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Abstract

Background: [FeFe] hydrogenases are metalloenzymes involved in the anaerobic metabolism of H2. These proteins are
distinguished by an active site cofactor known as the H-cluster. This unique [6Fe–6S] complex contains multiple non-protein
moieties and requires several maturation enzymes for its assembly. The pathways and biochemical precursors for H-cluster
biosynthesis have yet to be elucidated.

Principal Findings: We report an in vitro maturation system in which, for the first time, chemical additives enhance [FeFe]
hydrogenase activation, thus signifying in situ H-cluster biosynthesis. The maturation system is comprised of purified
hydrogenase apoprotein; a dialyzed Escherichia coli cell lysate containing heterologous HydE, HydF, and HydG maturases;
and exogenous small molecules. Following anaerobic incubation of the Chlamydomonas reinhardtii HydA1 apohydrogenase
with S-adenosyl methionine (SAM), cysteine, tyrosine, iron, sulfide, and the non-purified maturases, hydrogenase activity
increased 5-fold relative to incubations without the exogenous substrates. No conditions were identified in which addition
of guanosine triphosphate (GTP) improved hydrogenase maturation.

Significance: The in vitro system allows for direct investigation of [FeFe] hydrogenase activation. This work also provides a
foundation for studying the biosynthetic mechanisms of H-cluster biosynthesis using solely purified enzymes and chemical
additives.
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Introduction

Hydrogenases are subdivided into three classes: [NiFe]

hydrogenases, [FeFe] hydrogenases, and [Fe] hydrogenases, each

characterized by a unique active site cofactor [1–5]. [NiFe] and

[FeFe] hydrogenases catalyze the reversible oxidation of dihydro-

gen: H2O2H++2e2. Of these, [FeFe] hydrogenases have intrin-

sically higher in vitro H2 evolution rates [6], making them more

attractive candidates for production of H2 as a sustainable biofuel.

The [FeFe] hydrogenase active site cofactor, known as the H-

cluster, is composed of a conventional [4Fe–4S] cubane cluster

joined by a cysteinyl sulfur to a unique [2Fe] sub-cluster that

includes multiple non-protein ligands covalently attached to the

sub-cluster iron atoms [6]. These non-protein moieties have been

identified as carbon monoxide (CO), cyanide (CN) [2], and a

putative dithiopropane or dithiomethylamine bridge [3,7].

Three proteins required for active [FeFe] hydrogenase produc-

tion – HydE, HydF (fused as HydEF in eukaryotes), and HydG –

were first identified by analyzing C. reinhardtii mutants incapable of

H2 photoproduction. Subsequent recombinant co-expression of

the C. reinhardtii [FeFe] hydrogenase with C. reinhardtii HydEF and

HydG in E. coli enabled production of active hydrogenase [8].

Following this discovery, in vitro work with the individual maturases

has shed light on their respective roles in the synthesis of the H-

cluster cofactor and its insertion into the hydrogenase active site.

HydE and HydG, which both contain [Fe–S] clusters and

sequence motifs generally attributed to radical SAM enzymes

[8], have been shown to reductively cleave SAM to form 59-

deoxyadenosine [9]. Recently, SAM-dependent HydG activity was

shown to increase in the presence of tyrosine, leading to a

hypothesis that a tyrosine-derived dehydroglycine intermediate is

the source for the H-cluster dithiol bridge [10]. HydF has been

identified as a GTPase based on sequence alignment analysis

[8,11] and its ability to hydrolyze GTP to GDP [11]. In earlier

efforts to reproduce apohydrogenase maturation, HydF was

isolated after recombinant co-expression with HydE and HydG.

The purified HydF partially activated apohydrogenase, suggesting

that this maturase is a scaffold protein for H-cluster cofactor

assembly and transfer to the hydrogenase [12].

Various recombinant systems have demonstrated active [FeFe]

hydrogenase synthesis, both in vivo [8,13–15] and in vitro

[12,14,16], and other in vitro metalloenzyme systems have shown

improved post-translational activation following incubation of the

apoproteins with their respective maturases along with exogenous

small molecules [17,18]. Despite these advancements, [FeFe]

hydrogenase studies have thus far failed to demonstrate enhanced
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hydrogenase maturation following small molecule addition,

limiting our ability to elucidate the specific biochemistry required

for H-cluster cofactor synthesis and installation.

In this work, we describe the first in vitro system in which

chemical additives stimulate activation of [FeFe] hydrogenase. We

recently reported a cell-free system for the production of active

hydrogenases [14]. Here, we separate translation and activation

into two distinct steps, allowing us to isolate the maturation process

and explore it in detail. In agreement with a previous study [16],

we noticed that hydrogenase apoprotein was partially activated

when added to a crude cell lysate containing the three maturases.

