.g. USA, China or the European Union), whereas in

many other regions, as in many Latin America countries, these data are simply not available.

Recently, however, the ISRIC World Soil Information with the SoilGrids database has pro-

vided data related to physical, chemical and taxonomical characteristics of soils across the

globe [45]. Therefore, this database allows the construction of ENMs for plant species inhabit-

ing large regions of the world or species occurring in countries that differ in the quantity and

quality of the available edaphic data.

Indeed, despite including detailed soil data, most plant ENM studies have been conducted

on extents that are usually smaller than the complete geographic distribution of plant species.

Such ENMs may not comprise the full environmental variability that characterizes a species

distribution and thus may affect model performance [46,47]. Here, we evaluate the potential

effect of using the SoilGrids global dataset in improving ENMs for plant species. We used 125

species distributed along the Neotropical region of the Americas, where many countries do

not have detailed soil data, to explore the effect of using global edaphic data and its combina-

tion with climatic data in the prediction of models constructed under commonly used ENM

algorithms. In addition, we related the different variable sets to certain geographical character-

istics of target species (e.g. occurrence area, number of records and density of records) and dif-

ferent algorithms.

Methods

Overview

To evaluate the effect of adding global edaphic data into ENMs and its relationship with differ-

ent modeling algorithms, we adopted a factorial experimental design with two factors: Predic-

tor and Algorithm, with three and four levels respectively, totalizing 12 combinations of factor

levels. The first factor, Predictor, comprised three different models based on different predic-

tor sets (edaphic, climatic, or both). For the second factor, Algorithm, we used four types of

ENM algorithms (Fig 1). The 12 treatments were applied to 125 plant species, our experimen-

tal units, thus 1500 models were fitted (see below).

Study area

Our study area extended from the south of the United States of America to the austral

extremes of Chile and Argentina. This area covers a wide variety of climatic conditions, geo-

logical formations, and soil types, but many of its constituent countries lack edaphic data.
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Consequently, our selected plant species (see below) occur in different biomes, from arid

regions such as the Chihuahuan and Caatinga steppe and warm-humid biomes such as the

Brazilian Atlantic and Chaco-Darién moist forests to the cold regions of the Nothofagus forests

and Andean páramos (see S1 Table for the complete species list).

Fig 1. Experimental design for testing the effect of using edaphic variables in ENMs for plant species.

https://doi.org/10.1371/journal.pone.0186025.g001
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Environmental data

We used three sets of environmental variables for building ENMs: climate-only, edaphic-only

and both climatic and edaphic variables together [21,43], hereafter called C.models, E.models

and CE.models, respectively. Note that all of these predictors were continuous variables. For

the C.models, we employed the 19 bioclimatic variables from the recently developed CHELSA

v1.1 online database [29]. These variables were built based on monthly averages of climate

data, mainly temperature and precipitation as collected from meteorological stations, for the

1979–2013 period and interpolated to the global surface [29]. E.models were built with 56 vari-

ables related to physical and chemical soil properties obtained from the SoilGrids database

available from ISRIC-World Soil Information [45], the data were downloaded in June of 2015

(Table 1). The SoilGrids database provides global maps of soil classes and some edaphic vari-

ables (see Table 1). In addition, this database has an automated updating system that progres-

sively increases its accuracy when new input data becomes available in the international soil

profile databases [45]. The CE.models were built combining the climate and edaphic datasets,

summing up to 75 variables. Both climatic and edaphic datasets were acquired with a spatial

resolution of 30 arc-seconds (� 1 km2 cell size) and upscaled to 5 arc-minutes (� 10 km2 cell

size). This upscaling (resolution change) was based on the aggregation, by taking their average

value, of lower resolution cells into higher resolution cells. Later, these datasets were cropped

to the extent of the study region ranging from -120˚ to -30˚ in longitude and -60˚ to 35˚ in

latitude.

Different modeling approaches present different sensitivity to collinearity of predictor vari-

ables [48]. However, no single methodological procedure has been considered ideal for solving

or handling collinearity [48]. Here, we opted to conduct a principal component analysis

(PCA) on the original environmental dataset and use the scores of each derived principal com-

ponents (PCs) as new predictors variables [16,49]. The PCA is a multivariate technique that

produces uncorrelated components from the original data sorted according to the amount of

total variance that it explains. We selected a number of PCs that explained more than 95% of

Table 1. Climate and edaphic variables (names and units) used as predictors in plant ecological

niche models.

