
Research Article
Potential Smoothened Inhibitor from Traditional Chinese
Medicine against the Disease of Diabetes, Obesity, and Cancer

Kuan-Chung Chen,1 Mao-Feng Sun,2,3,4 Hsin-Yi Chen,5

Cheng-Chun Lee,6 and Calvin Yu-Chian Chen4,5,6,7

1 School of Pharmacy, China Medical University, Taichung 40402, Taiwan
2 School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
4Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
5Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
6 School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
7Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan

Correspondence should be addressed to Cheng-Chun Lee; leeck@mail.cmu.edu.tw and Calvin Yu-Chian Chen; ycc929@MIT.edu

Received 14 February 2014; Accepted 15 February 2014; Published 1 July 2014

Academic Editor: Chung Y. Hsu

Copyright © 2014 Kuan-Chung Chen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nowadays, obesity becomes a serious global problem, which can induce a series of diseases such as type 2 diabetes mellitus,
cancer, cardiovascular disease, metabolic syndrome, and stoke. For the mechanisms of diseases, the hedgehog signaling pathway
plays an important role in body patterning during embryogenesis. For this reason, smoothened homologue (Smo) protein had
been indicated as the drug target. In addition, the small-molecule Smo inhibitor had also been used in oncology clinical trials.
To improve drug development of TCM compounds, we aim to investigate the potent lead compounds as Smo inhibitor from
the TCM compounds in TCM Database@Taiwan. The top three TCM compounds, precatorine, labiatic acid, and 2,2-[benzene-
1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid), have displayed higher potent binding affinities than the positive
control, LY2940680, in the docking simulation. After MD simulations, which can optimize the result of docking simulation and
validate the stability of H-bonds between each ligand and Smo protein under dynamic conditions, top three TCM compounds
maintain most of interactions with Smo protein, which keep the ligand binding stable in the binding domain. Hence, we propose
precatorine, labiatic acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid) as potential lead
compounds for further study in drug development process with the Smo protein.

1. Introduction
Nowadays, obesity, which is caused by the body’s inability
to handle excessive energy intake, becomes a serious global
problem. It can induce a series of diseases such as type 2
diabetes mellitus, cancer, cardiovascular disease, metabolic
syndrome, and stroke [1, 2]. In fact, the diseases of dia-
betes, obesity, and cancer have the dysregulated intracel-
lular signaling and altered metabolic state [3]. Nowadays,
increasing numbers of distinct mechanisms of diseases have
been determined [4–6]. According to these mechanisms,
increasing numbers of potential target proteins for drug
design against each disease have been identified [7, 8].

The hedgehog signaling pathway plays an important role in
body patterning during embryogenesis [9]. Abnormalities in
hedgehog signaling pathway can lead to diabetes, obesity,
and cancer [10–14]. As hedgehog pathway genes encoding
patched homologue 1 (Ptch1) and smoothened homologue
(Smo), Smoprotein had been indicated as the drug target, and
the small-molecule Smo inhibitor had been used in oncology
clinical trials [15–18].

Many in silico researches had indicated that compounds
extracted from traditional Chinese medicine (TCM) can be
used as potential lead compounds for many different diseases
[19], such as cancer [20–23], diabetes [24], inflammation
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[25], influenza [26], metabolic syndrome [27, 28], stroke [29–
32], viral infection [33], and some other diseases [34, 35].
To improve drug development of TCM compounds, we aim
to investigate the potent lead compounds as Smo inhibitor
from the TCM compounds in TCM Database@Taiwan [36].
As structural disordered residues in the protein may lead to
the side effect and influence the ligand to bind with target
protein [37, 38], the disordered residues of Smo protein were
predicted before virtual screening. After virtual screening of
the TCM compounds, as the interactions between protein
and ligand in the docking simulation may not be stable
under dynamic conditions, the molecular dynamics (MD)
simulations were performed to validate the stability of those
interactions.

2. Materials and Methods
2.1. Data Collection. The X-ray crystallography structure of
the human smoothened receptor (Smo) was obtained from
RCSB Protein Data Bank with PDB ID: 4JKV [39]. PONDR-
Fit [40] protocol was employed to predict the disordered
amino acids for the sequence of Smo protein from Swiss-
Prot (UniProtKB: Q99835). For the protein preparation,
Prepare Protein module in Discovery Studio 2.5 (DS2.5)
was employed to protonate the final structure of protein
with Chemistry at HARvard Macromolecular Mechanics
(CHARMM) force field [41] and remove crystal water. The
binding site for virtual screening was defined by the volume
of the cocrystallized antitumor agent, LY2940680. Prepare
Ligand module in DS2.5 was employed to protonate the final
structure of TCM compounds from TCM Database@Taiwan
[36], and Lipinski’s Rule of Five [42] was applied to filter the
TCM compounds after virtual screening.

