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Why do we feel tears well up when we see a loved one cry? Why do we wince when we see other
people hurt themselves? This review addresses these questions from the perspective of embodied
simulation: observing the actions and tactile sensations of others activates premotor, posterior
parietal and somatosensory regions in the brain of the observer which are also active when per-
forming similar movements and feeling similar sensations. We will show that seeing the emotions
of others also recruits regions involved in experiencing similar emotions, although there does not
seem to be a reliable mapping of particular emotions onto particular brain regions. Instead,
emotion simulation seems to involve a mosaic of affective, motor and somatosensory com-
ponents. The relative contributions of these components to a particular emotion and their
interrelationship are largely unknown, although recent experimental evidence suggests that motor
simulation may be a trigger for the simulation of associated feeling states. This mosaic of
simulations may be necessary for generating the compelling insights we have into the feelings
of others. Through their integration with, and modulation by, higher cognitive functions, they
could be at the core of important social functions, including empathy, mind reading and social
learning.
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1. INTRODUCTION
Humans have an astonishing capacity to intuitively
grasp the mental states of other individuals. If we see
someone bite into his sandwich and show a horrified
grimace, we do not have to chew over what happened
to sense that he is not enjoying his meal. In fact, just
the sight of his disgust might cause our own stomachs
to turn and prevent us from eating our own sandwich.
Although people’s more subtle emotions can remain
puzzling, we often have gut feelings of what is going
on in other individuals. Various researchers have
suggested under different designations that direct
SIMULATION (see glossary) of observed social events
through mirror-like mechanisms are at the heart of
this experiential understanding of others: the shared-
manifold hypothesis (Gallese 2003); unmediated
resonance model (Goldman & Sripada 2005); shared
circuits (Keysers & Gazzola 2006); direct-matching
hypothesis (Rizzolatti et al. 2001) and hot hypothesis
(Wicker et al. 2003). The basic tenet of these models
is that observation of an action in another individual
directly triggers activation of matching neural sub-
strates in the observer through which the action can
be understood. While some researchers focus on the
role of motor areas in social cognition (e.g. motor
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theory of social cognition, Jacob & Jeannerod 2005),
others see EMBODIED SIMULATION as a general and
basic endowment of our brain that involves a linkage
between the first and third person experiences of
actions, sensations and emotions (Keysers & Gazzola
2006).
(a) Sharing actions in the premotor

and parietal cortex

Simulation theories were greatly stimulated by the
study of action execution and action observation in
monkeys. Two reciprocally connected areas, namely
area F5 in the ventral premotor cortex and the parietal
area PF, were found to contain individual neurons that
respond both to the execution of hand-object inter-
actions and the sight of similar actions (see Keysers &
Perrett 2004; Rizzolatti & Craighero 2004 for reviews).
Owing to their common role in first (I grasp) and
third person (he grasps) perspectives, these neurons
were named ‘mirror neurons’. Linking what the
monkey sees people do to what it does itself might
provide it with an intuitive insight into the actions of
others. Given their properties, mirror neurons
seem particularly well suited to providing insights
into the actions of conspecifics (Gallese et al. 1996;
Rizzolatti et al. 1996, 2001; Umilta et al. 2001;
Kohler et al. 2002). In recent years, evidence
has accumulated for the existence of a mirror neuron
system (MNS) for actions in humans (see figure 1a).
1 This journal is # 2009 The Royal Society
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Figure 1. Anatomical locations of the motor and somatosensory components of simulation. (a) Lateral view of the human brain
with the location of the ventral premotor cortex (BA6/BA44) and the inferior parietal lobule (IPL). (b) Lateral view showing
the location of the primary and secondary somatosensory cortex (SI/SII).
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Arguably, the most convincing evidence comes from
functional magnetic resonance imaging (fMRI) and
transcranial magnetic stimulation (TMS) studies.
FMRI indirectly measures brain activity by estimating
the level of blood oxygenation in cubes of brain tissue
named voxels, whereas TMS uses magnetic
stimulation to either stimulate or transiently impair a
cortical region. FMRI shows that the ventral premotor
cortex (BA44/6), inferior parietal lobule (IPL), as well
as somatosensory areas (BA2 in particular) involved in
executing the actions become reactivated while sub-
jects view or hear similar actions performed by others
(Grezes et al. 2003; Buccino et al. 2004; Gazzola
et al. 2006, 2007a). Finding the same voxel involved
in execution and perception, however, cannot ensure
that the same neurons within the voxel (which is
usually around 3 � 3 � 3 mm in size) are involved in
both cases (Dinstein et al. 2008). Various researchers
are now taking on the challenge to create experimental
fMRI designs that can better address the neural
response selectivity in the MNS than the usual move-
ment observation and imitation protocols (Dinstein
et al. 2007). In contrast, TMS experiments show that
observing the actions of others specifically facilitates
the execution of similar actions (Fadiga et al. 1995)
and that applying repetitive TMS on the premotor or
somatosensory cortex impairs this motor facilitation
(Avenanti et al. 2007; Catmur et al. 2009). This
demonstrates both that the vision of an action directly
activates motor programmes for executing similar
actions and that the link between vision and action
occurs in the somatosensory and premotor areas
identified by the fMRI experiments. This suggests
that the MNS is indeed where perception meets
action in the brain.

The possible roles of the MNS are still a matter of
debate. Many would agree that mirror neurons are
well positioned to support understanding what action
another individual is performing and how it is being
performed (Thioux et al. 2008). Anyone witnessing a
person’s hand reach for an orange on a table will
instantaneously recognize the goal of the action: reach-
ing to grasp. This mirroring seems to occur primarily
at the level of MOTOR GOALS. For example, aplasic sub-
jects born without hands and arms activate foot and
mouth representations when they observe hand actions
they would perform with these effectors (Gazzola et al.
Phil. Trans. R. Soc. B (2009)
2007b). In addition, the disruption of putative mirror
neuron areas in humans either through lesions
(Pazzaglia et al. 2008a,b) or repetitive TMS (Pobric &
Hamilton 2006) impairs the capacity of subjects to
process the actions of others (see, however, Bell
1994; Halsband et al. 2001; Moro et al. 2008). A
second important function attributed to the MNS
in humans is IMITATION. This idea is supported by
observations that a portion of the MNS (in pars oper-
cularis of the inferior frontal gyrus (IFG)) is more
active during imitation than the sum of activity
during execution and observation (Iacoboni et al.
1999; see Catmur et al. 2009, for a discussion). A
third function attributed to the MNS is that of
EMPATHIZING with others, based on the finding that
subjects that score higher on a questionnaire measur-
ing their tendency to place themselves in the other
person’s shoes activate their MNS more strongly
while hearing the actions of others (Gazzola et al.
2006).