Climate (Source: CHELSA) Unit Edaphic (Source: SoilGrids) Unit

Annual Mean Temperature ˚C Depth to bedrock up to maximum 240 cm cm

Mean Diurnal Range ˚C Predicted probability of occurrence of R horizon %

Isothermality ˚C Mean of bulk density* kg/m3

Temperature Seasonality ˚C Mean of coarse fragments volumetric* %

Max temperature of warmest week ˚C Mean of soil texture fraction clay* %

Min temperature of coldest week ˚C Mean of soil texture fraction silt* %

Temperature annual range ˚C Mean of soil texture fraction sand* %

Mean temperature of wettest quarter ˚C Mean of cation exchange capacity* cmolc/kg

Mean temperature of driest quarter ˚C Mean of soil organic carbon stock* Tn/ha

Mean temperature of warmest quarter ˚C Mean of soil organic carbon content* ‰

Mean temperature of coldest quarter ˚C Mean of soil pH in H2O*

Annual precipitation Mm

Precipitation of wettest week Mm

Precipitation of driest week Mm

Precipitation seasonality C of V

*Data for six depths

https://doi.org/10.1371/journal.pone.0186025.t001
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the total variance in the original dataset [46]. The major advantages of this procedure are the

correction of multicollinearity among the original variables, the use of almost all information

contained in a large dataset that is captured in the PCs, and the reduction of the number of

variables used in the models. Accordingly, C.models and E.models were built with the first six

PCs and the first 11 for the CE.models (see S2 Table and S3 Table for more information about

variance explained and variables’ coefficients for the selected PCs). The reduced number of

new variables (PCs) reveals the high collinearity in our original variable set. In fact, the first

two PCs of the PCAs conducted for each variable set explained more than 50% of the variance

(in the S1 Fig the relationships of original variables and the first two PCs of each variable set

are depicted).

Plant species data and cleaning

We selected 125 terrestrial plant species distributed within the Neotropical region with the

purpose of considering the wide variety of environmental conditions in our study region. Data

for these taxa was restricted to the species level, thus infraspecific taxa were not considered.

Our final species dataset comprised trees (82), shrubs (27), herbs (8) and palm (8) species. We

considered only species with more than 20 checked records (described below; see S1 Table).

This dataset comprised species inhabiting extreme latitudes such as Atriplex canescens, Prosopis
glandulosa or Parthenium incanum in the north, and Nothofagus antarctica, N. pumillo, and

Mulguraea tridens in the south. These species also differ in regard to their geographic range

sizes, from those with narrow distributions such as Juglans australis to those considered as cos-

mopolites such as Trema micranta, Ipomoea carnea and Inga vera.

We conducted a taxonomic revision for these taxa verifying their accepted names and syn-

onymy using The Plant List Version 1.1. (http://www.theplantlist.org/) and Tropicos (http://

www.tropicos.org), checked by the Taxonomic Name Resolution Service v3.2 [50] based on

APG III [51]. After confirming accepted names and synonymy, we used these names to search

occurrence records for these species in the Global Biodiversity Information Facility (http://

www.gbif.org/) and the speciesLink database (http://splink.cria.org.br/).

Occurrence records available in those databases may contain some taxonomic and geo-

graphic coordinate errors [52]. Our first step for data cleaning was the elimination of all rec-

ords allocated outside the study area and those with repeated geographic coordinates. We also

removed those species’ records corresponding to invasive or cultivated distributions, thus leav-

ing only those records that pertain to the natural distribution of species. This last step was con-

ducted by using information about species distributions available in the Catalogue of Life

(http://www.catalogueoflife.org/), Flora del Conosur (www.darwin.edu.ar/Proyectos/

FloraArgentina/fa.htm), List of Species of the Brazilian Flora (http://floradobrasil.jbrj.gov.br/),

Smithsonian Tropical Research Institute-Scientific Databases (http://biogeodb.stri.si.edu/

bioinformatics/en/), PLANTS Database (http://plants.usda.gov/java/) and Tropicos national

species list from Bolivia, Panamá, Paraguay, Peru and Ecuador (http://www.tropicos.org/). In

order to clean records temporally, we only considered records that were collected between

1979 and 2013, thus corresponding to the temporal span of our climate variables.

It is common that species’ occurrence records are biased towards roads, cities or countries

[23,53,54]. Therefore, these records are not the result of random and homogeneous sampling

along the geographic distribution of a species, compromising the accuracy of ENMs [20]. We

used a systematic sampling given its suggested effectiveness to correct geographic bias [55] by

creating a grid with a resolution of 10 arc min (� 20 km2 cell size) and then selecting one

occurrence per cell. The number of cleaned records for species ranged from 20 to 1227 (see S1

Table).
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Modeling procedures

The diverse algorithms usually employed to build ENMs have different input requirements

[56], degrees of complexity [57], stability [58] and predictive abilities [22,59]. For these rea-

sons, we also explored how different algorithms respond to distinct sets of environmental vari-

ables. We used four methods which are commonly used in ENM and highlighted for their

performance: Generalized Additive Models (GAM), Maximum Entropy (ME), Random Forest

(RF) and Support Vector Machine (SVM).

GAM is a non-parametric extension of GLM (Generalized Linear Model) that replaces the

linear relationship between the dependent and independent variables by the sum of a smooth

function [60]. Owing to its combination of a link function and a smooth function, the GAM

method has the ability to deal with highly non-linear and non-monotonic relationships

between the response and explanatory variables [61]. These GAMs were fitted using a binomial

distribution with all single predictor variables, i.e. without backward or forward selection and

interaction. The Newton method was used to optimize the estimation of the smoothing

parameter.