2.2. Docking Simulation. LigandFit protocol [43] in DS 2.5
was employed to virtually screen the TCM compounds by
docking ligands into the binding site using a shape filter
andMonte-Carlo ligand conformation generation.The result
of docking was then optionally minimized with CHARMM
force field [41] and evaluated with Dock Score energy func-
tion as follows:

Dock Score = − (ligand receptor interaction energy

+ ligand internal energy) .
(1)

The clustering of saved docking pose was performed to
reject the similar poses.

2.3. Molecular Dynamics (MD) Simulation. Gromacs [44]
was employed to simulate each protein-ligand complex under
dynamic conditions using classical molecular dynamics the-
ory. The pdb2gmx protocol of Gromacs and SwissParam
program [45] were employed to provide topology and
parameters for Smo protein with charmm27 force field and
each ligand, respectively. The Gromacs program sets the
dimensions of the cubic box based upon setting the box
edge approx 12 Å from the molecules periphery and solvated
using TIP3P water model. Steepest descent [46] is one of
the common algorithms for minimization. For this algo-
rithm, newpositions are calculated by the equation as follows:
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where 𝑟 is the vector of all 3N coordinates, ℎ
𝑛
is themaximum

displacement and initial ℎ
0
is given in unit of 0.01 nm, and 𝐹

𝑛

is the force or the negative gradient of the potential 𝑉.
The algorithm stops when max(|𝐹

𝑛
|) < 𝜀 or complete

the maximum number of iterations defined in the protocol.
After a steepest descent minimization with a maximum of
5,000 steps was employed to remove bad van der Waals
contacts, it created a neutral system using 0.145M NaCl
model. Then another steepest descent minimization with a
maximumof 5,000 stepswas employed to remove bad van der
Waals contacts. For the equilibration, the position-restrained
molecular dynamics with the Linear Constraint algorithm for
all bonds was performed with NVT equilibration, Berendsen
weak thermal coupling method, and Particle Mesh Ewald
method. The Berendsen weak thermal coupling method
mimics with first-order kinetics an external heat bath with
given temperature 300K and slowly corrected the tempera-
ture deviation of the system by the equation as follows:

𝜕𝑇

𝜕𝑡

=

𝑇
0
− 𝑇

𝜏

, (3)

where 𝑇
0
is given temperature 300K and 𝜏 is a time constant

in unit of 0.1 ps.
The MD program was then employed to simulate a total

of 5000 ps production simulation with time step in unit
of 2 fs under Particle Mesh Ewald (PME) option and NPT
ensembles. A series of protocols in Gromacs was employed
to analyze the MD trajectories.

3. Results and Discussion

3.1. Disordered Protein Prediction. The disordered
disposition for the sequence of Smo protein from Swiss-
Prot (UniProtKB: Q99835) predicted by PONDR-Fit was
illustrated in Figure 1. As the residues in the binding domain
do not lie in the disordered region, the binding domain of
Smo protein has a stable structure in protein folding.

3.2. Docking Simulation. Before virtual screening, the cocrys-
tallized antitumor agent, LY2940680, had been redocked
by LigandFit protocol into the binding site defined by the
volume of LY2940680 (Figure 2(a)) to validate the accu-
racy of LigandFit protocol. The Root-mean-square devi-
ation value between crystallized structure and docking
pose of LY2940680 is 0.5106 Å (Figure 2(b)). After vir-
tual screening, the chemical scaffold top TCM compounds
ranked by Dock Score [43] and LY2940680 are illustrated
in Figure 3. The scoring function of Dock Score indi-
cates that the top three TCM compounds have higher
binding affinities than LY2940680. The top three TCM
compounds, precatorine, labiatic acid, and 2,2-[ben-zene-
1,4-diylbis(methanediyloxybenzene-4,1-diyl)] bis(oxoa-cetic
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Figure 1: Disordered disposition predicted by PONDR-Fit. Sequence alignment with disordered residues (yellow regions) and residues in
the binding domain (magenta regions).
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(a)

RMSD = 0.5106 Å

(b)

Figure 2: (a) Binding site of Smo protein defined as the volume of LY2940680. (b) Root-mean-square deviation value between crystallized
structure (orange) and docking pose (green) of LY2940680.
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Figure 3: Chemical scaffold of controls and top three TCM candidates with their scoring function and sources.