(b) Sharing sensations in the

somatosensory cortex

In addition to a shared circuit for actions in the pre-
motor and parietal cortex, there is evidence for a
shared circuit in the somatosensory cortex that maps
the perception and experience of tactile sensations.
Keysers et al. (2004) showed their subjects movies of
someone else’s legs being touched with a stick. The
same subjects were later touched on their own legs to
localize their primary and secondary somatosensory
cortices (SI/SII, see figure 1b). Part of SII that was
active while the subjects felt touch on their own body
became reactivated while viewing someone else being
touched in similar ways. Activations in SI during
touch observation were present, but were substantially
weaker. Blakemore et al. (2005) found that the obser-
vation of touch was associated with an activity in SI
that was somatotopically organized: different regions
of SI react to the observation of someone being
touched on the neck and the face. In the same exper-
iment, the authors found that a subject with vision-
touch synaesthesia, who reported vivid tactile
QUALIA while seeing the tactile sensations of
others, had increased activity in SI during the vision
of touch. Electroencephalography (EEG) studies
allow for a temporally precise measurement of
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components of electrical activity in the brain.
Recently, an elegant EEG study by Bufalari et al.
(2007) showed that in non-synaesthetes electrical
activity in response to stimulation of the hand can
be modulated by the sight of someone else being
touched. The latency of this component (45 ms)
suggests that within the mosaic of brain areas compos-
ing SI, those receiving direct thalamic input (BA3) are
only active while experiencing touch on one’s own
body. The second stage of processing (BA1/2) is
modulated by perceiving other people’s experiences:
stronger activity in these regions predicts how intense
observers judge the sensations of others. Together,
these studies suggest that under normal circumstances
the earliest stages of cortical somatosensory processing
(BA3) remain private, that is reserved for our own
tactile sensations, while later stages (BA1/2 and SII)
can serve to vicariously share the tactile sensations
of others. Individuals with synaesthesia show that if
the earliest stages are activated more strongly, the
observer will experience touching of others literally as
if being touched themselves. Similarly, while the MNS
codes for both the execution and the perception of
actions, the primary motor cortex (MI) is usually not
active while viewing the actions of others (Gazzola &
Keysers 2009). The absence of vicarious MI activity
is quite natural as observers do not normally move
while viewing the actions of others. The existence of
patients that cannot refrain from overtly imitating
behaviours they observe (Lhermitte et al. 1986)
suggests that active inhibition is responsible for
blocking the outflow of activity from premotor regions
to MI (Preston & de Waal 2002; Gazzola & Keysers
2009). These mechanisms could help us distinguish
our own actions and sensations from those of
others which are shared in our (pre)motor and
somatosensory regions.

In summary, primates readily activate premotor and
parietal cortical areas involved in action execution
when they see someone perform a goal-directed
action. This simulation might be useful for under-
standing the action and its goal, and enable a more
or less automatic imitation of someone’s actions.
There is mounting evidence to suggest that a similar
neural mechanism involved in action imitation may
also apply to the domain of sensations. Recently, it
has been proposed that beyond actions and tactile per-
ceptions our brain also readily simulates the emotions
of others (Decety & Jackson 2004; Keysers & Gazzola
2006; Niedenthal 2007). Although this phenomenon
seems superficially different from motor imitation,
similarity in the neural processes suggests they are
deeply related. This review examines the evidence for
the presence of mirror mechanisms in sharing the
emotions of other individuals.
2. AFFECTIVE SHARING OF EMOTIONS
One of the key challenges in studying the sharing of
emotions using neuroscientific methods is being able
to trigger the emotion. Although this is generally diffi-
cult, there are some exceptions such as disgust and
pain. Therefore, we will focus on the affective sharing
of these particular emotions in the following section.
Phil. Trans. R. Soc. B (2009)
In the case of pain, we will illustrate that emotion
simulation not only involves an affective component
(i.e. concerning sensations of pleasure and displea-
sure), but also a motor and sensory component,
which will be addressed in the subsequent section.
The interaction between the components is largely
unknown but, as we will see in a subsequent section,
recent experimental evidence suggests one potential
route of communication from motor to affective
mirror systems. The term mirror system implies that
there is a certain degree of specificity: we map what
we see onto our own neural substrates for that specific
action, sensation or emotion. We will use the emotion
fear to show that there is little evidence for a consistent
mapping of particular emotions onto particular brain
regions. Instead, different networks seem to be
involved dependent on the process by which the
emotion is accessed. In addition, the activation
strengths of the different components are likely to be
related to the quality of the emotion and its associated
output. In the concluding comments, we will discuss
the various functions that emotion simulation could
subserve through its integration with, and modulation
by, higher cognitive functions.
(a) Sharing of disgust

Disgust is closely related to the phylogenetically primi-
tive sensation of distaste. In its most basic form, from
which more developed forms such as moral disgust
may have evolved, it involves an oral defence to poten-
tially harmful foods and body products (Haidt et al.
1997; Rozin et al. 2000). This makes disgust relatively
easy to trigger repeatedly using aversive tastes and
odours. The primary experience of taste and distaste
can be located in the transition zone between the
anterior part of the insular cortex together with the
frontal opercular taste cortex (Yaxley et al. 1990;
Small et al. 1999), a region we refer to as the IFO.
The experience of unpleasant odours triggers activity
in a similar region (Royet et al. 2003). Through its
numerous connections to structures such as the orbito-
frontal cortex (OFC), frontal operculum, anterior cin-
gulate cortex (ACC), lateral premotor cortex, basal
ganglia, temporal lobe and amygdala, the insula (see
figure 2b) can anatomically fulfil the requirements for
associating offensive tastes and smells with other
people’s expressions of disgust (Augustine 1996).
This is supported by the finding of distinct electro-
physiological responses in the anterior insula (AI) to
facial expressions of disgust in the observer (Krolak-
Salmon et al. 2003).