ME is a machine learning method based on the principle of maximum entropy [62,63].

This principle is based on minimizing the relative entropy between two probability densities

defined in feature space [64]. This is a high performance technique [59] and is less sensitive to

spatial errors than others algorithms [65]. This method can be tuned with different features

such as linear, quadratic, product, threshold, hinge and binary; the default use of all these fea-

tures can cause overfitting and affect the models performance [66]. Thus we used linear and

quadratic features ([67], hereafter MElq), both of these constrain the approximation of the

probability distribution in a way that the variables’ mean and variance should be close to its

observed values [62]. We also used 1000 maximum iterations, default regularization values,

logistic output format and 10000 maximum background points.

SVM uses linear models to find a decision function, which is a hyperplane determined by

non-linear decision boundaries that split samples in different classes within a higher-dimen-

sional space [68,69]. The optimal hyperplane is the one that maximizes the buffer between the

boundary (i.e. support vectors) and the data [70]. Mapping of the input data in a high-dimen-

sional feature space is defined by a kernel function [71]. These models were built based on

probability classes, performed with a radial basis kernel (RBF) and with a constant cost value

(C = 1).

RF comprises a family of algorithms that perform classification and regression analyses. RF

is a modification of bagging trees, which build a model based on the average of a large collec-

tion of non-correlated trees [72]. In each node of these trees, a random sample of m predictors

is chosen as split candidates from the full set of predictors [73]. These algorithms have the

advantage of not overfitting the data [74] and use the out-of-bag (OOB) sample to construct

different variable importance measures [72]. To determine the optimal number of variables

randomly sampled at each split the RF algorithm was tuned automatically. 500 trees were used

at the tuning step, with default values of the step factor and the improvement in OOB error

parameter. We considered those models with the minimum OOB error as our final RF

models.

Given that we did not have real absences of our species, we created pseudo-absences to fit

GAM, SVM and RF models. The prevalence and the method of pseudo-absence allocation can

affect ENM performance, which can vary for distinct algorithms [75–77]. To reduce potential

noise, we used a prevalence of 1, thus the number of pseudo-absences for each species was

equal to its presences. These pseudo-absences were allocated across the study area, which con-

stitutes the biogeographic domain that the modeled species could have used as an accessible
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area over relevant periods of time [78,79]. We used one soil layer as a raster mask for creating

the pseudo-absences given that some cells with climate data may have no soil data (i.e. “empty

cells”), such as lakes and some mountain regions.

Model evaluation

Models were evaluated by a 2-fold cross-validation where the presences of each species and its

respective pseudo-absences were partitioned into 50–50% training-testing sets. To control for

spatial autocorrelation between training and testing records, we used a checkerboard parti-

tioning method similar to [80]. This method generates checkerboard grids that partition the

records into bins by subdividing the geographic extent equally. For this, a particular grid reso-

lution (i.e. cell size) must be chosen a priori, which does not guarantee a balanced number of

records in each bin [80]. Therefore, we adapted the method to select the grid resolution that

optimizes representation and balance of records within bins. To do so, we created 30 grids

with resolutions varying from 0.5 to 15 degrees, with a gradual increase of 0.5. The optimum

grid resolution was the one which (i) represented both training and testing records and (ii)

minimized the difference between the number of training and testing records. Finally, to

maintain a prevalence of 1, we randomly allocated pseudo-absences within each partition

group.

Model performance was assessed by dependent and independent threshold metrics [81].

We used the True Positive Rate (TPR) and the True Skill Statistic (TSS) [82] as threshold-

dependent indices and the Receiver Operating Curve (AUC) as a threshold-independent eval-

uation. The threshold was the value that maximized the sum of sensitivity and specificity that

produced the most accurate predictions [83]. The complexity of the different spatial patterns

of binary predictions (ENM outputs) was evaluated using the shape index (SI). This index

measures the complexity of the predicted patches of pixels (i.e. potentially suitable cells) by

considering the relationship between the sums of each patch perimeter (pi) divided by the

square root of patch area (ai), SI ¼
Pi

1
ð0:25 pi=

ffiffiffiffiai
p
Þ [84].

Data analysis

We used Repeated Measures ANOVAs to test the effect of the Predictor (C.models, E.models

and CE.models), Algorithm (e.g. GAM, SVM, etc.) and their interaction on TPR, TSS, AUC

and SI indices. We assumed that the Predictor and Algorithm as within-subject factors. To

perform this analysis correctly and avoid a high Type II error rate, it was necessary that the

data met the sphericity condition: the variances of the differences between combinations of

levels do not differ. We used Mauchly’s Sphericity Test at 95% confidence to validate the sphe-

ricity condition of the covariance matrix. When this condition was rejected, the degrees of

freedom were corrected by the Greenhouse-Geisser method and used Type III sums of

squares. We performed a post-hoc test using linear contrasts based on linear mixed effect

models, considering the Predictor and Algorithm as fixed factors and the species as random

factor. These models were used to perform pairwise comparisons of means between different

predictors for a single algorithm at 95% confidence level. The p-values were corrected using

the false discovery rate procedure.