However, we observed significantly higher hydrogenase activities

when the small molecule components of the cell-free protein

synthesis system were also included. This discovery provided a

unique opportunity to identify which small molecules play a role in

hydrogenase activation and H-cluster biosynthesis.

Results and Discussion

The In Vitro System for Enhanced Activation of [FeFe]
Hydrogenase

The hydrogenase maturation system contains purified C.

reinhardtii HydA1 apohydrogenase; dialyzed E. coli cell extract

containing recombinant HydE, HydF, and HydG hydrogenase

maturases from Shewanella oneidensis (hereafter referred to as

maturase extract); and exogenous small molecules. The eukaryotic

C. reinhardtii hydrogenase HydA1 was chosen as our model protein

given its simplified structure and high degree of in vivo solubility.

Unlike prokaryotic hydrogenases, algal hydrogenases such as

HydA1 have only the C-terminal H-domain and lack N-terminal

[4Fe–4S] F-clusters [19]. The S. oneidensis maturases HydE, HydF,

and HydG were used since previous work established that these

proteins are effective in activating HydA1 both in vivo [14,15] and

in vitro [14].

HydA1 apohydrogenase was heterologously produced in E. coli

in the absence of the maturases and purified using immobilized

metal-affinity chromatography (IMAC). Pooled fractions con-

tained high purity HydA1 based on SDS-polyacrylamide gels

visualized with Coomassie stain (Fig. 1A). Purified apohydrogenase

(22.064.4 mg HydA1?L21 of culture, n = 3) had 0.360.2 mol

Fe?mol21 HydA1, which was measured using established methods

[20]. For some activation studies, as-isolated apoprotein (apo-

HydA1) was anaerobically incubated with 1 mM DTT, 0.5 mM

Fe(NH4)2(SO4)2, and 0.5 mM Na2S to reconstitute the [4Fe–4S]

cluster. Reconstituted apoprotein (apoHydA1recon) preparations

are yellow/brown. The UV-visible spectrum for desalted apoHy-

dA1recon (Fig. 1B) shows a broad peak at 400 nm with an A400:A280

ratio of 0.5, in contrast to the spectrum for apoHydA1. This result

indicates the apohydrogenase is properly folded and incorporates

the H-domain [4Fe–4S] cluster prior to activation, similar to a

previous report [21].

Maturase extracts were produced from E. coli cells co-expressing

HydE, HydF, and HydG in the absence of an [FeFe] hydrogenase.

The extracts were dialyzed immediately before use to establish

reaction conditions well defined with respect to small molecules.

Following anaerobic incubation of apohydrogenase with dialyzed

maturase extract, hydrogen uptake activity from activated

hydrogenase was determined by measuring methyl viologen

reduction rates. Dialyzed maturase extracts were capable of

partially activating HydA1 without addition of exogenous

molecules (Fig. 2A), as observed with previously described systems

[16,21]. The partial activation may be attributed to [2Fe] sub-

clusters produced in vivo prior to cell lysis, which are associated

with the maturases. No methyl viologen-reducing activity was

observed from reaction mixtures when using cell extracts without

the maturases or when HydA1 apoprotein was not added.

Ferrous iron (Fe+2), inorganic sulfide (S22), SAM, and a mixture

of the standard 20 L-amino acids (20 aa) were initially identified as

chemical additives contributing to hydrogenase activation. Com-

plementing maturase extracts with 1 mM Fe+2, 1 mM S22, 2 mM

SAM, and 2 mM of each 20 aa increased hydrogenase activities 4-

fold (Fig. 2A). The comparable activities of matured as-isolated

and reconstituted apohydrogenase indicate that HydA1 does not

require an intact H-domain [4Fe–4S] cluster prior to addition to

this system. Exogenous Fe+2 and S22 were critical: enhanced

HydA1 activation did not occur without both ions despite the

presence of SAM and 20 aa. Moreover, Fe+2 and S22 were not

sufficient to increase hydrogenase activities without SAM and 20

aa. Partial and similar activation of as-isolated and reconstituted

apohydrogenase when only SAM and 20 aa were included suggest

the Fe+2 and S22 are involved in more than just reconstitution of

the hydrogenase [4Fe–4S] cluster. Iron and sulfide likely facilitate

reconstitution of the maturases’ [Fe–S] clusters, which may have

been oxidized during aerobic preparation of the cell extracts.