A seminal study in 2003 established a functional
codependence of disgust experience and perception
on the IFO. To reliably induce disgust, Wicker et al.
(2003) puffed unpleasant odours in a mask placed
over the subject’s nose and mouth. When brain acti-
vations were compared between this condition and
one in which subjects only viewed movies of an actor
expressing disgust after sniffing the content of a
glass, they demonstrated an overlap in the left IFO
between the perception and experience of disgust.
This result was later confirmed by showing that
the experience of unpleasant tastes also overlaps in the
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Figure 2. Anatomical locations of affective components of simulation. (a) Sagittal view of a human brain with the location of

the anterior cingulate cortex (ACC). (b) Coronal view of a human brain showing the location of the insula and the amygdala.
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IFO with the observation of others’ facial expressions of
disgust ( Jabbi et al. 2007).

Interestingly, the IFO not only seems to be recruited
while viewing and experiencing disgust, but it also
seems essential both for the first- and third-person
perspective of disgust. Two patients with lesions
encompassing the anterior insular activations found
above are unable to feel disgust and are impaired in
recognizing this emotion in other individuals (Calder
et al. 2000b; Adolphs et al. 2003). This is consistent
with a large lesion study showing that the somato-
sensory cortex/anterior supramarginal gyrus and
surrounding insular region are essential for recogniz-
ing emotions from visually presented facial expressions
(Adolphs et al. 2000). In addition, the AI is implicated
in disorders associated with an impaired ability to
recognize disgust such as obsessive-compulsive
disorder (Breiter et al. 1996; Sprengelmeyer et al.
1997; Calder et al. 2001), Wilson’s disease (Wang
et al. 2003) and Huntington’s disease (Sprengelmeyer
et al. 1996; Gray et al. 1997; Wang et al. 2003;
Hennenlotter et al. 2004).

The role of the IFO goes beyond the perception
and experience of disgust. The fact that electrical
stimulation of the anterior sector of the insula evokes
nausea and visceromotor activity (Penfield & Faulk
1955; Calder et al. 2000b) demonstrates its role in
controlling visceral sensations and related autonomic
responses. The IFO not only instantiates the repre-
sentation of bodily states, but it also makes these
representations consciously available as subjective feel-
ing states. More activity and grey matter in the insula
for instance predicts that people are better at judging
their visceral bodily states (Critchley et al. 2004).
In addition, the strength of activation in the IFO
when witnessing expressions of disgust is stronger in
individuals that report experiencing more distress
while witnessing the distress of others ( Jabbi et al.
2007). This suggests that the IFO is involved in the
involuntary sharing of emotional states often referred
to as EMOTIONAL CONTAGION (Hatfield et al. 1993).
In sum, this indicates that the IFO might have a
dual function: it can translate the observation of
other people’s facial expressions into similar visceral
states of the self (Critchley et al. 2005) and make
these states consciously available for sensing the
emotional state of other people (Keysers & Gazzola
2007).
Phil. Trans. R. Soc. B (2009)
(b) Sharing of pain

Although pain is not traditionally considered a basic
emotion, it is a strong feeling state that can, akin to dis-
gust, be triggered repeatedly and reliably in a research
environment. Neuroimaging studies show involvement
of the dorsal ACC and AI in processing the unplea-
santness of physical pain (for a review see Peyron
et al. 2000). In the ACC (see figure 2a), nociceptive-
specific neurons are found which respond to contra-
lateral noxious thermal and/or mechanical stimulation,
but not to their non-painful equivalent (Hutchison
et al. 1999; Vogt 2005), which is consistent with the
ACC’s role in pain experience. Importantly, Hutchi-
son et al. (1999) also demonstrated the existence of
single neurons in the ACC which are active during
both the sensation and perception of pain. This
suggests that, similar to touch and disgust, pain is a
feeling that we simulate.

In a seminal study, Singer et al. (2004) tested
romantic couples in a situation where one was lying
in the scanner and was informed by a symbol on the
computer screen when her lover was receiving a pain-
ful stimulation. Knowing that her lover was in pain
activated parts of the pain matrix that were also
active when a noxious stimulus was applied to the
subject herself: the AI and ACC. Numerous other
studies (reviewed in Singer & Lamm 2009) found acti-
vation of the insula and the ACC associated with the
observation of stimuli depicting pain-inducing events.
For instance, static images of a knife cutting a hand,
or a foot stuck in the door ( Jackson et al. 2005), and
videos of needles being inserted into human body
parts (Cheng et al. 2007) all activate these areas.
Even in the absence of a direct pain-inducing event,
the observation of a facial expression of pain activates
the ACC and AI. This was shown for the observation
of dynamic facial expressions of moderate pain com-
pared with neutral expressions (Botvinick et al.
2005), and when comparing painful expressions with
angry ones (Simon et al. 2006). In addition, these
regions respond more strongly to intense than mild
facial expressions of pain (Saarela et al. 2007). Akin
to disgust, pain simulation in affective centres (ACC,
AI) is correlated with interindividual differences in
empathy (Singer et al. 2004). This led some research-
ers to emphasize the representations of the other
person’s subjective unpleasantness in understanding
someone else’s pain (Singer et al. 2004, 2006;
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de Vignemont & Singer 2006). Recent studies suggest,
however, that sensory and motor components may also
play a role.
3. SENSORY AND MOTOR COMPONENTS OF
EMOTION SIMULATION
Pain is often characterized by a motor response (e.g.
facial expression of pain) and frequently has a clear
sensory component (e.g. a needle entering the skin),
which resembles other emotions. In fact, the pain
matrix, which designates the collection of areas
involved in the experience of pain, consists of a
somatic/sensory as well as an affective/motivational
component (Jackson et al. 2006). Brain areas that
are involved in representing the sensory aspect of
physiological pain are the thalamus, SI/SII and the
(posterior) insular cortex (Peyron et al. 2000; Price
2000). Activation of the motor cortex and the cerebel-
lum is also reported in studies of pain experience
(Peyron et al. 2000). The next section reviews evidence
of motor and somatosensory simulations during pain
perception in particular and emotion perception
in general, suggesting there is more than merely
affective simulation.