After evaluating the models, their predicted suitabilities were projected onto the geographi-

cal space. For each species, we conducted pair-wise comparisons between the suitabilities of

different kinds of models and algorithms by calculating the Kendall rank correlation coeffi-

cient (τ) with cells of the entire study area. Values of this coefficient range from -1 (perfect dis-

agreement) to 1 (perfect agreement), with values near zero representing independence

between the compared ranks.
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We used Pearson correlation (r) to explore the relationship between variation captured by

records for different predictor sets and species’ geographic characteristics, which were, for

each species: (i) geographical extent, based on the number of cells within a minimum convex

polygon comprising all of a species’ records; (ii) number of records and (iii) density of records,

which is the ratio between a species’ number of records and its geographical extent. For each

ENM algorithm, we explored the effect of such species’ characteristics and predictors on TSS

[12] by fitting linear mixed-effect models. These characteristics were considered as fixed effects

within the mixed-effect models, along with the models with different predictors (C.models, E.

models and CE.models), whereas the species were considered as random effects. TSS values

were arcsine transformed. We used the variance inflation factor (VIF) to test for collinearity

among predictors (species geographic characteristics), their significances were determined by

a likelihood ratio test.

Construction of ENMs and statistical analyses were conducted in the R environment v.

3.3.2 [85]. The dismo v. 1.1.1 package [86] was used to create pseudo-absences, model predic-

tion and validation, and to fit MElq using Maxent v. 3.3.3. The GAMs, SVMs and RF models

were fitted using the gbm v. 2.1.1 [87], kernlab v. 0.9.25 [88] and randomForest v. 4.6.12 [89]

packages, respectively. We used the packages raster v. 2.5.8 [90], SDMTools v. 1.1.221 [91], and

pcaPP v. 1.9.61 [92] to handle raster, calculate the shape index, and the Kendall rank correla-

tion coefficient. To fit the linear mixed effect models, repeated measures ANOVAs and the

pairwise mean contrasts, we used the packages nlme v. 3.1.128 [93], lsmeans 2.26.3 [94] and car
v. 2.1–5 [95], respectively.

Results

The use of different predictors (climatic, edaphic, and both) significantly affected model per-

formance, as measured by the TSS, TPR and AUC indices. They also affected the spatial com-

plexity of the geographic predictions (SI). Moreover, TSS, TPR, AUC and SI showed different

responses regarding the use of the distinct ENM algorithms. The interactions between predic-

tors and algorithms were significant for TSS, AUC and SI (Table 2).

According to TSS, TPR, and AUC, C.models and CE.models performed better than E.mod-

els, regardless of the ENM algorithm used. Nonetheless, MElq performed better for the CE.

models, regarding TSS, whereas SVM, GAM and RF did not show differences between C.mod-

els and CE.models. These results were different for the sensitivity, given that the CE.models

showed the best values for SVM. Moreover, no algorithm differed significantly regarding only

the C.models (Fig 2A). Regardless of the predictor set, the SVM and RF algorithms had the

highest values of TSS and AUC, followed by MElq and GAM. Regarding the spatial complexity

of predictions, C.models showed the most aggregated and continuous prediction, whereas the

E.models had the most spread and complex patterns. The CE.models had an intermediate

shape complexity. Independent of the predictor set, RF created the most complex spatial pat-

terns, whereas SVM showed the lowest SI (Fig 2A).

Mean values of Kendal rank correlation of suitabilities always showed positive values for

the pair-wise comparison of models with different predictors (Fig 3A). The highest values of

suitability correlation were for C.models-CE.models and E.models-CE.models for all algo-

rithms. MElq had the most similar suitability for these paired comparisons. The lowest correla-

tion was between the suitability of C.models and E.models, with mean values smaller than 0.4

for all algorithms. For the C.models-E.models comparison, the highest correlations were for

MElq and RF, whereas in the C.models-CE.models comparison, highest correlation was for

MElq and GAM, and for the E.models-CE.models comparison highest correlations were for

MElq, RF and SVM (Fig 3A). These comparisons of suitability between algorithms showed
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that GAM-MElq were the most similar, followed by RF-SVM, for any predictor set. The lowest

correlation was found between GAM-SVM and between MElq-SVM (Fig 3B).

The relationship between different geographic characteristics of species revealed that spe-

cies with wider distributions had also more records sampled (r = 0.790, p< 0.001) but they

showed lower record density (r = -0.640, p< 0.001). However, the relationship between num-

ber of records and their density was weak (r = -0.090, p< 0. 334) (S2 Fig). Widely distributed

species presented higher standard deviation for the first principal component of the climate

predictors (r = 0.670, p< 0.001). These patterns were weaker for the climate-edaphic

(r = 0.240, p = 0.007) and edaphic predictors set (r = 0.130, p = 0.146) (S3 Fig; S4 Table).

