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Abstract

Low levels of physical activity are associated with increased mortality risk, especially in car-

diac patients, but most studies are based on self-report. Cardiac implantable electronic

devices (CIEDs) offer an opportunity to collect data for longer periods of time. However,

there is limited agreement on the best approaches for quantification of activity measures

due to the time series nature of the data. We examined physical activity time series data

from 235 subjects with CIEDs and at least 365 days of uninterrupted measures. Summary

statistics for raw daily physical activity (minutes/day), including statistical moments (e.g.,

mean, standard deviation, skewness, kurtosis), time series regression coefficients, fre-

quency domain components, and forecasted predicted values, were calculated for each

individual, and used to predict occurrence of ventricular tachycardia (VT) events as

recorded by the device. In unsupervised analyses using principal component analysis, we

found that while certain features tended to cluster near each other, most provided a reason-

able spread across activity space without a large degree of redundancy. In supervised anal-

yses, we found several features that were associated with the outcome (P < 0.05) in

univariable and multivariable approaches, but few were consistent across models. Using a

machine-learning approach in which the data was split into training and testing sets, and

models ranging in complexity from simple univariable logistic regression to ensemble deci-

sion trees were fit, there was no improvement in classification of risk over naïve methods for

any approach. Although standard approaches identified summary features of physical activ-

ity data that were correlated with risk of VT, machine-learning approaches found that none

of these features provided an improvement in classification. Future studies are needed to
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explore and validate methods for feature extraction and machine learning in classification of

VT risk based on device-measured activity.

Background

Implantation of cardiac implantable electrical devices (CIEDs), which include pacemakers and

implantable cardioverter-defibrillators (ICDs), has increased dramatically in the past few

decades[1]. As the overall functionality of these devices has improved, so has potential for use

of data collected by the device in management of patients. In addition to providing treatment

through pacemaker and defibrillator functions, CIEDs are capable of collecting a wide range of

data parameters on the individuals in whom they are implanted. Among the standard types of

information stored and tracked on modern CIEDs includes information about daily physical

activity measured by embedded accelerometers, as well as biometric lung impedance monitors

to measure breathing rate. This data has been used in CIEDs to moderate pacing to activity

level (so-called ‘rate-responsive pacing’) for over 20 years, and have been validated against clin-

ical measurements and external monitors by each of the major manufacturers[2–6]. This

information can be stored for customizable durations within the device, as well as uploaded to

remote monitoring systems, and thus creates an opportunity to measure with greater precision

the daily activities of patients.

One of the challenges of applying physical activity monitor data to clinical outcomes is that

there is no clear agreement on how best to model the high-density, time series data that is col-

lected[7–10]. Specific to CIED data, investigators have applied broad summary statistics to

these activity time series[11–13], although these methods, which shrink a yearly time series of

information down to a single parameter, such as average or last value, lose large amounts of

information. Other approaches have modeled data in the frequency domain, which can pro-

vide some additional information about long-term seasonality[14], but there remains no clear

consensus on how best to model activity data. Nonetheless, investigators are increasingly rec-

ognizing that longitudinal measures from physical activity monitors can provide additional

predictiveness over simple summary or cross-sectional data from clinic visits[15, 16].

The statistical technique of determining the optimal representation of data prior to use in

modeling is called feature engineering or feature extraction[17–19], and is well-known in the

machine-learning literature[20]. There are several approaches that investigators have applied

to extract features from a time series in order to use the data to model a given outcome. While

some approaches, such as using frequency-domain analysis[9, 21] or B-splines[22, 23], have

been successful in situations where a given timeframe is meaningful, in others, such as com-

paring physical activity trends across a population, they do not seem to have as much

relevance.

In this investigation, we explore physical activity time series data from patients in whom

CIEDs have been implanted using various feature extraction methods, and compare informa-

tion collected and summarized using unsupervised methods, as well as supervised methods for

predicting risk of ventricular tachycardia.