(a) The case of pain

In some cases, people might share not only affective
but also motor and somatosensory representations
with other people in pain. In the EEG study cited ear-
lier, Bufalari et al. (2007) show that the degree to
which the sight of other people’s tactile and nocicep-
tive sensations modulates neural activity from the
crown of SI (BA1 and 2) depends on the rated stimu-
lus intensity. This suggests that sensory components of
the pain matrix can be activated by the vision of other
people’s pain. At first glance, fMRI studies seem more
ambiguous about the role of SI and SII in pain percep-
tion. As far as the sensory cortex is concerned, about
half of the studies found activity in SI/SII (e.g.
Lamm et al. 2007; Moriguchi et al. 2007; Decety
et al. 2008) and half did not (e.g. Singer et al. 2004,
2006; Jackson et al. 2005). At least three factors
could explain these differences. First, vicarious SI/SII
activity might be of modest intensity and the sensitivity
of the method and sample size of the experiment then
determine whether it is significant. For example,
Jackson et al. (2005) failed to find SI/SII activation
in their fMRI study; Cheng et al. (2008), using the
same stimuli with hands and feet in painful situations,
demonstrate suppression of the mu rhythm at the post-
central gyrus using magnetoencephalography (MEG),
a technique that measures electrical activity in the
brain by use of magnetic fields. The mu rhythm is sup-
pressed during both the execution and performance of
actions and is for that reason seen as an indicator of
mirror neuron activity (Pineda 2005). Also, Jackson
et al. (2005) fail in their sample of 15 subjects to
find the SI/SII activity that Moriguchi et al. (2007)
did find in their group of 30 subjects using the same
stimuli. Second, the type of comparison may also
play a role. Singer et al. (2004, 2006) subtracted con-
ditions in which subjects receive an electric shock
above the tactile threshold from one above the pain
Phil. Trans. R. Soc. B (2009)
threshold. Likewise Saarela et al. (2007) subtract
mild facial expressions of pain from more intense
ones. By subtracting one tactile condition from
another, somatosensory activation present in both con-
ditions may be lost. Indeed Cheng et al. (2007) find
somatosensory activation both when subjects view
needles (pain) being inserted into different body
parts and when these body parts are touched by a
q-tip (no pain). Moreover, activation of the somato-
sensory regions disappears when pain scenarios are
contrasted with the neutral ones. Although somatosen-
sory regions do not survive in a whole-brain analysis,
Cheng et al. (2007) show that S1 activation correlates
with pain intensity. In addition, region of interest
(ROI) analysis on the left postcentral region (function-
ally defined by the somatosensory signal change
during the pain condition) shows that watching painful
situations results in stronger activation than watching
the neutral equivalents. Again, when using more sensi-
tive methods, somatosensory involvement during pain
perception is demonstrated. A third factor explaining
the contradictory findings concerning the involvement
of the sensory cortex in pain perception could be the
experimental design used: some neuroimaging studies
draw more attention to general unpleasantness instead
of focusing on a specific body part. For example,
Singer et al. (2004) did not find an overlap in somato-
sensory cortices for perception of pain in self and a
loved one. However, pain in the other was indicated
by a cue and no pain-related behaviour was visible.
Similarly, studies using facial expressions of pain do
not localize the source of the pain on the body. This
could be the reason they often fail to find somatosen-
sory activations in response to pain (Botvinick et al.
2005). While putting more emphasis on the affective
side of pain reduces somatosensory engagement, evalu-
ating the sensory consequences of pain conversely leads
to increased activity in somatosensory areas (Lamm
et al. 2007).

Evidence that simulation of pain can involve the
motor system as well comes from Avenanti et al.
(2005). They found that during the observation of
pain applied to hands, motor excitability (as
measured using TMS-induced motor evoked poten-
tials, MEP) in the corresponding hand muscles of
the observer is decreased. In addition, the amplitude
of MEP inhibition correlates with sensory aspects
such as pain intensity. Along the same lines, an
fMRI study contrasting pictures of faces displaying
pain varying from high to low intensity found that
various nodes of the motor system (BA45, SMA,
BA6 and left IPL) were sensitive to intensity differ-
ences in displayed pain (Saarela et al. 2007). The
role of motor activation could be twofold, with the
MNS registering the actions of the face and body,
while the supplementary motor area (SMA) could
be involved in programming defensive movements
during pain perception (Decety et al. 2008). These
studies indicate that the pain of others is rep-
resented in a mosaic of brain regions involving
affective, somatosensory and motor representations,
but the precise factors determining the relative
importance of these various nodes remain to be
elucidated.
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(b) Other emotions

The study of pain demonstrates that sharing the
emotions of others may not be limited to sharing
their affective states: motor and somatosensory aspects
of emotions may also be shared. In most cases, we
deduce the emotional states of others from their
motor behaviour: we know people are happy because
they smile when they are happy, and we know when
people are disgusted because they turn up their
noses. Could a system similar to the mirror system
for goal-directed actions allow an observer to share
the facial and bodily emotional expressions of others?

The repertoire of the motor mirror system indeed
extends from hand actions to a wide range of body
actions including facial actions (e.g. Buccino et al.
2001). In monkeys, mirror neurons were documented
that react to the observation of specific mouth actions:
some ingestive mouth actions such as sucking, but
also, and most interestingly, some communicative
ones such as lip smacking (Ferrari et al. 2003). Several
brain-imaging experiments in humans also suggest
that we activate our premotor cortex upon viewing
an emotional facial expression. Activity in the pars
opercularis of the IFG and the ventral premotor
cortex (vPMC) was reported in several brain-imaging
studies in which subjects observed emotional facial
expressions. Interestingly, premotor activity is found
for the observation of both dynamic (Wicker et al.
2003; Hennenlotter et al. 2005; van der Gaag et al.
2007) and static stimuli (Carr et al. 2003; Wild
et al. 2003; Leslie et al. 2004). Additional evidence
for the role of the motor cortex in emotion perception
comes from two studies showing that viewing
an emotional facial expression interferes with a
simple facial motor task, which translates into an
increase of activity in the vPMC/IFG that is correlated
with the intensity of the emotion (Wild et al. 2003;
Lee et al. 2008). Additionally, the amount of facial
movement during the imitation of emotional
expressions correlates with activity in the MNS (Lee
et al. 2006).