The linear mixed-effect models revealed, for all algorithms, that the species geographical

extent negatively affected the TSS, the number of records affected SVM, whereas for this algo-

rithm number of records affected the TSS positively, implying better model performance (S4

Fig). In addition, we found that different predictors affected model accuracy but the interac-

tion among predictors and species geographic characteristic differed among the ENM algo-

rithms. Interaction between predictor sets and geographical extent were significant for GAM,

MElq and RF, but not for SVM, which had significant interaction between the number of rec-

ords and predictor sets. (Table 3; S4 Fig). Species geographic characteristics, predictor sets,

and their interaction explained between 54 and 68% of model performance (TSS) variability

(Tabxle 3).

As expected, the response of the ENMs to different predictors varied individually for each

species. Thus, for some species, the use of edaphic data (E.models and CE.models) consider-

ably improved model accuracy in comparison with those models constructed with climate-

only predictors (e.g. Astronium graveolens, Cedrela odorata, Ficus insipida, Genipa Americana,

Guarea glabra and Salix humboldtiana). Conversely, edaphic-only predictors notably

decreased model performance for other species (e.g. Casearia decandra, Phytolacca dioica,

Table 2. Results of the repeated measures ANOVA for the TSS, TPR, AUC and SI, considering the algorithm (GAM, MEql, SVM and RF) and predic-

tor (climate, climate-edaphic, edaphic) factors.

Index Factors Sum of Squares Df Mean Square F

TSS Algorithm 0.577 2.501 0.294 79.429***

Predictor 1.344 1.463 0.858 76.316***

Algorithm * Predictor 0.027 4.220 0.006 4.657***

TPR Algorithm 0.043 2.588 0.021 13.024***

Predictor 0.242 1.560 0.184 44.654***

Algorithm * Predictor 0.008 5.119 0.001 1.505ns

AUC Algorithm 0.261 2.035 0.107 76.929***

Predictor 0.379 1.457 0.249 70.262***

Algorithm * Predictor 0.014 3.541 0.004 6.013***

SI Algorithm 17965.610 1.705 10534.815 176.159***

Predictor 77863.060 1.487 52370.852 690.234***

Algorithm * Predictor 2286.069 4.684 488.070 47.693***

Degrees of freedom were corrected using Greenhouse-Geisser estimate of sphericity. TSS: true skill statistic; TPR: true positive rate, AUC: area under

curve; SI: shape index.

Significance

*** P < 0.001

** P < 0.01

* P < 0.05
ns P > 0.05

https://doi.org/10.1371/journal.pone.0186025.t002
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Hevea brasiliensis, Matayba eleagnoides, Schinus molle and Baccharis crispa). In addition, there

were species that presented similar outputs irrespective of the kind of predictors used for

modeling (e.g. Chuquiraga avellanedae, Nothofagus pumilio and Persea schiedeana; Fig 4). The

effect of different predictor variables on the species’ suitability pattern varied among species.

For example, for species such as Salix chilensis and Guarea glabra that have broad distributions,

CE.models and E.models showed suitable areas that were more constrained compared to those

from C.models. Conversely, Bulnesia sarmientoy showed an expansion of the suitable areas for

those models that used edaphic data compared to those that did not include these data (Fig 5).

Based on SVM models, better performance when using the CE.models was observed for 54

species, whereas for 53 species this was true when using the C.models and five species showed

the best model performance when using E.models. Also, there were species whose models had

the same maximum accuracy independent of the predictors set used. For example, models

with climatic-only or climatic-edaphic predictors performed equally well for 13 species,

whereas edaphic-only or climatic-edaphic predictors did the same for three species. Finally,

models for only three species showed the same TSS irrespective of the considered predictor

variables (Fig 5).

Discussion

We have shown here the advantages of using worldwide edaphic data as predictors in ecologi-

cal niche models for plant species. More specifically, we showed that ENMs constructed with

commonly used climatic variables plus edaphic variables did not affect negatively the

Fig 2. Estimated values and confidence interval (bars) for TSS, AUC, TPR and SI of models fitted with

three set of predictors combined with four algorithms. Means with same letter for different predictor and

same algorithm denote significant difference using the linear contrast (P < 0.05). TSS: true skill statistic, TPR:

true positive rate, AUC: area under curve; SI: shape index, C: models with climate predictors, CE: models with

climate and edaphic predictors, E: models with edaphic predictors.

https://doi.org/10.1371/journal.pone.0186025.g002
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performance of ENMs but instead improved the accuracy for some algorithms. This happened

even when the ENMs based only on edaphic variables did not provide accurate predictions for

Fig 3. Mean and confidence interval of Kendall rank correlation coefficient (τ) of pair comparison of

suitability. (A) Suitability comparison between models with predictors sets for different algorithm. (B)