acid), are extracted from Abrus precatorius L., Rosmarinus
officinalis L., and Ardisia japonica, respectively. According
to the docking poses in Figure 4, for positive control,
LY2940680, there exists a 𝜋 interaction with residue Phe484
and hydrogen bonds (H-bonds) with residues Asn219 and
Arg400. Precatorine has 𝜋 interactions with residues Tyr394,
Arg400, Phe484, and H-bonds with residue Lys395. Labiatic
acid has a 𝜋 interaction with residue Phe484 and H-bonds

with residues Tyr207, Lys395, and Arg400. The top 3 com-
pounds have 𝜋 interactions with residues Tyr394, Arg400,
Phe484, and H-bonds with resides Tyr394, Lys395, His470,
and Asn521.The docking poses displayed in Figure 4 indicate
that each compound has a 𝜋 interaction with residue Phe484
and interaction with common residues Lys395 and Arg400.
Those interactions stabilize each compound in the binding
domain of Smo protein.
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Figure 4: Docking pose of Smo protein complexes with (a) LY2940680, (b) precatorine, (c) labiatic acid, and (d) 2,2-[benzene-1,4-
diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid).
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Figure 5: Root-mean-square deviations in units of nm for protein (a) and ligand (b) over 5000 ps ofMD simulation in Smo protein complexes
with LY2940680, precatorine, labiatic acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid).

3.3.MolecularDynamics Simulation. Thedocking simulation
performed by LigandFit protocol docks compounds into
binding site using a shape-based docking. Although the
Monte-Carlo techniques had been employed to simulate
the flexible compound by generating sets of compound
conformations, the structure of target protein is a rigid
body of Smo protein from the crystal structure. As the

interactions between protein and ligand in the docking
simulation may not be stable under dynamic conditions, the
molecular dynamics (MD) simulations were performed to
validate the stability of those interactions. The root-mean-
square deviations (RMSDs) for each protein and ligand were
displayed in Figure 5. They indicate the atomic fluctuations
during MD simulation for each protein and ligand. Figure 5
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Figure 6: Total energy for complex over 5000 ps of MD simulation
in Smo protein complexes with LY2940680, precatorine, labi-
atic acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-
4,1-diyl)]bis(oxoacetic acid).
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Figure 7: Radii of gyration for protein over 5000 ps of MD simula-
tion in Smo protein complexes with LY2940680, precatorine, labi-
atic acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-
4,1-diyl)]bis(oxoacetic acid).

shows that the atomic fluctuations of each complex tend to be
stable after 4700 ps of MD simulation. The variations of total
energy for each complex during 5000 ps of MD simulation
were illustrated in Figure 6, which indicate that Smo protein
docking with the top three TCM compounds has similar
variation of total energy, and there is no significant change
of total energy for each complex during 5000 ps of MD simu-
lation. The variation of radius of gyration and mean square
displacement (MSD) for proteins in each complex during
5000 ps of MD simulation was illustrated in Figures 7 and
8, respectively. They indicate that Smo protein docking with
the top three TCM compounds has similar compactness and
diffusion constant under dynamic conditions as LY2940680.
The variation of solvent accessible surface area in Figure 9
can also be used to discuss the effect of each ligand for
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Figure 8: Mean square displacement (MSD) for protein over
5000 ps of MD simulation in Smo protein complexes with
LY2940680, precatorine, labiatic acid, and 2,2-[benzene-1,4-
diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid).
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Figure 9: Variation of (a) total solvent accessible surface area,
(b) hydrophobic surface area, and (c) hydrophilic surface area
over 5000 ps of MD simulation for Smo protein complexes
with LY2940680, precatorine, labiatic acid, and 2,2-[benzene-1,4-
diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid).
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Figure 10: Smallest distance between residue pairs for protein over 5000 ps of MD simulation in Smo protein complexes with LY2940680,
precatorine, labiatic acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid).

the Smo protein after docking. In Figure 9, it can be seen
clearly that the Smo protein in each complex has similar
solvent accessible surface area when the RMSDs tend to be
stable after 4700 ps of MD simulation. The smallest distance
between residue pairs for Smo protein in each complex
illustrated in Figure 10 also has similar distance matrices.
They indicate that the top three TCM compounds may cause
similar influence for Smo protein as LY2940680.

For the MD simulation, the representative structures
of each complex under dynamic conditions were identified
by the cluster analysis with a RMSD cutoff of 0.105 nm.
According to the RMSD values and graphical depiction of
the clusters for Smo protein complexes with LY2940680,
precatorine, labiatic acid, and 2,2-[benzene-1,4-diylbis-
(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid) illus-
trated in Figure 11, the docking poses of the representative
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Figure 11: Root-mean-square deviation value (upper left half) and graphical depiction of the clusters with cutoff 0.105 nm (lower right
half) for Smo protein complexes with LY2940680, precatorine, labiatic acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-
diyl)]bis(oxoacetic acid).