The somatosensory cortex together with the ventral
premotor cortex and IFG seem to be recruited when
perceiving mouth actions (Gazzola et al. 2006) and
natural facial emotional expressions (Wicker et al.
2003; Winston et al. 2003; Hennenlotter et al. 2005).
Expressions causing the most somatosensory activity
during execution also caused the most activity during
observation (van der Gaag et al. 2007). In line with
pain studies, activity of the somatosensory cortex is
not reported consistently across studies. This might
be explained by sensitivity of the measurement, the
type of stimulus (i.e. static versus dynamic), a report-
ing bias (e.g. report of only the peak coordinates of an
active cluster), or the type of comparison (i.e. against
baseline or a neutral condition). Importantly, a large
lesion study has shown that lesions to the right soma-
tosensory cortices (centred on the most ventral part of
the somatosensory cortex, where the face is rep-
resented) impair the ability to recognize emotions
from visually presented faces (Adolphs et al. 2000).
Apparently, activation of somatosensory represen-
tations of the face when viewing emotions is crucial
for emotion recognition.
Phil. Trans. R. Soc. B (2009)
In summary, we may get access to the facial state
of another person (i.e. the configuration of facial
muscle groups) by reproducing in our premotor cor-
tices the contractions of the muscles we observe, and
by feeling the effect of these (simulated) contractions
in our own somatosensory cortices. This idea is
strongly supported by observations that even sublim-
inal exposure to emotional facial expressions triggers
measurable movements of the observer’s facial mus-
culature that resemble those observed. This phenom-
enon is called facial mimicry (Dimberg et al. 2000).
Whether such sensorimotor simulation could be
important for generating a model of the affective
state of others will be discussed in the following
section.
4. FROM MOTOR TO AFFECTIVE SIMULATION
Psychological theories have linked overt facial mimicry
(as measured by an electro-myograph or through
observation) to emotional contagion and emotion
understanding ( James 1884; Lipps 1907; Niedenthal
2007). Given that our brain has a lifelong experience
with the correlation between our own facial configur-
ation and our personal internal affective states, the
simulation of other people’s facial configuration
could trigger matching affective states. Intriguingly,
there is only limited evidence that the amount of
facial mimicry correlates with the amount of emotional
contagion and/or understanding. While Niedenthal
et al. (2001) show that blocking facial mimicry leads
to slower detection of facial expression change, Hess
& Blairy (2001) could not demonstrate a direct
link between degree of facial mimicry and accuracy
of emotional recognition. Additionally, studies in
disorders affecting facial expressivity such as Möbius
syndrome and facial paralysis show no striking
emotion recognition impairment (Calder et al.
2000a; Keillor et al. 2002). While it is difficult to
directly translate the concepts of facial mimicry and
emotional contagion into testable neural hypotheses,
it seems likely that if facial mimicry were to trigger
emotional contagion, areas such as the primary soma-
tosensory or motor cortex, known to directly sense or
cause facial movements, would be most strongly con-
nected to the insula, which is thought to represent a
neural correlate of emotional contagion. To explore
this possibility, Jabbi & Keysers (2008) performed a
functional connectivity study using Granger causality.
A functional connectivity study can identify brain
regions whose connectivity (i.e. correlation in activity)
is modulated by the task. A correlation between two
brain regions implies a connection, but does not
necessarily indicate causation. Granger causality can,
however, determine whether a time series A is useful
in forecasting another time series B more than B is
able to predict A. Jabbi & Keysers (2008) used the
region of the IFO that is common to the experience
and observation of disgust as a seed or reference
region in their study. They found that activity in the
IFO is Granger-caused by activity in the region of
the IFG that is active both while observing and generat-
ing facial expressions. In contrast, there was no enhanced
effective connectivity with the somatosensory cortex or
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the primary motor cortex. This may explain why the
IFG is not just responsive to facial movement, but is
more active when attention is drawn to emotional or
socially relevant properties (Gur et al. 2002; Lawrence
et al. 2006; Scheuerecker et al. 2007; Schilbach et al.
2007). It also suggests that the link between motor simu-
lation and emotional contagion may not be through
overt facial mimicry, as suggested by early psychological
theories (Lipps 1907), but instead through a covert
simulation in high-level motor regions (Carr et al.
2003). This may help clarify why motor simulation can
be important in emotion understanding even in the
absence of a tight correlation between overt facial mimi-
cry and emotional contagion. Future studies are needed
to further investigate this provocative hypothesis.

In summary, regions involved in simulating facial
expressions indeed seem to trigger an affective simu-
lation of the hidden inner states of others. In this
process, the link between our own (visible) facial
expression and (invisible) internal states could serve
as a Rosetta stone to derive hidden internal states
from the observable actions of others. It is likely that
bodily expressions of emotions (such as body postures)
could be processed in similar ways (de Gelder et al.
2004). There are, however, likely to be many routes
to equally many types of emotions which are processed
in various regions of the brain.
5. THE SPECIFICITY OF SHARING EMOTIONS
An important theme in the neural study of emotion has
been the search for brain areas that are selectively
involved in particular emotions. Many for instance
associate the ACC with the emotion of pain (Hutchison
et al. 1999), the IFO with the emotion of disgust
(Calder et al. 2001; Adolphs et al. 2003) and the amyg-
dala with the emotion of fear (Adolphs et al. 1994).
Such an organization would be a powerful instrument
to examine the degree to which the observation of a
particular emotion in others is translated into represen-
tations of a similar emotion in the self. Unfortunately,
most studies do not lend themselves well to answering
this question: some lump together the observation of
various facial expressions in the design of the exper-
iment (e.g. Carr et al. 2003; Leslie et al. 2004), while
others focus on only one emotion (e.g. Botvinick et al.
2005; Hennenlotter et al. 2005; Grosbras & Paus
2006). Additionally, many other studies do not use a
condition where the subjects experience the emotion
themselves (e.g. no studies have been performed yet
combining perception and experience of fear). Overall,
the available data shed increasing doubts on the exist-
ence of a reliable mapping of particular emotions onto
particular brain regions.