Chemical reconstitution of radical SAM proteins using Fe+2/Fe+3

and S22 has previously been shown to benefit enzyme activity

[22,23]. Additionally, iron and sulfide may be required substrates

for in situ synthesis of the [2Fe] sub-cluster.

We observed that incubating maturase extracts with Fe+2 and

S22 before addition of other small molecules and HydA1

apoprotein (termed extract reconstitution) provided more consistent

data for characterizing the effects of other exogenous substrates.

Incubating extracts with SAM and 20 aa following extract

reconstitution and before apohydrogenase addition (termed extract

pre-treatment) led to the immediate onset of maturation as well as

Figure 1. Characterization of purified C. reinhardtii HydA1
apohydrogenase. (Fig. 1A) SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) analysis of pooled elution fractions containing N-his6-
HydA1 apoprotein (48.4 kDa) following aerobic expression in E. coli and
subsequent Ni+2-affinity chromatography. The molecular weight marker
(MWM) is the Mark 12TM protein ladder (Invitrogen). Intermediate lanes
of the SDS-polyacrylamide gels were removed, maintaining alignment
between the MWM and Eluate lanes. (Fig. 1B) UV-visible spectra for
8 mM of as-isolated (black line) and reconstituted (red line) HydA1
apohydrogenase.
doi:10.1371/journal.pone.0007565.g001

[FeFe] Hydrogenase Maturation
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maximally enhanced activation (Fig. 2B). When SAM, 20 aa, and

HydA1 apoprotein were added to extracts concurrently, hydrog-

enase maturation was partially compromised, suggesting that such

experiments might be useful in exploring the maturation reaction

sequence. Extract reconstitution and extract pre-treatment were

implemented in all subsequent experiments.

Additional putative small molecule precursors were assessed,

although no conditions were identified in which addition of these

molecules influenced hydrogenase maturation. While GTPase

activity has been attributed to HydF from Thermotoga maritima [11],

we could not identify any reaction conditions in which exogenous

GTP benefited HydA1 activation. Moreover, addition of guano-

sine diphosphate (GDP) neither enhanced nor inhibited hydrog-

enase maturation. GTP may play a role in hydrogenase

maturation in a biochemical process upstream of those occurring

within our system. Carbamoyl phosphate has been identified as a

precursor for the cyano ligands associated with the [NiFe]

hydrogenase active site [24,25]. We speculated the H-cluster

CN2 moieties may also derive from this compound. However,

addition of carbamoyl phosphate with exogenous Mg-ATP had no

effect on HydA1 activation. Moreover, SDS-PAGE and autora-

diography imaging following in vitro incubations with [14C]-

carbamoyl phosphate, Mg-ATP, and maturase extract suggest

that carbamoyl phosphate does not covalently associate with

HydE, HydF, or HydG. This result could be expected as none of

the maturases has a sequence motif characteristic of acyl

phosphatases or O-carbamoyltransferases like that of the [NiFe]

hydrogenase maturase HypF [26,27]. While thiocyanate report-

edly has a strong affinity to an anion-binding cavity of HydE from

T. maritima [28], conditions were not identified in which

thiocyanate or cyanide improved HydA1 maturation. Other in

vitro studies with [Fe–S] proteins have included reducing agents

such as sodium dithionite [17,18] and dithiothreitol (DTT)

[22,23,29], though neither compound improved hydrogenase

activation in our system. Use of ferrous iron and sulfide ions may

obviate the necessity for such reducing agents.

Exogenous SAM Stimulates In Vitro Hydrogenase
Activation

As shown in Fig. 3, reaction mixtures containing Fe+2, S22, 20

aa, and SAM had 5-fold higher HydA1 activities compared to

mixtures without SAM. However, neither SAM nor the 20 aa

mixture individually enhanced hydrogenase activation (compare

Fig. 2B, Fig. 3). The results shown in Fig. 3 suggest that SAM is

utilized for in vitro HydA1 activation, likely by the maturases HydE

and HydG for synthesis of the H-cluster [2Fe] sub-cluster. Several

studies have shown that exogenous SAM stimulates in vitro

biosynthetic reactions catalyzed by radical SAM enzymes. In

some cases, a 59-deoxyadenosyl radical derived from homolytic

cleavage of SAM is thought to facilitate abstraction of protons

from organic substrates [30,31]. SAM is also required for the

synthesis of NifB-co, a precursor for the nitrogenase FeMo active

site cofactor; it has been suggested that radical SAM chemistry also

functions to build the FeMo-co [Fe–S] cage [17,18]. However, no

previously reported studies have demonstrated that exogenous

SAM improves post-translational [FeFe] hydrogenase activation.

