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Electronic Health Record Driven 
Prediction for Gestational Diabetes 
Mellitus in Early Pregnancy
Hang Qiu1,2, Hai-Yan Yu1,2,3,4, Li-Ya Wang1, Qiang Yao5, Si-Nan Wu6, Can Yin7, Bo Fu1,2,  
Xiao-Juan Zhu1,2, Yan-Long Zhang7, Yong Xing7, Jun Deng7, Hao Yang8 & Shun-Dong Lei6

Gestational diabetes mellitus (GDM) is conventionally confirmed with oral glucose tolerance test 
(OGTT) in 24 to 28 weeks of gestation, but it is still uncertain whether it can be predicted with secondary 
use of electronic health records (EHRs) in early pregnancy. To this purpose, the cost-sensitive hybrid 
model (CSHM) and five conventional machine learning methods are used to construct the predictive 
models, capturing the future risks of GDM in the temporally aggregated EHRs. The experimental data 
sources from a nested case-control study cohort, containing 33,935 gestational women in West China 
Second Hospital. After data cleaning, 4,378 cases and 50 attributes are stored and collected for the 
data set. Through selecting the most feasible method, the cost parameter of CSHM is adapted to deal 
with imbalance of the dataset. In the experiment, 3940 samples are used for training and the rest 438 
samples for testing. Although the accuracy of positive samples is barely acceptable (62.16%), the results 
suggest that the vast majority (98.4%) of those predicted positive instances are real positives. To our 
knowledge, this is the first study to apply machine learning models with EHRs to predict GDM, which 
will facilitate personalized medicine in maternal health management in the future.

In developing regions, antenatal care increased from 65% in 1990 to 83% in 20121. Although more women are 
receiving antenatal care, gestational diabetes mellitus (GDM) defined as glucose intolerance first recognized dur-
ing pregnancy2, is still one of the most common medical complications of pregnancy3. According to the report 
of International Diabetes Federation (IDF)4, the total prevalence of GDM reaches almost 1% to 14% worldwide 
in 2014. In China, the recorded prevalence of GDM has increased from about 5% to more than 16% since the 
implementation of a new method of diagnosing GDM in December 20115. Moreover, GDM increases the risk of 
development of type 2 diabetes mellitus in both mother and child6, is also associated with adverse short-term fetal 
outcomes and offspring long-term greater adiposity.

According to the International Association of the Diabetes and Pregnancy Study Groups (IADPSG) guide-
lines7,8, the screening and diagnosis of GDM can routinely be executed at the period of 24–28 weeks’ gestation. 
The pregnant women underwent routine second-trimester screening, namely oral glucose tolerance test (OGTT), 
for GDM according to the risk factor screening guideline7. A technique with a high sensitivity to predicate GDM 
at the first-trimester9 would be well-received for the clinical practioners and almost all pregnant women, decreas-
ing the future risks of development of GDM.

Many studies of predicting modelling techniques10 have been conducted in the context of prospective cohort 
studies in which patients are followed up routinely by the investigators11. Wei, B. et al.12 studied parental smoking 
during pregnancy and presented log-binomial models with generalized estimating equations to predict relative 
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risks of GDM in the daughter. However, those studies on risk factor analysis did not consider the details of gesta-
tional trimesters. To further investigate first-trimester prediction of GDM, Leng, J. et al.13 studied plasma levels 
of alanine aminotransferase, identifying high risk women for gestational diabetes. Savvidou, M. et al.14 presented 
a model by examining the potential of combining maternal characteristics and laboratory measures in the first 
trimester. In their study, the samples and dimensions of the data set were limited. They only investigated 124 
maternal samples who developed GDM and 248 control subjects and they just measured no more than 20 param-
eters, including lipids, high-sensitivity C-reactive protein, adiponectin, etc. Despite of those recent progress, few 
studies have focused on the prediction for GDM with high dimensional electronic medical records (EHRs)15,16.

In China, prenatal examination provides regular check-ups that allow clinical physicians and midwives to treat 
and prevent potential health problems throughout the course of the pregnancy while promoting healthy lifestyles 
that benefit both mothers and children. Through prenatal examination, a mount of maternal characteristics data 
are collected and stored in EHRs, while these examination items vary from different pregnancy stages as well as 
their frequencies. Some clinical characteristics during pregnancy have been identified as principal risk factors 
for GDM, such as age, BMI, etc. Accumulating evidence in literature17,18 also indicated that those characteristics 
play important roles in predicting the development and progression of GDM19. Secondary analysis of those data 
broadens the way to predict incidence risk of GDM by digital health technology, such as machine learning. With 
high dimensional data from EHRs, Bertsimas D et al.20 investigated k-nearest neighbour algorithm for person-
alized diabetes management that improved health outcomes relative to the standard of care. They prescribed the 
regimen with best predicted outcomes from switching regimens and simulated the potential effects of recom-
mendations on matched patient outcomes, while those models could not be directly used to predict GDM risks 
of gestational women.