(a) The case of fear

Fear is probably the most widely studied basic
emotion, and much interest in the literature on fear
has focused on the amygdala (see figure 2b). This
structure is often thought to be involved in processing
facial, vocal and bodily signals of fear as well as in the
experience of this emotion and fear conditioning (e.g.
Halgren et al. 1978; Phan et al. 2002; LeDoux 2003;
de Gelder et al. 2004). The fact that certain patients
Phil. Trans. R. Soc. B (2009)
with lesions in the amygdala seem to show deficits in
the recognition and experience of fear (e.g. patient
SM: Adolphs et al. 1994; Tranel et al. 2006; patient
YW: Broks et al. 1998; patient NM: Sprengelmeyer
et al. 1999) but not of other basic emotions has led
some to propose that the brain simulates the fear of
others by activating states of fear in a fear-selective
amygdala (Goldman & Sripada 2005). However,
recent neuroimaging and patient studies challenge
this view. First, it is unclear whether patients with
lesions in the amygdala are unable to experience
fear: two-week-old primates with amygdala lesions dis-
play more fear (more grimaces and screams) during
social interactions than non-lesioned conspecifics
(Amaral et al. 2003); Anderson & Phelps (2002)
report an amygdala-lesioned patient who expresses a
normal range of emotion; and even the most widely
tested lesion patient SM displays a normal range of
affect and emotion during social interaction (Tranel
et al. 2006). Second, it is unclear whether lesions in
the amygdala directly impair the recognition of fear:
half the reported patients with amygdala lesions dis-
play normal fear recognition (see Keysers & Gazzola
2006); SM is unimpaired in recognizing fear from
vocal and bodily expressions of fear (Adolphs &
Tranel 1999; Atkinson et al. 2007) and if instructed
to look at the eyes of people (which she does not spon-
taneously do), even her recognition of fearful facial
expressions is normal (Adolphs et al. 2005). The role
of the amygdala in recognizing fear may have less to
do with the actual recognition, but more with directing
attention to the salient parts of the environment (e.g.
eyes) through its connections with high-level visual
areas (Vuilleumier et al. 2004), and then the actual rec-
ognition occurs elsewhere. Indeed, an increasing
number of fMRI studies find that the amygdala is simi-
larly recruited by movies of positive and negative facial
emotions (Kilts et al. 2003; van der Gaag et al. 2007),
except in fearful individuals (Ewbank et al. 2009) or
after administration of norepinephrine and cortisol to
simulate stress (Kukolja et al. 2008). When all these
results are taken together, they suggest that the role
of the amygdala in experiencing and recognizing fear
is more indirect than previously suggested, which
sheds doubt on the proposal that this structure embo-
dies a selective simulation of fear.
(b) Other emotions

Similar problems apply to other brain regions that have
been considered relatively selective for particular
emotions. Van der Gaag et al. (2007) systematically
compared the observation of movies of happy, fearful,
disgusted and neutral facial expressions. They could
not find fear selectivity in the amygdala. Furthermore,
disgust and the other emotions activated the IFO with-
out significant differences between any of the
emotions. The fact that the IFO seems similarly
important for the simulation of pain and disgust (see
above), also makes the lack of specificity of this struc-
ture apparent. Moreover, this structure is not only
recruited by both pain and disgust, but it is activated
more strongly in more empathic individuals for both
of the emotions. Furthermore, interindividual
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differences in empathy also explain activity in the very
same voxels during the observation of positive facial
expressions (Jabbi et al. 2007) with no difference
between emotions. Therefore, the insula does not
seem to be a centre for disgust. One alternative
hypothesis is that the insula may play a broader role
in emotion processing by translating what we perceive
into visceral responses that colour our subjective feel-
ings (Craig 2002). Since disgust is related to visceral
responses in particular (retching, nausea), we may in
some cases rely more strongly on the insula for recog-
nizing that particular emotion in ourselves and others.
Finally, even the link between the cingulate cortex and
a particular emotion such as pain may be an oversim-
plification. Although neurons responding to painful
stimuli exist in the ACC, Vogt (2005) suggests that
many regions of the cingulate cortex are not specific
for a particular emotion but for a particular output.
For instance, viewing sad faces is associated with
increased activity in the subgenual ACC because of
the role of this region in autonomic integration,
while the perception of pain and fear causes overlap-
ping activations in the anterior midcingulate cortex
(aMCC) because of its strong motor connections,
which prepare the body to react to these challenges
(Vogt 2005).

In summary, although there is vast evidence for a
role of the amygdala in fear, a role of the AI in disgust
and a role of the ACC in pain, these activations are not
emotion specific. Signals of fear could enhance amyg-
dala activity (in particular in stressful situations)
because they indicate a potential threat and as a
result visual attention to the outside world is increased.
Similarly, visceral responses mediated by the AI are
probably more important for disgust and the aMCC
with its strong motor connections might be particu-
larly relevant for pain. This might explain why activity
in the amygdala is often found for fear, activity in the
AI is often found for disgust and activity in the ACC is
often found for pain. However, activity in these regions
is unlikely to be directly linked to a particular emotion
and for this reason simulation of a particular emotion
is also unlikely to be related to a particular brain
region.

A key challenge for the field of emotion in general,
and the simulation of emotions in particular, will be
to examine whether individual neurons—within
brain regions that are not specific as a whole—may
represent some emotions more than others both
during self-perception and other-perception. In the
case of pain, for instance, there seems to be a
rostro-caudal functional organization of ACC and
IC with self-perception involving more caudal areas
than other-perception ( Jackson et al. 2006; Morrison
& Downing 2007). Applying methods such as (cross-
modal) adaptation (Dinstein et al. 2007), which are
used in the study of motor actions, might help address
the question of neural specificity in the emotional
domain.