To further explore the stimulatory effect of SAM on

hydrogenase activation, the SAM analog S-adenosyl homocysteine

(SAH) was tested. This analog was not an effective substitute for

SAM, likely because SAH contains a less electrophilic sulfur atom.

Reduction of a radical SAM enzyme’s [4Fe–4S] cluster to its

active state is required for radical chemistry [32]. In some in vitro

systems, this activation has been shown to further benefit from

exogenous NADPH along with SAM addition [29,31]. Nonethe-

less, NADPH had no significant effect on final HydA1 activities in

our system. Extract reconstitution with Fe+2 and S22 may generate

reduced [4Fe–4S] clusters associated with the maturases and thus

avoid the need for an additional reducing agent.

Figure 2. In vitro activation of C. reinhardtii HydA1 and the effects of exogenous small molecules. 2 mM of HydA1 apoprotein was
anaerobically incubated with 50–60% vol?vol21 maturase extract. Exogenous substrates assessed included Fe+2 (1 mM), S22 (1 mM), SAM (2 mM),
and 20 aa (2 mM of each amino acid). (Fig. 2A) When included in reaction mixtures, Fe+2 and S22 were added to maturase extracts 2 hr before
addition of apoHydA1 (black bars) or apoHydA1recon (red bars). When SAM and 20 aa were included, maturase extracts were incubated with these
chemical additives for 1 hr prior to HydA1 addition. Final hydrogenase activities determined after 9 hr of incubation are from n = 2 to 5 independent
determinations 6 SEM. (Fig. 2B) Maturase extracts were reconstituted with Fe+2 and S22 for 2 hr (N,&,m) or 0 hr (+) before apoHydA1 addition;
extracts were also pre-treated with SAM and 20 aa for 1 hr (m) or 0 hr (&,N,+) before adding HydA1 apoprotein (as-isolated:N,m,+; reconstituted: &).
Data are from n = 2 independent measurements, and standard errors were less than 10% for all data.
doi:10.1371/journal.pone.0007565.g002
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We have yet to determine how many molecules of SAM are

required for activation of one hydrogenase polypeptide or for

synthesis of a single H-cluster cofactor. Consumption of multiple

SAM molecules per small molecule product for radical SAM-

based biochemistry has been reported [33,34]. Direct detection of

the highly reactive 59-deoxyadenosyl radical has proven difficult,

and detection of the allylic analog 59-deoxyadenosine is generally

used to characterize SAM radical chemistry [32]. Our efforts to

measure 59-deoxyadenosine accumulation using reverse-phase

HPLC did not show detectable levels in reaction mixtures

following HydA1 activation. Future work using purified maturases

and higher enzyme concentrations may be more effective for

characterizing the radical SAM biochemistry.

Tyrosine and Cysteine Enhance In Vitro Maturation of
HydA1 Hydrogenase

The requirement for the 20 aa mixture along with Fe+2, S22,

and SAM (Fig. 3) indicates that one or multiple amino acids may

be substrates for hydrogenase activation. A statistical design of

experiment approach was adopted to identify amino acids

positively or negatively influencing in vitro HydA1 activation.

Design Expert 7.1 software (Stat-Ease, Inc.) was used to create a 2-

level fractional factorial model and for statistical analysis of the

data. A 220–15 factorial design with resolution III was selected. 32

combinations of the 20 canonical L-amino acids were constructed

using the Design Expert software (Figure 4). Hydrogenase

activation reactions contained Fe+2, S22, SAM, and one of the

32 amino acid mixtures. Early hydrogenase activities at t = 10 min

(Response 1) as well as final hydrogenase activities at t = 9 hr

(Response 2) were measured.

Analysis of variance (ANOVA) was used to identify amino acids

with statistically significant effects on hydrogenase maturation. All

20 amino acids were included in the regression models. Tyrosine,

cysteine, and methionine were identified as having significant

positive contributions when analyzing each response, with p-values

,0.0001 for each amino acid. Cysteine had the most significant

effect on early HydA1 activities (Response 1). Tyrosine had the

most significant effect on overall HydA1 activities (Response 2),

which were 7- to 12-fold higher than the minimum activity. No

amino acid had a significant negative effect on HydA1 maturation.

With resolution III factorial models, single factor effects are

aliased with two-factor interactions. Therefore, our factorial model

did not have the ability to assess the independent significance of

cysteine, tyrosine, and methionine if two of these molecules have

interactive effects on hydrogenase activation. To complete the

evaluation, subsequent experiments were done with Fe+2, S22,

SAM, and the three amino acids. While cysteine and tyrosine

individually benefited hydrogenase activation, reaction mixtures

with both amino acids had the most effective maturation capability

for both maturation kinetics and final activities (Fig. 5A–B). These

data suggest that tyrosine and cysteine may have a cooperative

interaction for the in vitro activation of [FeFe] hydrogenase.