Suitability comparison between algorithms for different predictors sets. C: models with climate predictors, CE:

models with climate and edaphic predictors, E: models with edaphic predictors.

https://doi.org/10.1371/journal.pone.0186025.g003

Using worldwide edaphic data to model plant species niches

PLOS ONE | https://doi.org/10.1371/journal.pone.0186025 October 19, 2017 12 / 24

https://doi.org/10.1371/journal.pone.0186025.g003
https://doi.org/10.1371/journal.pone.0186025


any algorithm. Owing to the particular spatial patterning of these different predictor sets, cli-

matic and edaphic, their use also affected the shape and spatial complexity of ENM outputs. In

addition, the performance of models considering these predictor sets, separately or jointly, was

strongly related to geographic properties of species records, irrespective of the algorithm. Our

findings highlight the feasibility and advantages of including global soil data, along with cli-

matic variables, into ENMs to achieve accurate predictions of plant species distributions.

Soils are the consequence of different forming factors such as climate, organisms, topogra-

phy, parent material, time [96], among other local factors [97]. Any particular combination of

these factors will give rise to particular processes that can be extremely complex [97,98],

involving disintegration, integration, weathering, decomposition, neoformation and transfor-

mation [99]. These factors and processes acting in soil genesis define the chemical and physical

characteristics of soils, which will ultimately determine the underground environment for ter-

restrial plants. We want to reinforce here the widely accepted idea that soil is one of the most

Table 3. Summary of linear mixed effect models for four algorithms and the significance of covariates. The model selection was based on the likeli-

hood ratio test.

Algorithm Covariates LRT χ2 Df p-value R2

GAM GE 110.204 1 <0.001

NR 0.081 1 0.777

DR 0.001 1 0.969

Predictor 63.803 2 <0.001

GE*Predictor 21.418 2 <0.001

NR*Predictor 5.704 2 0.058

DR*Predictor 0.628 2 0.628 54.255

MElq GE 110.405 1 <0.001

NR 2.104 1 0.147

DR 0.003 1 0.957

Predictor 12.642 2 0.002

GE*Predictor 10.736 2 0.005

NR*Predictor 4.654 2 0.097

DR*Predictor 0.191 2 0.909 68.686

RF GE 138.093 1 <0.001

NR 0.424 1 0.515

DR 0.387 1 0.534

Predictor 139.853 2 <0.001

GE*Predictor 2.678 2 0.262

NR*Predictor 3.558 2 0.169

DR*Predictor 1.876 2 0.391 64.059

SVM GE 59.592 1 <0.001

NR 19.461 1 <0.001

DR 0.281 1 0.596

Predictor 133.931 2 <0.001

GE*Predictor 4.389 2 0.111

NR*Predictor 19.322 2 <0.001

DR*Predictor 0.233 2 0.890 68.614

GE: geographical extent; NR: Number of records; DR: density of records; Predictor: models constructed with climate, climate-edaphic or edaphic variables;

Df: degree of freedom; LRT χ2: Chi square for the likelihood radio test. R2: marginal determination coefficient calculated for the final models with significance

values < 0.05 of their covariates.

https://doi.org/10.1371/journal.pone.0186025.t003
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important factors affecting plant ecology and that the common practice of only using climatic

predictors represents a weak conceptual basis for the application of ENMs for plant species (see

also [25]). Despite potential disadvantages of our testing framework, such as the lack of real spe-

cies absences and the extension of the edaphic data used, we demonstrated that the combination

of climatic and global edaphic predictor variables increases the accuracy of ENMs for several of

our studied plant species. In fact, our findings are consistent with previous studies that found

similar results for plants at smaller extents and finer resolutions [9,21,43,44].

Fig 4. List of modelled species and model accuracy performed with SVM and three predictors sets. Species are sorted by their overall TSS

mean, the points represent the highest model accuracy for a particular species. TSS: true skill statistic, C: models with climate predictors, CE: models

with climate and edaphic predictors, E: models with edaphic predictors.

https://doi.org/10.1371/journal.pone.0186025.g004

Using worldwide edaphic data to model plant species niches

PLOS ONE | https://doi.org/10.1371/journal.pone.0186025 October 19, 2017 14 / 24

https://doi.org/10.1371/journal.pone.0186025.g004
https://doi.org/10.1371/journal.pone.0186025


The type of organisms under study must guide the selection of predictor variables for

ENMs and SDMs. Accordingly, soil properties should be considered when applying ENMs for

plant species, whereas these properties may be neglected when modeling animal species [27].