Methods

Device data

Physical activity data was available for 355 individuals with Boston Scientific cardiac implant-

able electronic devices (CIEDs) followed through the Latitude remote monitoring system of
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the University of Colorado Hospital. The types of CIEDs from which data was collected

include single-chamber and dual-chamber permanent pacemakers (PPM) and implantable

cardioverter-defibrillators (ICDs), as well as biventricular pacers (also called cardiac resyn-

chronization therapy (CRT) devices) with pacemaker only function (CRT-P) and defibrillator

function (CRT-D) as well. For this analysis, we only analyzed data from 235 subjects in whom

an entire year of activity data was available. Data was de-identified prior to analysis to remove

patient information other than what was collected on the device, and to randomly change

dates to maintain privacy, while preserving time-order in such a way that each patient is

assigned a new time zero. We opted to examine the outcome of any ventricular tachycardia

(VT) events identified by the device (both treated and monitored) as this was the most consis-

tently available outcome unrelated to activity collected by CIEDs for clinical purposes. A sub-

ject is defined as having a VT episode if the ICD, which uses a built-in algorithm based on rate,

morphology, onset, and atrial-ventricular relationship if an atrial lead is present (dual-chamber

ICD), has identified an event as having occurred within the 6-month data collection period.

These events can be divided into categories of VT or ventricular fibrillation (VF) by the device

based primarily on the rate (VF is faster than VT), but for the purposes of this study, we have

included both categories as VT. In general, ICDs do not specifically adjudicate a VT episode as

monomorphic or polymorphic, and we were unable to make this determination from the data-

base for this study. Subjects with PPMs implanted were assumed to not have any VT events

during the period of study, but are included to improve power of this study based on the

assumption that a clinical VT event in these subjects would prompt upgrade to an ICD from a

PPM. Unlike ICDs, PPMs do not have built-in algorithms to discriminate VT from high ven-

tricular rates as might be present with supraventricular tachycardia or atrial fibrillation with

rapid ventricular rate, and for that reason were excluded. All VT events, including monomor-

phic and polymorphic that met criteria for VT were included. Nonsustained episodes of VT

were excluded. No additional clinical information for patients, including indication for CIED

placement, cardiac history, or cardiac function, was available for analysis. The study protocol

was approved by the University of Colorado Multiple Institutional Review Board.

Activity time series feature extraction

Activity was measured in minutes per day. For each subject, the mean, standard deviation,

kurtosis, skew, minimum and maximum minutes of activity per day was calculated (See source

code in Supplemental Material). A linear model was fit to identify the long-term trend, and the

slope and intercept were also stored. To capture autocorrelation structure, the autocorrelation

function (ACF) and partial autocorrelation function (PACF) were collected for lags of 1, 2, 3,

7, and 14 days. After detrending by subtracting the slope, a fast Fourier transform was applied

to each time series and the period corresponding to the peak of the spectrum was collected for

each subject. To predict future activity measures at 7, 14, 30, 60, and 90 days, a seasonal autore-

gressive integrated moving average (ARIMA) (1, 0, 1)(1, 0, 1)7 model was fit to each time

series. The coefficients for each subjects’ model (Seasonal AR1, seasonal MA1, AR1, MA1)

were also stored for analysis.

Analysis

All analyses were conducted using R version 3.2.2 (8/14/2015), on RStudio (version 1.0.136).

Fig 1A and t-test for proportions of VT events (prtesti) were conducted using Stata IC, version

15.0 (Stata, Inc., College Station, TX, USA). Unsupervised analysis of features was performed

using pr.comp::stats, with scaling. Univariate supervised analysis, and comparison between

types of devices, was performed using a Student’s t test for each feature, grouped by the

Cardiac device activity data for predicting events

PLOS ONE | https://doi.org/10.1371/journal.pone.0206153 October 29, 2018 3 / 14

https://doi.org/10.1371/journal.pone.0206153


presence of absence of a ventricular tachycardia event during the study period. Multivariate

logistic regression was performed with all features initially, followed by logistic regression with

regularization using lasso, ridge, and elastic net regression. Decision tree analysis was per-

formed using randomForest::randomForest, with boot-strap aggregation and random forest

(sampled randomly by 6 features per tree). Boosted decision trees (gbm:: gbm) were created

from 5000 trees at an interaction depth of 4. K-nearest neighbors was performed using k = 1

through k = 10, although only these specific values are reported. Support vector machine anal-

ysis was performed using linear (support vector classifier) and radial kernels, with hyper-

parameters selected using the tune::e1071 function. Hyper-parameters for all other models

were selected 5-fold cross-validation and grid search. Feature importance analysis was per-

formed using varImpPlot::randomForest after Random Forest analysis, which calculates feature

importance using two parameters: the mean decrease in accuracy in predictions on out of bag

samples (after that variable is excluded from the model), and a measure of the total decrease in

node impurity (mean decrease in Gini index) that results from splits over that variable, aver-

aged across all trees[20]. Unless otherwise stated, significance was determined at a level of

p< 0.05. R code for feature extraction and analysis of de-identified data is included in Sup-

porting information (S1 File).