However, no conditions were identified in which addition of

methionine improved HydA1 activation (data not shown).

Examination of the 32 aa mixtures in Figure 4 shows that all 8

mixtures with both tyrosine and cysteine also contained methio-

nine. Thus, the apparent significant effect of methionine indicated

by the design of experiment data appears to be a product of the

limited discrimination provided by the resolution III factorial

model.

We have yet to characterize the biochemical role(s) of cysteine

for in vitro hydrogenase maturation. We speculate cysteine may be

a substrate for synthesis of the H-cluster [2Fe] sub-cluster,

specifically as a precursor for the dithiol bridging ligand sulfur

atoms. In the absence of cysteine, S22 may substitute for synthesis

of the [2Fe] sub-cluster, which could explain why slower and

partial HydA1 activation occurred in mixtures containing Fe+2,

S22, SAM, and tyrosine (Fig. 5B). Alternatively, cysteine could be

involved in reconstitution of the maturase [Fe–S] clusters or the

hydrogenase [4Fe–4S] cluster; however, apoHydA1recon was

matured similarly to apoHydA1 in the absence of exogenous

cysteine (Fig. 5A).

3,4-Dihydroxy-L-phenylalanine Substitutes for Tyrosine
to Stimulate In Vitro HydA1 Activation

The effects of tyrosine analogs were examined to further

investigate the role of tyrosine as a substrate for [FeFe]

hydrogenase activation (Figure 6). All reaction mixtures contained

Fe+2, S22, SAM, and cysteine. Addition of the analog 3,4-

dihydroxy-L-phenylalanine partially substituted for tyrosine and

improved HydA1 maturation 4-fold. Other tyrosine analogs were

ineffective in stimulating hydrogenase activation. Recent in vitro

work has indicated that thiamine biosynthesis in E. coli may

require radical SAM chemistry, with tyrosine as a co-substrate

[29]. The authors proposed a mechanism by which the 59-

deoxyadenosyl radical generated from SAM abstracts the phenolic

hydrogen atom from tyrosine. Subsequent Ca–Cb bond cleavage

along with further oxidation of the glycinyl radical results in the

formation of dehydroglycine. Thiamine phosphate synthesis using

purified enzymes in conjunction with exogenous SAM, tyrosine,

and 1-deoxyxylulose-5-phosphate has also been shown [31].

Considering this proposed mechanism, the positive effect of 3,4-

dihydroxy-L-phenylalanine on hydrogenase activation could be

expected since the molecule has a para-hydroxyl group like that of

tyrosine. These results support the suggested role of tyrosine as a

substrate for SAM-based radical chemistry to produce intermedi-

ates required for synthesis of the H-cluster cofactor [10]. The

authors hypothesize that dehydroglycine is a precursor for the

Figure 3. Effects of SAM on in vitro HydA1 maturation. Maturase
extracts were reconstituted with Fe+2 and S22 for 60 min, and then pre-
treated for 60 min with the indicated small molecules prior to
apoHydA1 addition (3.6–4.6 mM). Reactions mixtures contained 50–
70% vol?vol21 maturase extract. Final concentrations of chemical
additives were 1 mM Fe+2, 1 mM S22, 2 mM of each amino acid (20 aa),
2 mM SAM, 1 mM NADPH, and 2 mM SAH. Hydrogenase activities were
measured after 8–9 hr of anaerobic incubation. Data are the average for
n = 2 to 4 independent determinations 6 SEM.
doi:10.1371/journal.pone.0007565.g003
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[2Fe] sub-cluster dithiomethylamine bridge based on the obser-

vation that p-cresol accumulated in HydG-catalyzed reactions

between SAM and tyrosine. However, we have yet to distinguish

which H-cluster non-protein moieties, if any, are derived from

tyrosine. Considering the structure of dehydroglycine (Figure 6)

and its carbonyl and imine groups, it is also possible the CO and

CN moieties may derive from a dehydroglycine precursor, in

addition to the dithiomethylamine bridge as proposed. The

observations that Fe+2, S22, SAM, cysteine, and tyrosine are

sufficient for HydA1 activation further supports this hypothesis as

no alternative reaction mechanisms for CO and CN synthesis from

these small molecules are apparent.