Secondary analysis of EHRs promises to advance clinical research and better inform clinical decision mak-
ing, but challenges in temporal representation and system’s discrimination ability of EHRs prevent widespread 
practice of predictive modelling21. Although there exist standard statistical methods for attribute reduction in 
prospective cohort studies, they cannot be directly applied to EHRs data, especially for analysing the progres-
sion of GDM. Instead of black box modelling, it would be interesting for the medical community to know the 
significant features. Meanwhile, it is meaningful to use all the attributes of the input data. The target disease 
(GDM) is often occurrence with many complications (i.e., excessive birth weight, hypoglycemia), which may 
be caused by the other attributes removed from the single task data set of GDM prediction. Although it is true 
for prospective cohort studies, in most other clinical scenarios and in EHRs, gestational women typically visit 
hospitals irregularly. Highly dimensional missing values and class-imbalanced data are prevailing phenomena 
in the irregularly spaced data of EHRs. Many statistical methods require balanced panel data and/or equidistant 
time series to analyze temporal phenomena. To improve the performance of the prediction model on imbal-
anced data22, cost-sensitive learning was taken as a potential method. Moreover, since physiological parameters 
of pregnant women vary from different stages of pregnancy, the values of data-driven predictions fail for a long 
period data set. To our knowledge, the development and application of machine learning algorithms (especially 
ensemble methods23) to predict GDM have not been reported. We therefore conducted this research with EHRs 
to identify the most feasible algorithm for predicting GDM, potentially advancing the diagnosis period of GDM 
and prognosis of its outcomes.

Materials and Methods
Our prediction framework was based on supervised learning23 (e.g., classification). Figure 1 shows a schematic 
representation of the prediction framework and its data processing steam in capturing temporal correlation and 
regularities in the aggregated EHRs. We implemented two steps to complete the task of prediction model con-
struction. First, in model selection step, five conventional machine learning classifiers and a variant of ensemble 
learning model were used and compared to identify the most feasible model for predicting future risks of GDM. 
Then, in parameter setting step, cost-sensitive hybrid model was employed to deal with imbalance of the data, 
aiming to improve its effectiveness in classification.

Basic Characteristics of the Study population.  The EHRs data of our investigations were stored in 
our centred repository, which has been collected and managed by the West China Second Hospital in Chengdu, 
Sichuan. The experimental data was a nested case-control study cohort. In total, 33,935 gestational women were 
enrolled in the EHRs from year 2013 to 2016. GDM related information of those samples contained 106 features 
of archiving data, 23 features of inspection data, 157 features of test data from laboratory information system 
(LIS) and 268 features of the first pages of EHRs. After data cleaning, we used a filtering strategy to preselect 
patients as our candidate samples whose EHRs data were related to GDM, excluding those of pregestational dia-
betes mellitus (PGDM). Through this process, we obtained a concrete data set of 10,105 samples with common 
clinical characteristics. In this data base, there were 1,649 GDM (positive) cases and 8,456 Non-GDM (nega-
tive) cases. However, this sample dataset still existed massive missing values, due to the various inspection terms 
among different patients. To make the dataset fit for classification, we removed the samples and attributes with 
their missing values over a certain level (i.e., 50%). Then, 4,378 cases with 50 attributes (less than 10% of the total 
attributes) remained for further EHRs data processing and machine learning experiments, as shown in Table 1.

Instance Representation with Temporal Data Association.  The acquisition period of the instances 
herein is the first time of registration of the gestational women in the hospital (no later than 13 weeks’ gestation), 
which is much earlier than that of identifying the class labels by OGTT (24–28 weeks’ gestation). We denote tI and 
tII as two periods of data association. The observations of instance xi(tI) are acquired at tI and the associated labels 
of each instance, ci(tII), is identified at tII. Given a training data set
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where N is the number of the instances and ci (tII) ∈ {−1, +1}. We assume that ci (tII) is a predicted value of ci (tI).
The goal of learning is to construct a strategy or algorithm π, which satisfies the decision makers’ criterion. For 

example, maximizes the generalization accuracy,

π π= Π =∼Acc x f x( ) E [ ( ( ) ( ))] (2)x D

where Π(·) is an indicator function and E(·) is its expectation when x obeys the distribution D and f the 
ground-truth target function.

Given characteristics xi (tI) and label ci (tII) in a sequence data set D(tI, tII), we train π in the form of 
“xi (tI) → ci (tII)”, meaning that characteristics xi (tI) in the sequence implies label ci (tII) is also in the sequence. And 
its confidence of π is defined as
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where δ(·) is the number of the characteristics. The confidence implies the proportion of training sequences with 
characteristics xi (tI) that also have label ci (tII).

Given a query instance data set Q, qs (tI) ∈ Q acquired at tI is regarded as a test instance, then its conse-
quence label is deduced as π (qs (tI)). This outcome is a predictive label for π(qs (tI)) at tII. Since cs (tII) is a pre-
dicted value of cs (tI), π(qs (tII)) = cs (tII), if Π(π (qs (tI)) = f (qs (tII))) = 1, then Π(π (qs (tI)) = cs (tII)) = 1, or else 
Π(π (qs (tI)) = cs (tII)) = 0.

Cost-sensitive Hybrid Model for Classifying.  Since clinical data are often imbalanced and cost-sensitive, 
conventional methods can predict all the instances as negative with still high accuracy. However, this is not an 
ideal choice for those instances and in certain cirtuances, the cost of the positive instances are more sensitive than 
the negative. We assume that the minority class (positive) has higher cost than the majority class.