Results

Table 1 shows the types of devices from which activity data was collected. Patients with dual

chamber implantable cardioverter-defibrillators (ICDs) had more ventricular tachycardia

(VT) episodes during the one-year of monitoring than patients with single chamber ICD (35

±7% vs. 18±4%, p < 0.05), with no difference between the number of VT episodes in patients

with a cardiac resynchronization device (CRT-D) and other groups. Patients with dual-cham-

ber ICDs were more active than those with single-chamber ICDs, although the difference was

not statistically significant (S1 Table; p = 0.17) See Fig A from S1 Fig and Fig B from S1 Fig for

examples of activity time series, with summary measures, for representative patients with and

Fig 1. A. First two principal components of activity features. B. Cumulative variance explained by principal components.

https://doi.org/10.1371/journal.pone.0206153.g001
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without VT events. Table 2 shows the population average values for each feature extracted

from the activity time series for each patient. For the top period obtained using frequency

domain approaches, the mode is displayed in days, corresponding to close to a weekly (~7

day) cyclical period for most subjects. Noteworthy is that the average linear trend across

Table 2. Physical activity summary information about for each patient (N = 235).

Moments

Mean 124.0 ± 61.5

SD 40.3 ± 19.3

Skew 0.74 ± 0.80

Kurtosis 1.8 ± 6.1

Max 277.7 ± 112.4

Min 34.6 ± 28.3

Linear Model

Slope -0.04 ± 0.09

Intercept 130.6 ± 63.2

Autocorrelation

ACF1 -0.43 ± 0.09

ACF2 -0.03 ± 0.10

ACF7 0.10 ± 0.14

ACF14 0.11 ± 0.13

PACF1 -0.43 ± 0.09

PACF2 -0.27 ± 0.07

PACF7 -0.06 ± 0.06

PACF14 -0.03 ± 0.06

Forecasts

7-day 122.3 ± 67.6

30-day 123.4 ± 65.3

60-day 121.1 ± 59.0

90-day 123.6 ± 65.9

Frequency

Top Period 6.9

All values except Top Period are mean±standard deviation of physical activity, across all patients. Daily physical

activity is measured in minutes/day. Forecasts obtained based on autoregressive integrated moving average (ARIMA)

(1, 0, 1) models. Top Period is the mode (in days) across patients, obtained from fast Fourier transform for activity,

and corresponds to the highest peak of the frequency plot for each patient. See Methods for details.

https://doi.org/10.1371/journal.pone.0206153.t002

Table 1. Device types and episodes.

Type Number (%) Episodes (%)

ICD—Single chamber 88 (37%) 16 (18%)

ICD—Dual chamber 46 (20%) 16 (35%)

CRT-D 59 (25%) 17 (29%)

Pacemaker—Single chamber 6 (3%) -

Pacemaker—Dual chamber 30 (13%) -

CRT-P 6 (3%) -

ICD = Implantable cardioverter-defibrillator, CRT-D = Cardiac resynchronization device-defibrillator,

CRT-P = Cardiac resynchronization device-pacemaker

https://doi.org/10.1371/journal.pone.0206153.t001
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subjects was slightly negative over time, although forecasted future physical activity was not

substantially different from the long-term average (mean), which was also noted from unsu-

pervised analyses (see below).

A from Fig 1 shows the first and second principal components obtained from principal

component analysis (PCA) applied to the features extracted from the activity time series. All 4

time forecasts (i.e., 7-, 30-, 60- and 90-day), mean, and intercept features form the tightest clus-

ter, indicating that they provide similar information regarding daily activity, which was also

evident from their similar mean values across the population as a whole (Table 2). B from Fig 1

shows the individual and cumulative variance explained by the principal components, in

which these first two components (A from Fig 1) explain ~45% of total variation in physical

activity.