Conclusions
In this work, we demonstrate a platform for post-translational

activation of an [FeFe] hydrogenase. Utilizing this in vitro system,

we have shown for the first time the involvement of exogenous

small molecules, including ferrous iron, inorganic sulfide, SAM,

cysteine, and tyrosine in the activation of an [FeFe] hydrogenase.

These results now enable further investigation of H-cluster

cofactor biosynthesis using a defined system containing exogenous

substrates and purified enzymes.

Materials and Methods

Materials and Solution Compositions
Except for isopropyl b-D-1-thiogalactopyranoside (IPTG,

Invitrogen), SAM (New England Biolabs), and [14C]-carbamoyl

phosphate (American Radiolabeled Chemicals, Inc.), all chemicals

Figure 4. Experimental design for elucidation of amino acids enhancing in vitro hydrogenase activation. Amino acid mixtures (aa Mix) were
added to hydrogenase maturation reactions to a final concentration of 2 mM for each amino acid. The maturation reaction mixtures contained 60%
vol?vol21 maturase extract reconstituted with Fe+2 and S22 for 60 min, and then pre-treated with SAM and one of the 32 aa mixtures for 60 min prior to
apoHydA1 addition (4.1 mM). HydA1 specific activities were determined at t = 10 min (Response R1) and t = 9 hr (Response R2), and values are expressed
as pmol H2 consumed?min21?ng21 for n = 1 experiment. ANOVA was performed for both responses to determine F-statistics and p-values. The 20 individual
amino acid effects were selected for analysis by the regression models. Each F-statistic equals the ratio of mean squares for that particular amino acid (1
degree of freedom) to that of the residuals (11 degrees of freedom). P-values represent the statistical significance of the F-statistics.
doi:10.1371/journal.pone.0007565.g004

Figure 5. Effects of cysteine and tyrosine on in vitro HydA1
activation. Maturase extracts (final concentrations of 50–60%
vol?vol21) were reconstituted with Fe+2 and S22 for 60 min, and then
pre-treated with SAM and amino acids for 60 min prior to addition of
apoHydA1 (black bars) or apoHydA1recon (red bars). No additional
molecules were added with HydA1 apoprotein (3.6–4.6 mM). Final
concentrations of exogenous molecules were as follows: 1 mM Fe+2,
1 mM S22, 2 mM SAM, 2 mM cysteine, 2 mM tyrosine, and 2 mM
methionine. (Fig. 5A) Hydrogenase activities were measured after 8–9 hr
of incubation. Data are the average for n = 2 to 5 independent
determinations 6 SEM. ApoHydA1recon was only tested for mixtures
with tyrosine and with cysteine plus tyrosine. Addition of methionine
did not enhance hydrogenase activities for all four conditions (data not
shown). (Fig. 5B) Reaction mixtures included as-isolated apoHydA1,
Fe+2, S22, SAM, and the following amino acids added as described
above: cysteine (&); tyrosine (6); cysteine and tyrosine (#). Data are
the average for n = 2 independent determinations. Standard errors were
less than 11% for all data.
doi:10.1371/journal.pone.0007565.g005

Figure 6. Assessment of tyrosine and tyrosine analogs for in
vitro hydrogenase activation. Maturase extracts were reconstituted
with 1.4 mM Fe+2 and 1.4 mM S22 for 60 min and subsequently pre-
treated with 2 mM SAM, 2 mM cysteine, and 2 mM of the following
amino acid(s) for 60 min prior to apoHydA1 addition (4.6 mM): (1) none,
(2) L-phenylalanine, (3) 3-hydroxy-DL-phenylalanine, (4) 3,4-dihydroxy-
L-phenylalanine, (5) 4-amino-L-phenylalanine, (6) L-tyrosine (4-hydroxy-
L-phenylalanine), (7) 20 aa. Reaction mixtures contained 60% vol?vol21

maturase extract. Hydrogenase activities were measured after 9 hr, and
specific activities (*) are expressed as pmol H2 consumed?min21?ng21

HydA1. Data are the average for n = 2 independent determinations 6
SEM. The chemical structure for dehydroglycine (2-iminoacetic acid) is
provided (8). {ND: not determined.
doi:10.1371/journal.pone.0007565.g006

[FeFe] Hydrogenase Maturation
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were obtained from Sigma (Sigma-Aldrich). Commercial aqueous

SAM (32 mM stock concentration) contained 10% vol?vol21

ethanol and 5 mM sulfuric acid, pH 2.7. Defined growth medium

for fermentations was prepared as previously described [14]. S30

buffer contained 10 mM Tris-acetate, pH 8.0; 14 mM magnesium

acetate; and 60 mM potassium acetate. 50 mM sodium phosphate

buffer, pH 7.4 with 100 mM NaCl (SP buffer) was used for Ni+2-

affinity chromatography. 100 mM HEPES/KOH, pH 7.2 with

100 mM NaCl (HP buffer) was used for maturase extract dialysis.