We suppose the cost of misclassifying the ith class to the jth class is Mij,

π
λ π
λ π

=








=
≠ = −
≠ = +

M
q t c t
q t c t c t
q t c t c t

0 ( ( )) ( )
( ( )) ( ), ( ) 1
( ( )) ( ), ( ) 1 (4)

ij

s s

s s s

s s s

I II

1 I II II

2 I II II

The cost ratio of the minority class against the majority class is λ1/λ2. This rescaling ratio is implemented to 
rebalance the classes such that the influence of each class in the learning process is in proportion to its cost. 

Figure 1.  Prediction model and data processing schematic diagram. In EHRs, the feature vectors were 
extracted from the characteristics of the first trimester and the class labels from the diagnostic international 
classification of diseases (ICD-10) codes of OGTT in 24–28 weeks’ gestation. After EHR preprocessing, the 
experimental data were divided into two subsets in evaluation design. The training set was then modelled 
using six machine learning techniques and the variants of cost-sensitive hybrid models (CSHM). Five measure 
metrics of the performance were collected: accuracy; area under the ROC curve (AUC), true positive rates, false 
positive rates and confidence reports.
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index field Description #. values #. Missing mean media Mode s.d. variance Minimum Maximum

1 high_risk High Risk Pregnancy (Age Over 35) 4378 0 0.13 0.00 0 0.336 0.113 0 1

2 marriage_ages Marriage Years 4213 165 3.93 3.00 1 3.687 13.596 0 26

3 height Height 4374 4 160.14 160.00 160 4.799 23.034 130 177

4 pregnancy_times Pregnancy Times 4378 0 2.13 2.00 1 1.330 1.770 0 12

5 husband_age Husband Age 4372 6 32.19 31.00 29 4.898 23.994 21 64

6 delivery_age Production Age 4374 4 30.53 30.00 28 3.926 15.415 19 47

7 bmi Body Mass Index (BMI) 4373 5 20.9005 20.5700 20.70 2.59699 6.744 14.62 36.89