We should, however, be wary of treating brain
regions as separate entities. Simulation is a highly
integrated process which is likely to depend on the
networks connecting various regions. Indeed, much
of the distinction between self and other during
Phil. Trans. R. Soc. B (2009)
social interactions may depend on differences
in the networks in which shared circuits are engaged.
For example, although the IFO is active when observ-
ing, feeling and even imagining disgust, effective
connectivity analysis shows that the involved networks
are quite different ( Jabbi et al. 2008): during experi-
ence, the IFO is embedded in a network composed
of somatosensory, gustatory/motivational and motor
output regions; during mental imagery (triggered by
written scripts) in a network of language processing,
semantic memory (temporal pole) and mental imagery
(SMA) areas; finally, during observation, the IFO
receives its strongest emotional input from the right
BA45, which is involved in execution, observation
and imitation of facial expressions. The same is true
for pain: the ACC and AI are involved in both the
experience and the observation of pain, but the func-
tional network during self-perception is different
from the network that is activated during the percep-
tion of others in pain (Zaki et al. 2007).
6. CONCLUDING COMMENTS
(a) Role of simulation

Neuroimaging experiments show that we activate
common circuits when observing sensations or
emotions felt by others, and when experiencing these
sensations and emotions ourselves. This clearly
suggests that seeing someone else experiencing
touch, disgust or pain triggers much more in us than
a purely theoretical, disembodied interpretation of
other people’s mental states. Witnessing someone
experiencing an emotion or a sensation is associated
with a pattern of activity in our brain embodying
their actions, sensations and affective states. What
could be the role of this automatic cortical simulation?

The motor component of simulating other people’s
facial expressions can have two purposes. One is
directly social and arises when the observer of a
facial expression not only simulates the facial
expressions of others, but allows this simulation to
show on his/her face. Such facial mimicry facilitates
social contacts and could increase the survival of
individuals by increasing their social success (see
Chartrand & Bargh 1999; van Baaren et al. 2009).
The overt outflow of simulated facial expressions,
however, depends on the social context: people refrain
from imitating people’s smiles if they are in competi-
tive contexts or deal with an outgroup member (see
Lanzetta & Englis 1989; van Baaren et al. 2009);
motor simulation of goal-directed actions can be
overt during imitation but remains covert in most situ-
ations. The second function of motor simulation
seems to be a way of bridging the observable behaviour
of others with hidden internal states that correspond to
these behaviours. It could do this by triggering a simu-
lation of affective states through the connections of
premotor regions with the IFO ( Jabbi & Keysers
2008). This circuitry does not require the primary
motor cortex and therefore does not require the
motor simulation to become overt. As was previously
discussed, this could explain why the amount of
overt facial mimicry does not directly predict how
accurate observers are at judging the emotions of
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others, or how much they are affected emotionally by
the emotions of others (Gump & Kulik 1997; Blairy
et al. 1999; Hess et al. 1999; however, see Niedenthal
et al. 2001; Sonnby-Borgstrom 2002). The importance
of such motor simulation for feeling what goes on in
others derives from lesion studies that show that
lesions in these regions impair the recognition of
affect in others (Adolphs et al. 2000). The affective
simulation that can be triggered by the motor simu-
lation of others’ behaviour and/or by mental imagery
of their states derived from other sources of
information ( Jabbi et al. 2008) is likely to have a
dual function as well. On the one hand, it probably
allows us to feel what goes on in others: lesions in
regions involved in sensory (SI/SII þ posterior insula)
and/or emotional (IFO) simulation indeed impair an
individual’s capacity to judge the emotions of others
(Adolphs et al. 2000, 2003; Calder et al. 2000b). On
the other hand, beyond providing a direct under-
standing of the emotions felt by others and allowing
the selection of appropriate behavioural responses,
affective simulation may help ‘synchronize’ the
emotional states of members of a group.

The study of the neural basis of simulation makes a
further functional prediction. Given that emotions are
shared through a mosaic of motor, somatosensory and
affective simulations, people’s reactions to other
people’s emotions may be expected to differ in fine-
grained ways. For instance, certain people could
engage in more motor and less affective simulation.
Others may have the reverse relationship. The psycho-
logical literature indeed supports the idea that empathy
has multiple separable subcomponents, which is in con-
trast to the layman’s vision of empathy as a unitary
system. Many separate cognitive empathy from affective
empathy (Mehrabian & Epstein 1972; Davis 1983;
Baron-Cohen et al. 2001) while others additionally dis-
tinguish motor empathy (Blair 2005). Finally, even
affective empathy can be further divided into personal
distress (the contagious sharing of others’ distress)
and emotional concern (the wish to help that is trig-
gered by the distress of others), with these forms devel-
oping at different ages (Preston & de Waal 2002).
Although the distinctions made by neuroscientists and
psychologists differ—the former being driven by
neuroanatomical and the latter by functional consider-
ations—recent evidence suggests that these distinctions
may be linked. Affective forms of empathy correlate
with brain activity in affective brain regions (IFO
while witnessing the disgust or pleasure of others:
Jabbi et al. 2007; and while sharing the pain with a
loved one: Singer et al. 2004). The less affective forms
(cognitive perspective taking), however, correlate with
the activity in non-affective brain regions (premotor
and somatosensory areas during action observation:
Gazzola et al. 2006; Avenanti et al. 2009). Some psy-
chologists would rather not label personal distress as a
form of affective empathy because it involves a self-
oriented rather than an other-oriented affective
response to the emotions of others (Batson et al.
1987; Eisenberg 2006). In fact, there are studies show-
ing that the more a person attributes their own traits to
another person and the higher the person’s own distress
to discomfort in others, the less strong the empathic
Phil. Trans. R. Soc. B (2009)
responses are in motor and somatosensory regions
(Lawrence et al. 2006; Avenanti et al. 2009). Notwith-
standing the debate about whether personal distress
should be labelled as a form of empathy or not, it is
still largely unclear why individuals differ in the compo-
sition of their empathy to begin with and how such
differences could be influenced by training.