[FeFe] Hydrogenase and Maturase Expression Vectors
The hydrogenase gene hydA1 from C. reinhardtii as well as the

nucleotide sequences hydGx and hydEF encoding the S. oneidensis

hydrogenase maturases were PCR amplified from the pK7 shydA1

and pACYCDuet-1 hydGxEF plasmids [14] using Platinum H Taq

DNA Polymerase High Fidelity (Invitrogen). PCR products were

digested with restriction enzymes and inserted into expression

vectors between a T7 RNA polymerase promoter and terminator

using T4 DNA ligase (New England Biolabs). The pY71 vector

was used as the parent plasmid for construction of C. reinhardtii

shydA1 expression vectors. The plasmid pY71 cat encoding the

chloramphenicol acetyl transferase enzyme was synthesized by first

PCR amplifying the replication origin from the pUC19 plasmid

(Invitrogen), the kanamycin resistance gene from pK7 cat [35], and

the nucleotide fragment from pK7 cat containing the cat gene

flanked by the T7 RNA polymerase promoter and terminator

sequences. These three fragments were ligated using overlapping

PCR. The linear PCR product (<2.5 kb) was digested with

BamHI and ligated to form pY71 cat. Next, the shydA1 gene was

cloned into the pY71 vector, from which the cat gene had been

removed. The first 8 codons of shydA1 were conservatively

changed to ATG GCA GCA CCA GCA GCA GAA GCG for

reduced secondary structure as predicted using Mfold software to

improve in vitro translation (shydA1*). pY71 shydA1* was used for

addition of an N-terminal 6x-histidine tag, and the N-his6-shydA1*

insert was cloned back into the pY71 vector. Synthesis of the

expression vector containing the S. oneidensis maturase genes was

carried out in two parts. First, the hydGx gene segment was cloned

into multiple cloning site I of the pACYCDuet-1TM expression

vector (Novagen). Next, the hydEF gene segment was cloned into

multiple cloning site II of pACYCDuet-1–hydGx. All expression

vectors were confirmed by DNA sequencing and transformed into

E. coli strain BL21(DE3) (Invitrogen). Transformed cells were

selected against kanamycin resistance (40 mg L21) for pK7 and

pY71 plasmids, and against chloramphenicol resistance

(25 mg L21) for pACYCDuet-1 plasmids.

Apohydrogenase Expression, Purification, and
Characterization

In vivo apohydrogenase expression was carried out in the

absence of [FeFe] hydrogenase maturases using E. coli strain

BL21(DE3) pY71 N-his6-shydA1*. Cells were initially grown at

30uC in 2 L baffled flasks containing 1 L of LB Miller medium,

40 mg L21 kanamycin, and 250 mg L21 ferric ammonium

citrate. Shake flasks were transferred to 20uC shakers at an

OD600 of 0.2, and L-cysteine was added to 1 mM. After 1 hr

(OD600<0.5), IPTG was added to 0.5 mM to induce hydrogenase

expression, and cultures were incubated for 12–15 hr at 20uC.

Following recombinant hydrogenase expression, cells were pellet-

ed and resuspended in 3 mL of Bug Buster Master Mix lysis

solution (Novagen) per gram wet cell mass. Cell suspensions were

incubated at 23uC for 30 min and then diluted with 56SP buffer

(10 mM imidazole final concentration). Cell lysates were clarified

by centrifugation at 30,0006g and 4uC for 30 min before being

loaded onto equilibrated 1 mL HisTrapTM HP Ni+2-affinity

columns (GE Healthcare). Columns were washed using 5 mL of

SP buffer with 40 mM imidazole. Apohydrogenase was eluted

using 5 mL of SP buffer with 250 mM imidazole. Eluate fractions

containing apoprotein were identified following SDS-PAGE and

Coomassie staining. Pooled fractions were dialyzed twice for 3 hr

each time against SP buffer with 10% vol?vol21 sucrose.

Apohydrogenase aliquots were sealed and stored at 220uC.

Protein concentrations were determined with a Qubit fluorometer

according to manufacturer’s instructions (Invitrogen).