However, few studies doing ENM or SDM with plant species have used variables related to soil

or, for that matter, variables different than climatic ones [42,100]. Adding or excluding vari-

ables when describing the species environmental niches can affect the form of the resulting

hypervolume in multivariate space (S5 Fig) [101]. Owing to the reciprocity between the envi-

ronmental and geographic space [102], changes in the multivariate space can affect ENM pre-

dictions on geographic space. In our case, this fact may be responsible for the low consensus

Fig 5. Examples of change in suitability predicted by SVM models for three species derived from the use of three

predictors set. C: models with climate predictors, CE: models with climate and edaphic predictors, E: models with edaphic

predictors.

https://doi.org/10.1371/journal.pone.0186025.g005
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between the suitability patterns (Fig 3A) and the geometry of predicted maps (Fig 2) of our

modeled species. Regardless of the ENM algorithm used (e.g. GAM vs MElq), using edaphic

predictors alone or jointly with climatic variables (E.models and CE.models, respectively) aug-

mented the spatial complexity of the predicted plant distributions. This results from the com-

plex spatial variation of soil properties [30] in comparison with climatic variables. Indeed, the

spatial complexity of edaphic variables could be responsible for the lower TSS and AUC values

predicted by our models based only on edaphic predictors, which are consistent with results

obtained for several plant species in Canada with models constructed with the same type of

variable and more detailed edaphic data [21]. Given that different algorithms or variables

could produce models with the same accuracy but with different spatial predictions (see Fig 5;

[103]), we highlight the importance of acknowledging that model evaluation must be based

both on an accuracy metric (e.g. TSS, AUC, etc.) and a preliminary visual examination based

on the ecological knowledge of the studied species and their relationships with the selected

predictors [26].

It is well known that the performance of an ENM algorithm can vary according to the char-

acteristics of the species niche [104], the training dataset [16,77,105], and how the algorithm is

tuned [66,106]. One reason that could explain the discrepancy on the accuracy of our different

algorithms is the prevalence between presence and absences. For instance, ENMs built under

SVM and RF produce better models when the presences/absences ratio is 1, whereas GAM

models achieve higher performances with lower presences/absences ratio values [107]. In our

case, the fact that we used a number of pseudo-absences equal to that of presences for all algo-

rithms can have negatively affected GAM compared to the other algorithms. Nevertheless, the

high positive correlation between GAM and MElq suitabilities is noteworthy. Such correlation

may result from the ME tuning with linear and quadratic terms, a feature that reduces the

complexity of the ME model making it more similar to GAM. Despite ME being characterized

as a high-performance algorithm [59], here this method was outperformed by SVM and RF

even when it was conducted with 10,000 background points instead of using the pseudo-

absences as in the other algorithms [106]. This finding may be particular for ENMs of plant

species, for which SVM and RF have been referred as two of the most accurate algorithms for

modeling Neotropical plants [108]. In addition, we found that SVM and RF were the most

accurate methods, although producing different predictions, a fact that reflects their ability to

represent complex non-linear relationships. Moreover, each one of these algorithms has

important advantages; RF constructs models that avoid overfitting [74] whereas SVM has the

ability to construct stable models even with a large set of covariates [108]. In fact, both algo-

rithms were the best classifiers with the UC Irvine Machine Learning Repository [109].

The geographic range size of species can influence the performance of ENMs [11,12,22].

For instance, small-ranged species could have a limited variability of environmental conditions

captured by its presences [110] and results from their ENMs may be more marginal (i.e. the

difference between the mean environmental condition of the species and the mean of the

study areas [111]) in comparison to other widely distributed species within a particular study

region. Our study supports this interpretation given that narrowly distributed species had

lower climatic variation represented by their occurrence records. This pattern is more evident

in models that considered climatic variables only whereas models including edaphic variables

showed wide variability and low correlation between environmental variation and species’

range-size (S3 Fig). This could explain why some species with the largest geographic ranges

showed increased accuracy with the use of the edaphic predictors, whereas for many of the

restricted species similar accuracy was observed when using climatic variables only or climatic

and edaphic variables together. This finding stresses the dissimilar nature of climatic and
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edaphic variables and the different way in which those predictors interact with the geographic

characteristics of species records.

Our results also showed that species with wide geographic distributions and large numbers

of occurrences produce models with lower accuracy, a tendency that is consistent with previ-

ous findings [11,12,22,105], whereas species with a denser aggregation of records showed the

opposite trend (S4 Fig). On this point we agree with [112], in that the relationship between

model accuracy and the geographic range of a species is strongly affected by the extent used to

construct the models, which is consequently related with the relative occurrence area and mar-

ginality of species. In addition, different extents and resolutions can influence the relative

importance of predictors and the predicted suitability [113]. As the extent increases for an

individual model, the environmental difference between predicted and unpredicted cells may

increase simply by the broader environmental variability captured by larger extents. This may

inflate the metrics designed to estimate model accuracy [114], especially for species distributed

in marginal areas of the environmental space. Other causes for inflating the estimated model

accuracy is the relationship between the number of occurrence records and accuracy. In our

case, widely distributed species turned out to be more sampled (i.e. had more records) but, as

mentioned above, species with more records also showed lower accuracies (S2 Fig). Again, one

simple explanation for this is that a low discrimination of the environment between predicted

and unpredicted cells is expected for species with large distributional area [11].