Finally, the automatic sharing of both affect and
action with others may have a very fundamental role
for learning. While it remains unclear whether the
MNS involved in actions may be partially inborn, it
certainly is plastic. For instance, the training involved
in becoming a dancer or pianist increases the MNS
response to perceiving others perform that particular
dance (Calvo-Merino et al. 2005; Lahav et al. 2007),
and practice can virtually reverse the behaviour of
the mirror system (Catmur et al. 2007). It has been
suggested that the association between performing an
action and perceiving oneself perform the action may
form the basis for this plasticity (see Heyes 2001;
Keysers & Perrett 2004; Catmur et al. 2009). For
actions that we do not see ourselves perform (e.g.
facial expressions), experience of early imitation by
parents may be the key to learning (del Giudice et al.
2009). While motor simulation alone has often been
taken as the neural basis of learning by observation,
this explanation falls short of explaining how observers
can learn which of the actions of others are worth
learning. This problem might be naturally solved by
the brain using a combination of affective and motor
simulation. If viewing another individual perform
action A resulted in a positive outcome, and action B
resulted in a negative outcome, the brain of the obser-
ver would vicariously coactivate affective reward areas
and motor representations of A, but coactivate pain
areas together with representations of B. This would
lead to assimilating behaviour A but not behaviour B
through the very mechanisms of individual trial and
error learning and operant conditioning.

(b) Beyond simulation

A variety of authors have criticized simulation theory
(ST) based on the fact that it cannot explain all facets
of social cognition (e.g. Jacob & Jeannerod 2005; Saxe
2005; Gallagher 2007) and that we still fail to have con-
clusive evidence in humans that the exact same neurons
are involved in action perception and execution
(Dinstein et al. 2008). As previously discussed, this criti-
cism also applies to the case of emotions and sensations.
We view the first critique as an experimental challenge
that should inspire researchers in the next decade. As
for the second, we believe that it is fruitless to create a
competition between simulation views versus more cog-
nitively inspired ‘mentalizing’ approaches in current
social neuroscience research. There is no doubt that in
many instances we rely on our knowledge of the
person or the situation to make inferences about the
state of mind of the other. If a salesman of second-
hand cars smiled broadly while bragging about the
quality of a rusty old car, our simulation circuitry
could make us share his enthusiasm, but semantic
knowledge about second-hand car salesmen could lead
to a different conclusion. There is ample evidence that
what we know about someone else can influence the
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simulation mechanism. For instance, the perceived fair-
ness of the observed individual in pain influences how
much pain will be shared (Singer et al. 2006). Similarly,
the gender of the observed individual can influence our
neural response (Simon et al. 2006). In addition, the
sensory part of the pain matrix is engaged more when
the perceived pain reaction of another person matches
how we would respond ourselves (Lamm et al. in
press). Therefore, we believe the interesting question is
how these two processes are integrated in the brain
(Keysers & Gazzola 2007). Brass et al. (2009) for
instance suggest that it is the control of shared represen-
tations by the temporo-parietal junction (TPJ) and
medial prefrontal regions (e.g. by virtue of assigning
agency and suppressing externally triggered response
tendencies) and not the shared representations per se
that pave the way to understanding others. Various
authors have implicated these regions in mentalizing
and determining agency (Mitchell et al. 2006; Saxe
2006). Brass et al. (2009) suggest these regions not
only control automatic imitative response tendencies
but also shared representations involved in higher
order social cognition. In fact, Cheng et al. (2007)
show that when acupuncture practitioners watch needles
being inserted into someone’s body parts they do not
activate their own pain matrix (ACC, AI, PAG) as
naive subjects do, but they activate medial and superior
prefrontal cortices and the TPJ instead. Possibly due to
their knowledge of acupuncture, experts cognitively
inhibit affective simulation and reduce their vicarious
experience of pain intensity and unpleasantness. Under-
standing the influence of higher-level cognitive
representations on simulation will be one of the key chal-
lenges in the coming years, and will be essential to
understanding how our species has adapted to a world
in which simulation can sometimes be adaptive and
sometimes not (e.g. when having to fight an enemy).
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GLOSSARY
Simulation: A form of neural processing of social information

that involves activating neural states during observation

that match those that the observer experiences in a similar

situation. An example of motor simulation would be acti-

vating a pattern of motor activity while watching other

people’s actions that corresponds to the pattern found

when the observer performs the same actions (Etzel

et al. 2008).

Embodied cognition: By embodied cognition we mean any

form of cognitive processing that is performed in

representation codes that are specific to the body (see

Goldman & de Vignemont 2009). Such codes include

the motor codes implemented in primary motor,

premotor and supplementary motor cortices; the somato-

sensory codes implemented in primary and secondary

somatosensory cortices as well as in the insula; the

visceromotor representations implemented in the insula.

Qualia: The phenomenological aspects of feelings and

sensations making up our conscious experience.

Emotional contagion: Simulation as we use it refers to a pro-

cess, namely how the brain attaches meaning to other

people’s states by recruiting representations of similar

states of the self. Emotional contagion refers to the

effect that this can have on the observer’s mood or

emotions: the emotional state of an observer comes to

resemble that of the observed individual, for instance an

infant starting to cry upon hearing another baby crying

(Hess & Blairy 2001).

Empathy: We use empathy in its broadest sense unless other-

wise specified: the process through which we are sensitive

to other people’s inner states (affective states in particu-

lar) by placing ourselves into either a similar state (feeling

sad while seeing a friend cry) or a compassionate state

(having tender feelings for a person in pain). This broad

definition includes emotional contagion as well as what

has been termed empathy in the narrow sense, that is

an other-focused congruent emotion (Batson et al.

1987; de Vignemont & Singer 2006).

Imitation: We use imitation in its broadest sense here: the

generation of a behaviour that follows and matches an

observed behaviour. This broad definition includes what

has been termed emulation (generating a behaviour that

achieves the same goal as the observed behaviour) and

‘true imitation’ (generating an otherwise unlikely move-

ment that matches the one observed in its details). This

term also includes both automatic imitation, as measured

using interference paradigms (see Brass et al. 2009), and

voluntary imitation, as measured using more explicit

instructions to imitate.

Motor goals: The proximal purpose of an action. We speak of

motor to specify the pragmatic nature of the goals as can

be implemented in the motor system, as opposed to more

abstract goals or intentions that would be implemented in

non-motor brain regions. The motor goal of grasping a

glass of water would for instance be to hold the glass.

This particular goal can be achieved in a variety of ways

(e.g. you could grasp it with your left or right hand or

with your feet), which places it above detailed motor pro-

grammes in the motor hierarchy. It is however different

from a more distal goal or intention of grasping ‘to

drink’ or ‘to throw the content into my enemy’s face’. It

refers to the ‘what’ level of an action (Thioux et al. 2008).
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