There were 49 (20.8%) subjects with at least one ventricular tachycardia (VT) episode dur-

ing the year of data collection. To examine univariable effect on predicting episodes, we per-

formed a Student’s t test for each separate feature (A from Fig 2). Standard deviation, kurtosis,

skew, and 60-day forecast were all associated with VT episodes at p< 0.05. S2 Table shows the

direction of effect for each feature, with subjects with VT episodes having an increased stan-

dard deviation (45.0 vs. 39.2 min/day, p = 0.036), lower kurtosis (0.76 vs. 2.12, p = 0.013), less

skew (0.59 vs. 0.78, p = 0.037), and a higher 60-day forecasted physical activity (135.3 vs. 117.3

min/day, p = 0.042). Neither trend (i.e., slope) nor mean activity, which had been previously

associated with mortality[12, 13], was significantly associated with VT risk. In a multivariable

logistic regression with all features included (B from Fig 2), the ACF1, ACF2, and PACF2 were

all associated with VT episodes at p< 0.05, with increased ACF1 and ACF2 being associated

with decreased risk of a VT episode and increased PACF2 being associated with an increased

risk of a VT episode.

To provide additional assessment of relative feature importance, we examined feature

importance analysis after several machine-learning approaches, including random forests (Fig

3) and boosted and bagged tree models (A and B from S2 Fig). Noteworthy is that all models

generally identified different features in terms of greater importance in predicting VT epi-

sodes, some of which, such as skewness, overlapped with logistic regression models (above),

but most of which were unique to only one model.

To explicitly examine the predictive ability of models, including those above, to use physical

activity data to predict VT episodes, we split the data into training (80%) and testing sets

(20%). Of note, the percentage of VT episodes in the testing set was 25.5% (12 episodes in 47

subjects), and so a naïve classifier that always predicted no episode would be accurate 74.5% of

the time (see Table 3). Neither univariate logistic regression models based on standard devia-

tion, skew, kurtosis, or 60-day forecast, nor multivariable logistic regression models provided

any additional predictive power over a naïve classifier. After performing a number of analyses

using various machine-learning approaches (Table 3), there was no clear improvement in clas-

sification of VT episodes using any particular approach, with most performing no better, or

even worse, than random chance (AUC = 0.5).

Discussion

In this pilot study using physical activity time series data obtained from CIEDs, we found that

an approach that extracts moments (mean, standard deviation, etc.), frequency domain mea-

sures, and patterns of autocorrelation, but not forecasted values, provides reasonably orthogo-

nal information when examined using unsupervised approaches. This finding is important, as

it indicates that such a method does capture additional information beyond standard measures

such as mean, last value, or standard deviation, that have been used in predictive models

Cardiac device activity data for predicting events

PLOS ONE | https://doi.org/10.1371/journal.pone.0206153 October 29, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0206153


Fig 2. A. Univariate association with VT episodes (t-test). B. Multivariable logistic regression p-values for association with VT episodes. Dashed red line:

p = 0.05.

https://doi.org/10.1371/journal.pone.0206153.g002

Fig 3. Variable importance plot. From random forest model.

https://doi.org/10.1371/journal.pone.0206153.g003
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previously. Perhaps more importantly, however, was our finding that although standard uni-

variable approaches identified several possible features extracted from a physical activity time

series that were associated with VT episodes at p< 0.05, there was no confirmation of these

associations using machine-learning approaches and data splitting for validation. This latter

finding is important because it highlights the importance of using prediction of new data as

the ultimate measure by which results from data mining studies such as this should be com-

pared, rather than fit to a full dataset as is often performed in practice.

The expansive use of wearable physical activity and heart rate monitors is increasing the

opportunity to collect additional patient lifestyle information beyond what can be measured in

a clinic setting. In contrast to most wearable physical activity monitors, which suffer from lim-

ited long-term compliance by users[24–26], CIEDs are capable of daily, unbiased collection of

data throughout the course of their implantation, which is generally on the order of years, and

with re-implantation of a new device for most patients. However, there remains a large void in

terms of how the information collected by a CIED about daily physical activity could be used

by providers for disease prediction. In this respect, CIEDs present a potential opportunity

whereby investigators might examine physical activity data collected by the device and com-

pare it with information about cardiac arrhythmia events as we have done here in this study,

or other external information available through medical record examination. To date, several

investigators have started to utilize this potential fund of information, albeit through use of

very simple summary statistics. Kramer et al., examined the average daily physical activity

trend at two time points 6 months apart[13] and as a linear time-varying covariate[12] and

identified a correlation between decreased physical activity trend and mortality, although such

an approach failed to capture seasonality, cyclical trends, or overall patterns in variability, all of

which have been associated with outcomes in studies of wearable (i.e., non-implanted) physical

activity monitor data[14, 27–32]. With innovations in technology, such as development of

implantable cardiac event monitors as small as a pen cap[33–35], it is likely that the numbers

and complexity of analyses using this type of data will only grow.