8 Nonnative Nonnative 4298 80 0.12 0.00 0 0.325 0.106 0 1

9 HCT Hematocrit 4378 0 1.79 2.00 2 0.409 0.167 1 3

10 MCH The Level Of Mean Corpsular Hemoglobin 4378 0 2.28 2.00 2 0.557 0.310 1 3

11 WBC Count of White Blood Cell 4378 0 2.17 2.00 2 0.380 0.144 1 3

12 EOS Eosinophils 4378 0 1.55 2.00 2 0.508 0.258 1 3

13 MPV Mean Platelet Volum 4378 0 2.10 2.00 2 0.297 0.088 2 3

14 PDW Platelet Distribution Width 4378 0 2.07 2.00 2 0.248 0.061 2 3

15 RDW.CV Red Blood Cell Distribution Width CV 4378 0 1.84 2.00 2 0.545 0.297 0 2

16 RDW.SD Red Blood Cell Distribution Width SD 4378 0 2.18 2.00 2 0.385 0.148 1 3

17 MONO. Monocytes 4378 0 1.94 2.00 2 0.255 0.065 1 3

18 EOS. Eosinophil 4341 37 1.67 2.00 2 0.487 0.237 1 3

19 PCT Path CAST 4378 0 2.05 2.00 2 0.227 0.052 1 3

20 P.LCR Platelet-Large Cell Rate 4378 0 2.10 2.00 2 0.293 0.086 2 3

21 HBsAg Hepatitis B[Virus] Surface Antigen 4378 0 1.88 2.00 2 0.475 0.226 0 2

22 Anti.HBs Hepatitis B Surface Antibody 4378 0 .51 .00 0 0.874 0.764 0 2

23 Anti.HBe Hepatitis B E Antibody 4378 0 1.69 2.00 2 0.727 0.529 0 2

24 HBcAb.T. Hepatitis B Core Antibody 4378 0 1.55 2.00 2 0.838 0.702 0 2

25 ALT Alanine Aminotransferase 4378 0 1.83 2.00 2 0.557 0.310 0 2

26 AST Aspartate Transaminase 4378 0 1.88 2.00 2 0.470 0.221 0 2

27 PA Prealbumin 4375 3 1.75 2.00 2 0.436 0.190 1 2

28 UN Urea 4378 0 1.43 1.00 1 0.495 0.245 1 2

29 UA Uric Acid 4378 0 1.82 2.00 2 0.384 0.147 1 3

30 FPG Fasting Plasma Glucose 4370 8 1.90 2.00 2 0.294 0.087 1 3

31 RBC Red Blood Cell 4378 0 2.30 2.00 2 0.458 0.209 2 3

32 EC Epithelial Cell 4378 0 2.41 2.00 2 0.492 0.242 2 3

33 XYSPXB Number of Small round epithelial cel 4378 0 2.90 3.00 3 0.294 0.087 2 3

34 CAST Cast 4378 0 2.25 2.00 2 0.435 0.189 2 3

35 CAST.1 Pathological cast 4378 0 2.19 2.00 2 0.392 0.154 2 3

36 EC.1 Education 4378 0 2.40 2.00 2 0.491 0.241 2 3

37 WBC.1 White Blood Cell 4377 1 2.41 2.00 2 0.492 0.242 2 3

38 TPOAb Antithyroid Peroxidase Autoantibody 4267 111 1.65 2.00 2 0.759 0.575 0 2

39 TSH3UL Thyroid Stimulating Hormone - 
Hypersensitivity 4272 106 1.85 2.00 2 0.406 0.165 1 3

40 Anti.A Anti-A Blood Grouping Reagents 4378 0 2.39 2.00 2 0.489 0.239 2 3

41 Anti.B Anti-B Blood Grouping Reagents 4378 0 2.35 2.00 2 0.476 0.226 2 3

42 A1cells A1cells 4378 0 2.61 3.00 3 0.489 0.239 2 3

43 Bcells Bursa Oriented Cells 4378 0 2.65 3.00 3 0.476 0.227 2 3

44 RBC.1 Red Blood Cell Count 4378 0 1.91 2.00 2 0.345 0.119 1 3

45 LYMPH. Lymphocyte 4378 0 1.31 1.00 1 0.463 0.214 1 3

46 NEUT Neutrophil 4378 0 2.20 2.00 2 0.404 0.163 1 3

47 NEUT. Neutrophilic Granulocyte 4378 0 2.89 3.00 3 0.312 0.097 2 3

48 r.GT Glutamyl Transpeptidase 4378 0 1.87 2.00 2 0.487 0.237 0 2

49 ALP Alkaline Phosphatase 4378 0 1.69 2.00 2 0.467 0.218 1 3

50 label_gdm Gestational diabetes mellitus 4378 0 0.14 0.00 0 0.346 0.120 0 1

Table 1.  Statistical description of the sample attributes. Note: #. values (missing) means the number of values 
(missing). s.d.: standard deviation. In most clinical scenarios, patients typically visit hospitals irregularly. 
Gestational women normally do not take all the tests and examinations when they visit hospitals. Oftentimes 
we only observe some phenotype information from a patient in each of her visit, resulting in missing values for 
the others. Thus missing values are a prevailing phenomenon in EHR data. In addition, EHR data are inherently 
highly dimensional and spread across multiple aspects of health care. Features have been carefully selected or 
constructed before the data analysis in order to achieve the best predictive performance. In order to ensure the 
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After rescaling, the influence of the minority class should be λ1/λ2 times of the influence of the majority class. In 
particular, when λ1/λ2 = 1, this is the class-balance learning. In medical diagnosis, the ratio is often larger than 1 
because the mistakenly diagnosing a patient to be healthy may threaten a life.

According to the optimization theory24, the goal of prediction model can be written in the form of
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where Chard is determined by domain experts. The tuition of this prediction model is to maximize the accuracy of 
learner π on the constraint of a given cost bound Chard.

Here we presents a variant of ensemble learning methods23, cost-sensitive hybrid method (CSHM), which has 
the advantage of being able to covert weak learners to strong learners. To exploit the independence between the 
base learners, the weak learners are combined in a parallel way to improve their performance. Each base predictor 
has an independent generalization accuracy, i.e., for base classifier πl, Acc (πl) = Ex∼D[Π(πl (x) = f(x))]. sign(·) is a 
signal function. After combing L number of such base predictors according to
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this hybrid prediction model π makes an error only when at least half of its base predictors make errors. In prac-
tice, the heterogeneous base predictors can be selected from conventional machine learning algorithms.

Evaluation Design.  Our prediction framework mainly contained classification models with embedded fea-
ture selection methods, which adaptively found the optimal feature set from the raw EHRs data for each classi-
fication model. Before we obtained the whole cohort data set, we primarily extracted a balanced data set from 
the data repository as an example to select the methods. In the experiments, we conducted 10-fold cross val-
idation based on each model-based predictor. During the training period, we firstly employed and compared 
six widely-used classification models25 to identify the most feasible machine learning (ML)-based prediction 
technique. Those base learners had good performance in predicting the positives. However, the whole data set 
was found imbalanced after completing the whole process of data cleaning. Then, to measure the effectiveness of 
prediction, we had to implement it in a variety of decision costs with the imbalanced data. The baseline classifiers 
used here contained Logistic Regression (LR), Bayesian network (BN), Neural network (NN), support vector 
machine (SVM), and CHAID tree. Systematic and comprehensive benchmark of different machine learning mod-
els was beyond the scope of this paper. To keep our work focused and data-efficient, we adapted parameters and 
decision thresholds of those predicted models25, as shown in Table 2. In particular, we used 0.50 as the classifi-
cation threshold for the classifiers LR and NN. Based on the selected base classifiers, CSHM and its five variants 
with different decision costs were implemented to model patterns of GDM samples and normal ones. According 
to the domain experts, the cost rate for the misprediction of the positive and negative samples could be set at a 
certain ratio (i.e., 100:1) while the costs of correct prediction zero.

During the testing period, we implemented the trained models to predict the labels of the new instances. 
Moreover, five measures26,27 including accuracy, area under the curve (AUC), true positive rate (TPR), false pos-
itive rate (FPR) and confidence report28,29 (mean correct and mean incorrect) were adapted to evaluate the per-
formance of these classifiers. In particular, true positive rate (TPR) was implemented to measure the effectiveness 
of predicting positives.

EHR Processing. 

	(a)	 Discretization and normalization. The continuous attributes of the input data were converted into discrete 
ones (intervals). The ‘sweep’ function in ‘R’ software30,31 was also implemented for Max-Min normalization.