structures for Smo protein complex with LY2940680 and
the top three TCM compounds were illustrated in Figure 12.
For LY2940680, there exist the stable H-bonds with residues
Asn219 and Arg400 under dynamic conditions. In addition,
it forms an H-bond with Tyr394 after MD simulation.
Precatorine has stable 𝜋 interactions with residue Phe484

and H-bonds with Lys395. After MD simulation, it forms
an H-bond with residue Asn219. Labiatic acid has stable H-
bonds with residues Tyr207, Lys395 and forms the H-bonds
with residues Asp384, Gln477, and Glu518. The top 3 TCM
compounds have stable 𝜋 interactions with residue Phe484
and H-bonds with residue Lys395. Moreover, the interaction



BioMed Research International 9

Asn219

Tyr394

Arg400

4.82ns

(a)

Asn219

Phe484

Lys395

4.98ns

(b)

Tyr207

Lys395 Gln477

Asp384
Glu518

4.90ns

(c)

Tyr207
Phe484

Lys395

Arg485

Arg400

4.82ns

(d)

Figure 12: Docking poses of middle RMSD structure in the major cluster for Smo protein complexes with LY2940680, precatorine, labiatic
acid, and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid).

with residue Arg400 was changed from 𝜋 interaction to
H-bond and forms the H-bonds with residues Tyr207 and
Arg285 after MD simulation.

To analyze the variation of H-bonds for key residues
in each protein-ligand complex, the H-bond occupancy for
key residues of Smo protein with top three candidates and
LY2940680 overall 5000 ps of MD simulation was listed
in Table 1, and the distance variations of each H-bond
were displayed in Figure 13. They indicate that the H-bonds
between LY2940680 and residues Asn219, Tyr394, Arg400
were stabilized over 5000 ps of MD simulation. In addi-
tion, the H-bonds between top three TCM compounds and
residues mentioned above were also stabilized. Comparing
to docking poses between docking simulation (Figure 4) and
MD simulation (Figure 12), LY2940680 and the top three
TCM compounds maintain most of interactions with Smo
protein, which keep the ligand binding stable in the binding
domain.

4. Conclusion

This study aims to investigate the potent TCM candidates
for Smo protein. The top three TCM compounds,
precatorine, labiatic acid, and 2,2-[benzene-1,4-diylbis
(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid), have
displayed higher potent binding affinities than the
positive control, LY2940680, in the docking simulation.
The docking poses of top three TCM compounds have
similar 𝜋 interaction with residue Phe484 and interaction
with common residues Lys395 and Arg400. The MD
simulations are employed to optimize the result of
docking simulation and validate the stability of H-bonds
between each ligand and Smo protein under dynamic
conditions. For the MD simulation, the top three TCM
compounds maintain most of interactions with Smo
protein, which keep the ligand binding stable in the binding
domain. Hence, we propose precatorine, labiatic acid,
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Figure 13: Distances of hydrogen bonds with common residues during 5000 ps of MD simulation.

and 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-
diyl)]bis(oxoacetic acid) as potential lead compounds for
further study in drug development process with the Smo
protein.
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Table 1: H-bond occupancy for key residues of Smo protein with
top three candidates and LY2940680 overall 5000 ps of molecular
dynamics simulation.

Name H-bond interaction Occupancy

LY2940680

Asn219:HD22/O3 96%
Tyr394:HH/N27 80%
Tyr394:HH/N30 80%

Arg400:HH22/N27 61%
Arg400:HH22/N30 33%

Precatorine

Asn219:HD22/O8 52%
Asn219:HD22/O16 29%
Asn219:HD22/O20 18%
Asp384:OD1/H29 46%
Lys395:HZ3/O18 55%
Lys395:HZ3/O19 57%

Labiatic acid

Tyr207:HH/O21 7%
Tyr207:HH/O23 23%
Tyr207:HH/O26 80%
Asn219:HD22/O24 17%
Asp384:OD1/H40 65%
Asp384:OD2/H40 66%
Lys395:O/H30 9%
Lys395:O/H39 57%

Lys395:HZ3/O23 9%
Lys395:HZ3/O26 24%
Glu518:OE1/H41 5%
Glu518:OE2/H41 40%

Top 3

Tyr207:HH/O8 34%
Tyr207:HH/O10 43%
Tyr207:HH/O11 8%
Tyr394:HH/O29 2%
Tyr394:HH/O31 73%
Lys395:HZ3/O8 10%
Lys395:HZ3/O10 23%
Lys395:HZ3/O11 27%

Arg400:HH12/O32 14%
Arg400:HH22/O31 14%
Arg400:HH22/O32 18%
Arg485:HH22/O11 2%
Arg485:HE/O8 48%
Arg485:HE/O10 10%
Arg485:HE/O11 25%

H-bond occupancy cutoff: 0.3 nm.
Top 3: 2,2-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxo-
acetic acid).
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