Time series data presents a unique challenge in predictive modeling, in that it can contain

large amounts of information about individual patterns of behavior or biological measures,

Table 3. Predictive accuracy of different models for VT episodes.

Accuracy AUC F1 score

Naïve 74.5% 0.50 NA

UV Logistic Regression 74.5% 0.50 NA

MV Logistic Regression 70.2% 0.61 0.417

Penalized Logistic Regression 74.5% 0.50 NA

Bagged Decision Tree 74.5% 0.55 0.250

Random Forest 76.6% 0.57 0.267

Boosted Decision Tree 70.2% 0.50 0.125

KNN (k = 1) 55.3% 0.43 0.16

KNN (k = 10) 72.3% 0.49 0.00

SVC 74.5% 0.50 NA

SVM 74.5% 0.50 NA

Note: Penalized Logistic Regression includes lasso, ridge, and elastic net regression models (result was same across

models). UV = Univariable (Standard deviation, skew, kurtosis, and 60-day forecast, separately), MV = Multivariable,

KNN = K-nearest neighbors classifier, SVC = Support vector classifier, SVM = Support vector machine, AUC = Area

under receiver operator curve. F1 score is the harmonic average of precision and recall (range 0–1).

https://doi.org/10.1371/journal.pone.0206153.t003

Cardiac device activity data for predicting events

PLOS ONE | https://doi.org/10.1371/journal.pone.0206153 October 29, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0206153.t003
https://doi.org/10.1371/journal.pone.0206153


and yet efforts to use this information to its fullest extent tend to lead to difficult clinical inter-

pretation. For example, while interpretation of the mean activity over a period of time, or the

standard deviation/variance of activity, can be linked to a specific characteristic of lifestyle or

behavior, it is less clear how one might interpret the kurtosis or skewness of daily physical

activity, much less an autocorrelation function. In many ways, this problem highlights the

challenges of machine learning as a whole, where ‘black-box’ approaches might identify a

given prediction for an individual, but without the ability to translate the model parameters in

a clinically meaningful way, it is difficult to expect patients or providers to apply these models

[36]. This problem becomes even more evident with development of deep learning models for

classification of time series, such as long short-term memory recurrent neural networks[37].

Clearly more work is needed, perhaps targeted to outcomes more likely to be associated with

daily physical activity than ventricular tachycardia, such as weight loss[38], frailty[39], or mor-

tality[12].

Strengths

Among the strengths of this study was our finding that although several features derived from

physical activity time series data were themselves ‘significant’ at p< 0.05 in standard univari-

ate or multivariate models, no model improved prediction of events over random chance

when examined within the framework of a machine-learning approach. This characteristic is

important as it highlights how machine learning maintains focus on overall model prediction,

rather than identification of associated features, or risk factors, as has become standard prac-

tice in many epidemiology studies[36, 40]. While different machine-learning approaches pro-

vide different strengths and weaknesses, often described as the bias-variance tradeoff[20, 41],

the overall goal of predicting outcomes in held-out, or testing, data provides an important

guide in model selection and interpretation. One might conclude from the univariate analysis

that skewness in daily physical activity over a year could have some impact on risk of events,

perhaps through behavior that leads to extreme deviations over the course of the year. Such

interpretation has been applied to continuous glucose monitoring data[42], and could be

applied in our study were it not for the lack of validation achieved with a machine-learning

approach.

Weaknesses/Limitations

Although we achieved the overall goal of this pilot study, aimed to examine methods of feature

extraction from a physical activity time series for predictive purposes, there were several key

limitations. For one, we did not model the temporal relationships between the outcome and

physical activity, which others have shown to provide evidence of an association for other con-

ditions such as atrial fibrillation[14]. We decided a priori that the addition of temporal param-

eters might decrease the power of this already small pilot study, but we acknowledge that for

these models to be clinically applicable, incorporation of temporality is a key requisite.