	(b)	 Missing data processing. Rate of missing data reflected the randomness of missing data, because pregnant 
women received heterogeneous recommendations from the physicians. Besides, irregular examinations 
also took missing values. To make the experimental data fit for classification (i.e., no less than 20% of 
missing values in attributes and no less than 5% in samples), the missing values were automatically filled 
by the interpolation algorithm (knnImpute)32, in which its function mice was set as (data set, m = 5, 
meth = PMM).

	(c)	 Selected features. With the above processed data set, the optimal features were obtained with the embed-
ded feature selection methods33.

stability of the predictive models, some features were removed prior to data imputation. Features presented in 
less than 50% of patients in an EHR cohort were discarded from our analysis. The attribute “Family History of 
Type 2 Diabetes” should also be considered for training the model. However, in the present information system 
of this hospital, it did not collect the data of this attribute.
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Future GDM risk prediction.  To predict the risk that gestational women might develop GDM given their 
current clinical status, we implemented cost-sensitive hybrid model trained over historical instances using our 
study dataset. This is because it often demonstrate better performances than other baseline classifiers. When 
records of new patients are acquired, her clinical characteristics will be handled with through the proposed data 
processing stream. Then, the future GDM risk of those new cases can be predicted as GDM or normal with the 
selected classifying model.

Results
This paper implemented a data set of a pre-set time window to execute the prediction task. The model for early 
diagnosis of GDM by machine learning (ML) had the ability to predict the unknown GDM status of pregnant 
women in their early pregnancy by exploring the value of EHRs, including archival data, examination data and 
diagnostic data of OGTT. After filtering in the raw data set, there were 4,378 cases and 50 attributes in the exper-
imental data. Among them, 3940 samples (90%) were used for training and the other 438 samples (10%) for 
testing. We configured these algorithms in a 10-fold cross validation way. We firstly employed and compared 
several widely-used classification models to identify the most feasible ML-based prediction technique during the 
training period. Then, to measure the effectiveness of the selected model with imbalanced data, we implemented 
it in a variety of contexts of decision costs. For each model-based predictor, we conducted cross validation34 with 
their embedded optimal feature sets. Through preliminary experiments on the validation dataset, the future risk 
to develop GDM was identified for each patient in this period.

Comparisons of Predictive Algorithms in Discrimination Ability.  To identify the most feasible 
algorithm for predicting GDM, we first employed and compared those six techniques with cross validation in 
their discrimination abilities, as shown in Fig. 2. The accuracies of Logistic Regression (LR), Bayesian network 
(BN), Neural network (NN), support vector machine (SVM), CHAID tree and a variant of ensemble methods 
(cost-sensitive hybrid model, CSHM (1)) in both training and testing were between 85.04% and 87.9%, except 
that the accuracy of SVM in training was over 90% (Fig. 2A). Although their accuracies were high, other meas-
ures were introduced to further compare their performance because the experimental data were imbalanced and 
almost 86% of the experimental instances were negative. In area under ROC curve (AUC s) (Fig. 2B), the data 
demonstrated that CSHM (λ1 = 1) was superior to LR, NB, NN, SVM and CHAID in both training and testing. 
AUC of CSHM (λ1 = 1) was 0.865 for the training and 0.847 for the test.

Despite of their accuracies and AUCs, true positive rate (TPR) and false positive rate (FPR) were also deduced 
from their confusion matrix to compare their performance (Fig. 2C and D). On the one hand, the TPRs of LR, 
NB and NN were very low, which were below 5% or even 0, while the TPRs of SVM were the highest among them 
in both training and testing. The TPRs of CSHM (λ1 = 1) were around 10% in training and testing and had less 
variance than those of SVM and CHAID, of which the TPRs had the largest variance. On the other hand, FPRs 
of those six techniques were very low, especially that FPRs of CSHM (λ1 = 1) were even 0. Those results depicted 
that those techniques did not or seldom predict the instances as positive, but once the instances were predicted as 

Methods Details of setting

Logistic Regression

Procedure: polynomial

Selection of variables in equation fitting: forward

Target class: 1,  Model type: main effect

Include constants in the equation

Bayesian network
Structure type: Markov cover

Parameter learning method: maximum likelihood

Neural Networks

Primary objective: Enhanced model accuracy(boosting) Model: multilayer perceptron NN

Hidden layer: automatically calculates the number of cells

Termination rule: Maximum number of training cycles=250

Number of component models (boosting):10

Prevent over fitting sets: 30%

Support Vector Machines

Kernel: radial basis function (non-linear)

Stop threshold: 1.0e-3

Regression accuracy(epsilon): 0.1

CHAID trees

Tree growth algorithm: CHAID

Maximum tree depth: 16Termination rule: ①Minimum number of records in a parent 
branch: 2.0%; ②The minimum number of records in a child branch: 1.0%

Segmentation and merging: Significance level(0.05)

Split Merge classes within a node: No

The maximum number of iterations of convergence: 200

CSHM

Base classifiers: LR, SVM, CHAID trees Method: Confidence weighted voting (maximum)

Model discard criteria: AUCROC < 0.6

Cost ratio: λ1 = 1, 1.5, 5, 10, 100 and 1000.

Table 2.  Setting details of the six methods.
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positives, those instances would be identified as real positives in OGTT at very high future risks. That is, we are 
less certain that a gestational woman does not have GDM if she has not been identified by those methods with 
EHRs at the first trimester, while we have a high confidence that a woman has GDM if she has been identified for 
the disease.