To the extent of our knowledge, this is the first attempt to evaluate the reliability of using

global edaphic information to perform ENMs of plant species over large regions. Nevertheless,

ENMs/SDMs experiments have some practical limitations because these approaches are sensi-

ble by several factors such as the extent of the area used to construct the models [115], the

covariates selected and their grain [21,113], the geographical characteristics and quality of the

species records [12,22], the pseudo-absences allocation methods [77], the algorithms used and

their tuning [106] or even the species selected to perform the experiments [110], we acknowl-

edge that there is no “silver bullet” approach that is capable of dealing with all those potential

situations [104]. Therefore, we suggest that all comparative modeling studies such as ours need

to be extrapolated with care. Of course, we are aware that the edaphic data we used may have

some deficiencies related to the information on soil sampling and covariates used to generate

these data [45] and that it is difficult to make generalizations to other regions of the world.

However, the large geographic extent, the variability of environments and the different species

geographic characteristics considered here allowed us to show that such global edaphic data

adds useful information for plant distribution modeling. This is particularly valuable for stud-

ies of species that are distributed in regions where more detailed information on soil properties

is poor or does not even exist. Importantly, we do not imply that these global edaphic data

must be used in all future studies applying ENMs for plant species, but we do encourage mod-

elers to test some of these edaphic variables and evaluate their model outputs against those

conducted with climatic variables only. Recently the SoilGrids was improved by using more

accurate technics and with finer-resolution data [116], thus we suggest that future studies con-

sider the effect of different resolutions of soil data when applied to plant ENMs.

Supporting information

S1 Fig. Ordination diagram for the first two axis of three PCAs conducted with three vari-

able set. C: models with climate predictors, CE: models with climate and edaphic predictors,

E: models with edaphic predictors.

(TIF)
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S2 Fig. Relationship between geographical extent, number of records and density of rec-

ords for the 125 target species.

(TIFF)

S3 Fig. Relationship between the standard deviation for the first principal component, of

three predictors set, captured by the records of each species and their relationship with

geographical extent, number of records and density of records. C: models with climate pre-

dictors, CE: models with climate and edaphic predictors, E: models with edaphic predictors.

(TIFF)

S4 Fig. Effect of geographical extent, number of records and density of records on the TSS

for GAM, MElq, RF and SVM conducted with three predictors sets. TSS: this index was

transformed to arcsine; C: models with climate predictors; CE: models with climate and

edaphic predictors; E: models with edaphic predictors.

(TIFF)

S5 Fig. Predicted suitability by the SVM method for Cedrella odorata and its relationship

between the geographical and environmental space for three predictors sets. The right

panel shows the first two principal components of the PCA conducted for each variable set. C:

models with climate predictors, CE: models with climate and edaphic predictors, E: models

with edaphic predictors.

(TIFF)

S1 Table. List of species modeled, families, habit and number of cleaned record (NR).

(PDF)

S2 Table. Principal components selected from the PCAs, their eigenvalues, variance

explained and cumulative variance explained for each variable set.

(PDF)

S3 Table. Coefficients of the principal components selected from the PCAs performed for

each dataset.

(PDF)

S4 Table. List of species modeled, number of records (NR), geographical extent (GR), den-

sity of records (DP) and standard deviation of the first principal component of climatic

variables only (C.SD), climatic and edaphic variables (CE.SD) and edaphic variables only

(E.SD).

(PDF)

S1 File. Principal components of climate variables used to perform the climate-only mod-

els. The data are in GeoTIFF format.

(RAR)

S2 File. Principal components of edaphic variables used to perform edaphic-only models.

The data are in GeoTIFF format compressed.

(RAR)

S3 File. Principal components of climatic and edaphic variables used to perform climatic

and edaphic models. The data are in GeoTIFF format compressed.

(RAR)

Using worldwide edaphic data to model plant species niches

PLOS ONE | https://doi.org/10.1371/journal.pone.0186025 October 19, 2017 18 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186025.s012
https://doi.org/10.1371/journal.pone.0186025


Acknowledgments

SJEV was supported by a doctoral research grant from the Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior (CAPES). PDMJ and FG thank Conselho Nacional de Desenvol-

vimento Cientı́fico e Tecnológico (CNPq) for productivity grants. FV thanks A. Lira-Noriega,

A.T. Peterson, O. Rojas-Soto and J. Soberón for several discussions on ENMs, and CONACyT

for financial support.

Author Contributions
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Investigation: Santiago José Elı́as Velazco.
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112. Jiménez-Valverde A, Lobo JM, Hortal J. Not as good as they seem: the importance of concepts in spe-

cies distribution modelling. Divers Distrib. 2008; 14: 885–890. https://doi.org/10.1111/j.1472-4642.

2008.00496.x

113. Vale CG, Tarroso P, Brito JC. Predicting species distribution at range margins: testing the effects of

study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Robertson

M, editor. Divers Distrib. 2014; 20: 20–33. https://doi.org/10.1111/ddi.12115
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