Another limitation was that we made the assumption that subjects with pacemakers did not

have any VT episodes during the one year of follow-up. Because of the de-identified nature of

the dataset, we could not obtain outside information to confirm the absence of any VT,

although it is not an unreasonable assumption, as we suspect that any clinical VT could have

led to device upgrade if it occurred in a pacemaker patient, and that this subject would not

have been able to complete an entire year of data collection on the same device if such an

upgrade took place. This limitation also extends to the indication for implantation of the

CIED, which was also not available as part of the deidentified dataset. This information could

have relevance as in certain ventricular arrhythmia syndromes, such as long QT syndrome,

Cardiac device activity data for predicting events
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Type 1, and catecholaminergic polymorphic VT syndrome, increased physical activity can pro-

mote the arrhythmias, while in patients with underlying congestive heart failure, a clinical

exacerbation that caused a decrease in physical activity could also result in increased risk of

VT. Further work with identifiable datasets is needed to explore these disease-specific

hypotheses.

Conclusion

We found that feature extraction from daily physical activity time series data from a CIED pro-

vides reasonable coverage of feature space, and that machine-learning approaches, particularly

validation sets, are requisite for investigations using this approach to clinical prediction. Future

studies including large datasets and separately adjudicated clinical outcomes will be needed to

identify additional application of CIED physical activity data in the clinical setting.

Supporting information

S1 Fig. Representative activity time series and summary measures for 3 subjects without

(Fig A) and with (Fig B) VT events. Left, activity time series with long-term average (red), lin-

ear trend (blue), and 60-day forecast (green) with errors. Linear trend obtained from slope of

linear model of daily activity~time. Forecast obtained from seasonal ARIMA(1,0,1)7 model, as

described in Methods. Right, frequency domain tracing from fast Fourier transform for each

activity time series. Provided are top 5 periods (red dashed lines) based on peaks [Note: Analy-

sis for this study evaluated the top frequency/period for each subject].

(TIF)

S2 Fig. A. Variable Influence Plot from Boosted Tree model. Obtained using out-of-bag

estimate of relative influence for each feature. SD = Standard deviation, AR = Coefficient from

autoregressive-1 term, MA1 = Coefficient from moving average-1 term, SAR1 = Coefficient

from seasonal (7 day) autoregressive-1 term, SMA1 = Coefficient from seasonal (7-day) mov-

ing average-1 term, ACF1-14 = Autocorrelation function, lags 1–14, PACF1-14 = Partial auto-

correlation function, lags 1–14. ARIMA model [1, 0, 1][1, 0, 1]7 used for coefficients and

forecasts. B. Variable Importance Plots from Bagged Tree models. Left, mean decrease in

model accuracy using out-of-bag exclusion. Right, mean decrease in Gini Index based on total

decrease in node impurity with out-of-bag exclusion. SD = Standard deviation,

AR = Coefficient from autoregressive-1 term, MA1 = Coefficient from moving average-1

term, SAR1 = Coefficient from seasonal (7 day) autoregressive-1 term, SMA1 = Coefficient

from seasonal (7-day) moving average-1 term, ACF1-14 = Autocorrelation function, lags

1–14, PACF1-14 = Partial autocorrelation function, lags 1–14. ARIMA model [1, 0, 1][1, 0, 1]7

used for coefficients and forecasts. See Methods for details.

(TIF)

S1 Table. Average activity by device type. CRT-D = Cardiac resynchronization therapy

(Biventricular) with defibrillator; CRT-P = Cardiac resynchronization therapy (Biventricular)

with pacemaker only; DC-ICD = Dual-chamber implantable cardioverter-defibrillator;

DC-PPM = Dual-chamber pacemaker; SC-ICD = Single-chamber implantable cardioverter-

defibrillator; SC-PPM = Single-chamber pacemaker.

(DOCX)

S2 Table. Estimates from univariate feature analysis. SD = Standard deviation,

AR = Coefficient from autoregressive-1 term, MA1 = Coefficient from moving average-1

term, SAR1 = Coefficient from seasonal (7 day) autoregressive-1 term, SMA1 = Coefficient

from seasonal (7-day) moving average-1 term, ACF1-14 = Autocorrelation function, lags
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1–14, PACF1-14 = Partial autocorrelation function, lags 1–14. ARIMA model [1, 0, 1][1, 0, 1]7

used for coefficients and forecasts.

(DOCX)

S1 File. R-code for analysis.
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