Furthermore, receiver operating characteristic (ROC) curves of those techniques demonstrated that CSHM 
was significantly better than the other five methods for training and testing (Fig. 2E and F). Those results depicted 
that although the discrimination abilities of positive samples were not high for those techniques without consider-
ing the imbalance of the data, the performance of CSHM (λ1 = 1) showed the best in those measures collectively.

Figure 2.  Performance of six techniques with cross validation. Bar graphs in (A), (B), (C) and (D) illustrate 
accuracy, area under ROC curve (AUC), true positive rate (TPR) and false positive rate (FPR) of those six 
techniques, respectively. Curves in (E) and (F) demonstrate receiver operating characteristic (ROC) for training 
and testing. LR: logistic regression; NB: naive Bayes; NN: neural network; SVM: support vector machine; 
CHAID: Chi-square automatic interaction detection Tree; CSHM (1): cost-sensitive hybrid model with cost 
parameter λ1=1 (symmetrical costs of misclassification). TPR and FPR are obtained from their confusion 
matrix.
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Effectiveness of CSHM with Asymmetrical Costs of Misclassification.  Performance of CSHM with 
the parameter λ1 has also been verified by more experiments, because the values of λ1 reflect the preference of 
domain experts. With the experimental data, Fig. 3 shows the results of CSHM with certain decision costs.

From accuracy and AUC, the results (Fig. 3A and B) depicted that CSHM in sensitive contexts (λ1 = 1.5, 5, 
10, 100 and 1000) presented good performance. When λ1 = 10, its AUC (Fig. 3B) achieved the peaks at 0.902 and 
0.893 for training and testing. In accuracy (Fig. 3A), CSHM with λ1 = 100 or 1000 showed a better discrimination 
ability in learning than with other values, as well as TPRs (Fig. 3C). In FPR (Fig. 3D), all the variants of CSHM 
presented low values. Although the FPR of CSHM with λ1 = 1.5 was lower than those of the other cases, its TPR 
did not show any strength in discrimination ability of positive samples. The variances of TPRs of the variants 
were much larger than those of FPRs. In total, for imbalanced and cost-sensitive data, CSHM with a larger cost 
(i.e., 100) demonstrated more effective in discrimination ability than those with much smaller values (i.e., 1.5) 
(Fig. 3E and F).

Figure 3.  Performance of CSHM in five cost sensitive contexts with cross validation. Bar graphs in (A), (B), (C) 
and (D) illustrate accuracy, area under ROC curve (AUC), true positive rate (TPR) and false positive rate (FPR) 
of CSHM in five cost sensitive contexts, respectively. Curves in (E) and (F) demonstrate receiver operating 
characteristic (ROC) for training and testing. CSHM (1.5): cost-sensitive hybrid model with cost parameter 
λ1 = 1.5 (asymmetrical costs of misclassification). TPR and FPR are obtained from their confusion matrix.
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Another relative method to solve the problem of imbalance learning was balanced sampling, such as under-
sampling13,35. It mainly consisted of two steps: trading off the balance of the positive samples and the negative with 
undersampling; training the new generated data set with machine learning algorithms. This kind of sampling 
method removed a part of the majority samples, while CSHM with asymmetrical costs did not here, which max-
imized the values of the acquired EHRs data and proved effective for identifying GDM.

Significance Analysis.  In the studies on permutation tests36, more statistical measures were used to validate 
the significance of AUC for each algorithm. Although we have compared ROC and AUC through 10-cross vali-
dation method, here we executed more experiments to compare the significance of true positive rates with certain 
thresholds of false positive rates. The significance of CSHM compared to the algorithms of SVM, LR and NN and 
its variants in five cost sensitive contexts were shown in Fig. 4(A) and (B). Here we introduced a new concept, 
difference in true positive rates (DTPR). Given N thresholds of false positive rates, DTPR is the difference of the 
true positive rates of model Y1 minus those of model Y2 at each threshold.

= −-DTPR(Y Y ) TPR(Y ) TPR(Y ) (8)1 2 1 2

Figure 4.  Significance of CSHM comparing with other methods. (A) Significance of CSHM to the algorithms 
of SVM, LR and NN; (B) significance of CSHM(100) to the other four cost sensitive contexts. (C) Comparison 
of the results with CSHM and SVM on the experimental data set. T(1): CSHM(1), CSHM model takes the cost 
parameter λ1=1. T(1)-LR (or NN, SVM): the true positive rates of CSHM(1) minus those of LR (or NN, SVM). 
T(100)-T(1)(or T(5), T(10), T(1000)): the true positive rates of CSHM(100) minus those of CSHM(1) (or T(5), 
T(10), T(1000)). p-value < 0.001 illustrates the significance of those two methods with a two-sided test for 
difference in AUC.
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For example, the difference between CSHM and other methods is obtained through subtracting TPRs of SVM, LR 
and NN from those of CSHM, respectively.