Reconstituted apoprotein solutions were prepared under

anaerobic conditions. Solutions were reduced with 1 mM DTT

for 15 min, incubated with 0.5 mM Fe(NH4)2(SO4)2 for 15 min,

and then incubated with 0.5 mM Na2S for 2 hr. Reconstituted

protein solutions were centrifuged for 15 min at 8,0006g and

passed through PD–10 desalting columns (GE Healthcare)

equilibrated with HP buffer. Solutions analyzed spectrophotomet-

rically were sealed in quartz cuvettes within the anaerobic

chamber. UV-visible spectroscopy was performed using an HP

8425A Diode Array Spectrophotometer (Hewlett Packard). Iron

content was measured as previously described [20].

Production of Maturase Extract for In Vitro Hydrogenase
Activation

Recombinant expression of the S. oneidensis HydE, HydF, and

HydG maturases, and cell-free extract preparation were similar to

previously described methods [14]. E. coli strain BL21(DE3)

pACYCDuet-1–hydGx–hydEF was cultivated in a 5 L BioFlo 3000

fermentor (New Brunswick Scientific) in 4 L of defined growth

medium under oxic conditions at 30uC. The culture pH was

maintained at 7.0 using 1 N ammonium hydroxide. Growth

medium was supplemented with 25 mg L21 chloramphenicol and

250 mg L21 ferric ammonium citrate. At an OD600<2.0, 1 mM

L-cysteine was added, and recombinant maturase expression was

induced with 0.5 mM IPTG. After 45 min of induction, the

temperature set point was changed to 20uC. When cultures

reached 20uC, airflow was switched to 100% nitrogen at 1.5

SLPM to establish strict anoxic conditions. Agitation was reduced

from 500 rpm to 75 rpm. Cultures were anaerobically incubated

for 12–15 hr at 20uC before cell extract preparation.

All maturase extract preparation steps were carried out under

aerobic conditions. Cells were pelleted, resuspended in 1 mL of

S30 buffer per gram of wet cell mass, and lysed using a high-

pressure EmulsiFlex-C50 homogenizer (Avestin) operated at

15,000–20,000 psi. Cell lysates were clarified by centrifugation

at 30,0006g and 4uC for 30 min. Supernatant was collected,

frozen with liquid nitrogen, and stored at 280uC until used as

maturase extract for in vitro hydrogenase activation studies.

In Vitro Activation of [FeFe] Hydrogenase
Hydrogenase activation reaction mixtures were 25–50 mL in

volume and were incubated in 200 mL 8-well PCR strips (E&K

Scientific, Inc.). Mixtures contained 50–70% vol?vol21 dialyzed

maturase extract, 1–5 mM HydA1 hydrogenase, and exogenous

substrates. When included, final concentrations of chemical

additives were as follows: 1 mM ferrous ammonium sulfate

(Fe+2), 1 1 mM sodium sulfide (S22), 2 mM SAM, a mixture 20

standard L-amino acids at 2 mM each, 2 mM SAH, 1 mM

NADPH, 2–20 mM magnesium chloride, 1–10 mM ATP, 2 mM

cysteine, 2 mM tyrosine, 2 mM methionine, 2 mM phenylalanine,

2 mM 4-amino-L-phenylalanine, 2 mM 3-hydroxy-DL-phenylal-

anine, 2 mM 3,4-dihydroxy-L-phenylalanine, 2 mM GTP, 2 mM

GDP, 1–5 mM carbamoyl phosphate, 2 mM sodium thiocyanate,
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2 mM sodium cyanide, 1 mM DTT, and 1 mM sodium

dithionite.

Generally, hydrogenase maturation reactions consisted of four

phases, with all procedures carried out in an anaerobic chamber

(Coy Laboratory Products) containing 98% N2 and 2% H2. Phase

1, dialysis: 0.5–2.0 mL of maturase extract was buffer exchanged

three times (3 hr, 3 hr, overnight) against 0.75 L of HP buffer at

6uC using 6–8 kD MWCO RC dialysis tubing (Spectrum

Laboratories, Inc.). Dialyzed maturase extracts were used

immediately to avoid variability from freezing and thawing. Phase

2, extract reconstitution: Fe+2 and S22 were incubated with dialyzed

extracts for 60 min at 26uC before pre-treatment with small

molecules. Phase 3, extract pre-treatment: reconstituted extracts were

incubated with defined sets of exogenous substrates for 60 min at

26uC before apohydrogenase addition. Phase 4, hydrogenase activation:

either as-isolated or reconstituted apohydrogenase was added to

pre-treated maturase extracts, and reaction mixtures were

incubated at 26uC until assayed for hydrogenase activity.

Hydrogenase activity was determined with a H2 consumption

and methyl viologen reduction assay as previously described [14],

with the modification that spectrophotometric measurements were

performed at 26uC instead of 37uC.
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