First, we verified the significance of CSHM (1) to the algorithms of SVM, LR and NN. Then, we verified the 
significance of CSHM (100) to the other four cost sensitive contexts. In the experiments, we achieved the data 
sequence of true positive rates (TPR) at 1871 and 1887 thresholds of false positive rates for those two cases, respec-
tively, as shown in Table 3. In one-sample T-Test method37, we set the test value as 0. The results showed that those 
means were all larger than 0 for DTPR (CSHM-LR), DTPR (CSHM-NN) and DTPR (CSHM-SVM). Similarly, 
those means were all larger than 0 for DTPR (CSHM(100)- CSHM(1)), DTPR (CSHM(100)- CSHM(5)), DTPR 
(CSHM(100)- CSHM(10))and DTPR (CSHM(100)- CSHM(1000)). The results in Table 3 show that for those 
methods p < 0.001, which means the null assumption is acceptable in significance of those data.

Furthermore, the significance of CSHM to the algorithm SVM was verified particularly, as shown in Fig. 4(C). 
The statistical comparison of two correlated ROCs38 has been executed by the pROC Package39. The study of SVM 
ensembles40 provided an evidence that the ensembles have better performance than SVM. On the experimental 
data, p-value < 0.001 illustrates CSHM outperforms SVM significantly with a two-sided test for difference in 
AUC.

Confidence Analysis of Prediction.  Instead of black box modelling, it would be interesting for the medical 
community to know the confidence of those predictions that are being deduced by these classifiers in predicting 
GDM during early pregnancy. Figure 5 demonstrated the confidence reports of six techniques and the variants of 
CSHM in five cost sensitive contexts with cross validation. Comparing the confidence reports of CSHM (λ1 = 1) 
with those of LR, BN, NN, SVM and CHAID, the results demonstrated that the mean correct of CSHM was high 
with the lowest mean incorrect. It verified that the discrimination ability of CSHM was the best among those six 
methods. In details, the mean correct (Fig. 5A) of the training (test) set was 0.896 (0.897) for CSHM (λ1 = 1), 
indicating that the mean value of the prediction confidence of all correctly predicted samples was 0.896 (0.897). 
Its mean incorrect (Fig. 5C) of the training (test) set was 0.703 (0.718), indicating that the mean value of the 
prediction confidence for all error prediction samples was 0.703 (0.718). For training and testing, the confidence 
ranges of CSHM (λ1 = 1) were 0.374–0.997 (Fig. 5E) and 0.375–0.991 (Fig. 5G). Namely, there was no prediction 
with confidence below 0.374 (0.375) in the training (test) set. The results also showed that 1.92% of the obser-
vations in the training set were always higher than the confidence level 0.979. Similarly, 6.21% in the test set 
were always higher than the confidence level 0.655. For those samples with confidence over 0.604 (0.581) in the 
training (testing) set, more than 90.02% (90.04%) of the samples were correctly predicted with CSHM (λ1 = 1).

For the variants of CSHM with asymmetrical costs (λ1 = 1.5, 5, 10, 100 and 1000), the results in Fig. 5B 
demonstrated that the mean confidences of correct predictions were in a slope tread as λ1 grew for training. In 
details, the mean correct of CSHM with λ1 = 100 was 0.611 (0.615) for training (testing), indicating that the mean 
value of the prediction confidences was 0.611 (0.615) for all the correctly predicted samples. The mean confidence 
of CSHM (λ1 = 1.5) took the peak at 0.909, while that of CSHM (λ1 = 1000) took the lowest at 0.599. Meanwhile, 
CSHM (λ1 = 1.5) also took a smaller confidence range than those of the others (Fig. 5F). However, the mean 
confidence of incorrect predictions did not follow an obvious trend as λ1 grew (Fig. 5D). For example, the mean 
incorrect of the training (test) set was 0.601(0.6) for CSHM (λ1 = 100), indicating that the mean value of the pre-
diction confidence was 0.601 (0.6) for all incorrectly predicted samples. The boxplots (Fig. 3F and H) illustrated 
that the distributions of confidence varied a lot among the variants of CSHM with different sensitive costs. As λ1 
increased, both of the upper and lower bounds of the confidence ranges were in decreasing trends. The confidence 
of CSHM (λ1 = 1.5) ranged from 0.395 to 0.996 in training, while that of CSHM (λ1 = 1000) ranged from 0.264 to 
0.666. Those patterns were also different from other relative methods (including LR, BN, NN, SVM and CHAID). 
In short, those results suggested that the confidences of those prediction methods were sensitive to the decision 
costs of the imbalanced data set.

Discussion
This study which has been conducted in a Chinese population in West China Second Hospital, highlights some 
novel and potentially clinically important aspects of routine and nonroutine tests to predict GDM. Although 
several machine learning techniques with a panel of maternal demographic and clinical characteristics in EHRs 
may dependently predict the risk for GDM, the results show that the ensemble method CSHM with asymmetrical 
costs of misclassification provides better predictive ability. The tuition of prediction is: after the attributes being 
extracted and selected from the EHRs historical data, the machine learning models are employed and trained 

Abbreviation N Mean
standard 
deviation

Standard error 
of mean t

degree of 
freedom

Sig.(Two-
sided)

Lower 
bound*

Upper 
Bound*

CSHM-LR T(1)-LR 1871 0.1926 0.13892 0.00321 59.961 1870 <0.001 0.1863 0.1989

CSHM-NN T(1)-NN 1871 0.2439 0.16816 0.00389 62.727 1870 <0.001 0.2362 0.2515

CSHM-SVM T(1)-SVM 1871 0.0733 0.10030 0.00232 31.623 1870 <0.001 0.0688 0.0779

CSHM(100)-CSHM(1) T(100)- T(1) 1887 0.0698 0.06764 0.00156 44.828 1886 <0.001 0.0667 0.0729

CSHM(100)-CSHM(5) T(100)- T(5) 1887 0.0880 0.08092 0.00186 47.218 1886 <0.001 0.0843 0.0916

CSHM(100)-CSHM(10) T(100)- T(10) 1887 0.0320 0.03911 0.00090 35.562 1886 <0.001 0.0302 0.0338

CSHM(100)-CSHM(1000) T(100)–T(1000) 1887 0.0665 0.05797 0.00133 49.811 1886 <0.001 0.0639 0.0691

Table 3.  Significance comparison. *95% confidence interval of difference.
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with two subsets (GDM and non-GDM); then, implicit temporal patterns are achieved by those models from 
those characteristics data; finally, for a new (undiagnosed) pregnant women, the instance of her record is input 
into the selected and trained model and the occurrence probability of GDM is deduced as its future risk.

Our work has a number of strengths. First, the possibility of early screening is advanced by our technique and 
data. With EHRs high dimensional data, our data give a better overall reflection of prediction of GDM in women 
without prior GDM at the first trimester. The clinical utility of EHRs in the first trimester is enhanced by virtue of 
not being altered in nonfasting samples (unlike OGTT)7. Their applications aid the physicians to distinguish the 
high risk of GDM candidates from the gestation women at the first trimester which is much earlier than OGTT 
period. Those women also benefit from the predictive insights. The prediction results of GDM will caution those 
gestational women with high future risks and provide an important way to enhance their health.

Second, we identify CSHM as the most feasible algorithm from those six machine learning models for predict-
ing GDM. In general, those six machine learning models25 are available to predict GDM in early pregnancy, while 
the performance of CSHM model shows the best in the experiment. CSHM presents high sensitivity and low false 
positive rate, illustrating better in predicting positive instances than the other five relevant prediction techniques. 
Although the accuracy of positive samples is barely acceptable (62.16%), the prediction accuracy of negative sam-
ples is high (99.8%). Among those predicted positive instances, the results suggest that the vast majority (98.4%) 
are real GDM class according to OGTT. Our results also suggest that although CSHM takes lower confidence in 
prediction than a simple classifier, it is very good at prediction of GDM with higher AUC than those of the others.

Finally, our work is different from prospective cohort studies on GDM prediction, and our results suggest 
that further development and potential clinical application of risk algorithms for GDM in a range of populations 
is possible. In cohort studies on GDM, their methods require balanced panel data and the sizes of their data set 
are limited. For instance, Savvidou, M. et al.14 just investigated only 124 and 248 mixed ethnic population cases 
recorded as GDM and control subjects in their study, although yielding an AUC of 0.861 for GDM. In our study, 
those maternal information in EHRs are readily accessible and these feature data are available in most women and 
children’s hospitals in China. Furthermore, we were very careful in the maternal data during the experiment and 
considered relevant missing values and cost-sensitive models for consistency of findings.

We acknowledge a number of limitations. For all the six prediction techniques based on supervised machine 
learning algorithms, their input features are extracted and selected from the pre-processed EHRs in an ad-hoc 
fashion. Since the predictive algorithms have the embed function of feature selection33, risk factors haven’t been 
investigated in our analyses. To make the attributes in the models easily interpretable for the physicians, the 
framework would be paired with a feature selection tool to help the clinicians understanding what drove the 
different predictions. Furthermore, we acknowledge the lack of detailed validation of our models in other data or 
the lack of follow up the positive cohorts of the validation. Our aim is not to define new insights on the risk factors 
but rather to prompt others to advance our findings toward possible clinical utilities.

Figure 5.  Confidence reports of six techniques and CSHM in five cost sensitive contexts with cross validation. 
Bar graphs in (A) and (B) illustrate mean correct and bar graphs in (C) and (D) illustrate mean incorrect of 
those six techniques and CSHM in five cost sensitive contexts, respectively. Boxplots in (E) and (F) illustrate 
confidence distributions for training and those in (G) and (H) illustrate confidence distributions for testing of 
those six techniques and CSHM in five cost sensitive contexts, respectively. Mean correct: mean confidence of 
correct predictions; mean incorrect: mean confidence of incorrect predictions.
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Collectively, the results demonstrate that risks for GDM can be predicted in the first trimester of pregnancy 
from a mix of maternal demographic and characteristics. Our study should also encourage others to test and 
validate similar ML-based prediction techniques for GDM in the same way. The possibility of first-trimester 
identification of women at greatest risk of GDM, with subsequent implementation of possible lifestyle or medical 
interventions at this stage, requires further study. The method used herein is effective to the imbalanced clinical 
data, in which the resampling method may lead to other problems. For instance, oversampling methods may lead 
to class distribution shift when running too many iterations, undersampling methods may lead to samples (and 
their implied knowledge) missing. In the future, to improve the performance of the prediction method, we will try 
those resampling methods and comparing them with the CSHM, even combining manipulations at the data-level 
with classifier-level modifications. To clarify the significant features in predicting GDM, more investigation will 
be explored to find the optimal set of input features by integrating the domain knowledge of medical experts and 
the attributes of those models.
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