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Abstract: The cellular transport process of DNA is hampered by cell membrane barriers, and
hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat
a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity
and cancer formation are among the major limitations of this approach. Cationic polymers, such
as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery.
Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the
accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable
polymers for gene delivery by modifying existing polymers and/or using natural biodegradable
polymers. This review summarizes mechanistic aspects of gene delivery and the development of
biodegradable polymers for gene delivery.

Keywords: gene delivery; biodegradable polymers; DNA condensation; DNA nanoparticles;
polyethyleneimine; poly-L-lysine; chitosan; pullulan; dextran; hyaluronic acid; gene
delivery mechanisms

1. Introduction

Gene therapy approaches are under development to treat diseases that arise from genetic
abnormalities [1–5]. Successful gene therapy requires the efficient delivery of genetic material through
the cell membrane into target sites in order to treat these diseases. Transport of DNA through the
cell membrane is an inefficient process, and the mechanism(s) by which this process occurs is not
clear [6–12]. There are two types of delivery vehicles used in gene therapy, viral and non-viral vectors,
both of which present specific advantages and disadvantages [13–16]. Currently employed viral
vectors include retroviruses, adenoviruses, and adeno-associated viruses, and each one of them has
its own unique advantages [17–21]. Viral vectors are highly effective in achieving high efficiency
for both gene delivery and expression, and exhibit stable long-term expression of a foreign gene
when the recombinant DNA is integrated into the chromosomal DNA [22–24]. Major limitations of
virally mediated gene delivery include limited DNA carrying capacity, toxicity, potential replication,
immunogenicity, cancer formation and high cost. Non-viral gene delivery vehicles are being developed
to overcome the deficiencies of viral vectors [25–30].

The concept of non-viral gene transfer can be described simply as the use of carriers other
than virus which: (a) Mimics viral infection processes; (b) condenses DNA; (c) protects DNA from
degradation; (d) promote cellular uptake and nuclear delivery; and (e) are non-immunogenic and
non-cytotoxic [31,32]. Lipids, polymers and peptides are some of the non-viral vectors that have
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been developed in the past three decades [33–37]. These polymers interact with nucleic acids and
form nanoparticles to facilitate gene delivery, with the advantages of low toxicity, cost-effectiveness,
ease of production, and versatility for different applications [38–44]. Amongst the various non-viral
vectors developed, cationic polymers have been considered as the most promising candidates with
enormous potentials and advantages in comparison to their counterparts owing to their unique
characteristics of forming polyelectrolyte complexes with genes and the ability to protect DNA from
various enzymes [45,46]. The polymer vectors used in gene delivery should meet several requirements,
including: (i) The ability to protect the genetic material from enzymatic degradation, (ii) provide
long lifetime in the blood circulation, (iii) direct the genetic material to specific cellular/tissue sites,
(iv) degrade and eliminate from the human body without exerting undesirable side effects, (v) the
ability to enter the target cell, crossing the cell membrane and transiting through the cytosol and/or
crossing the nuclear membrane to release the genetic material at the desired point of action [47].

Both synthetic and natural polymers have been used for gene delivery, and several reviews are
available in the literature [48–52]. However, these reviews were published approximately a decade ago,
and hence, we prepared this review to outline earlier research in this area and to describe developments
during the past decade, especially in the area of biodegradable polymers for gene delivery applications.

2. DNA Condensation to Nanoparticles for Gene Delivery

An essential requirement of DNA entry to cells is the condensation of DNA, a process by which
long DNA chains are collapsed into nanoparticles of 50–200 nm diameter [8,9,26,27,40–42,53–58].
The interaction of multivalent cationic ligands with DNA results in the condensation of DNA to
nanoparticles and facilitates DNA transport through the cell membrane [9,26]. An example of such
nanoparticle formation with the natural polyamines, spermidine (H2N(CH2)3NH(CH2)4NH2) and
spermine (H2N(CH2)3NH(CH2)4NH(CH2)3NH2), and synthetic polyamines are illustrated in Figure 1.
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Figure 1. Electron micrograph of DNA treated with 200 μM of spermidine (Left). Scale bar is 100 nm. 
Scanning force microscopy images showing the toroid structures of pGL3 plasmid DNA formed by 
incubation with polyamines (Right). (A) 25 μM spermine; (B) 5 μM of 3 icropinoc (3-3-3-3, 
H2N(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2); (C) 2 μM of hexamine (3-4-3-4-3, 
H2N(CH2)3NH(CH2)4NH(CH2)3NH(CH2)4NH2(CH2)3NH2). The numbering system in these synthetic 
polyamines is the number of –CH2- groups between amino and imino groups. Scale bar is 200 nm. 
Adapted with permission from Reference [41]. 

Thomas et al. tested the ability of a series of polyamine analogues for transporting a triplex 
DNA forming oligonucleotide in MCF-7 breast cancer cells and found that hexamine analogues of 
spermine were excellent candidates for oligonucleotide delivery [69]. Structurally modified 
oligoamines were also developed as nanocarrier gene delivery agents [70]. Polyamine-based 
delivery vehicles interfered with the polyamine metabolic pathway and depleted the level of natural 
polyamines [59,69,70]. DNA condensation by amino acids and protamine was considered to be a 
model for DNA packaging in the sperm [26,71]. Arginine rich polyplexes were also studied for gene 
delivery [72]. 

3. Mechanistic Aspects of Gene Delivery by Polymeric Vehicles 

The cell membrane is a major barrier for the specific and efficient delivery of the nucleic acid 
cargo by non-viral delivery vehicles. Due to their large size and anionic nature, DNA and siRNA 
cannot diffuse across the cell membrane and require active internalization by endocytosis 
[9,26,27,73,74]. Supramolecular chemistry aids in the organization of large DNA molecules to highly 
organized nanoparticles of approximately 50–200 nm diameter toroids or spheres by electrostatic 
and/or other forms of interactions with nanocarriers, such as cationic polymers [9,26,40]. The DNA 
nanoparticles appear to be in a liquid crystalline state, with charge inversion conferring positive 
charges on their surface, and facilitating endocytosis through negatively charged proteoglycans on 
the cell surface [61,66,75,76]. A schematic model for the cellular uptake mechanism is given in Figure 
2. 

The endocytic pathway is mainly divided into four different types: (i) Phagocytosis, (ii) 
clathrin- mediated endocytosis, (iii) caveolae-mediated endocytosis, and (iv) macro- and 
micro-pinocytosis [9,12,56,77]. However, other types of processes, such as flotillin-dependent 
endocytosis, circular dorsal ruffles, and etosis have also been described in the literature [12,77,78]. 
Phagocytosis is predominant in macrophages, monocytes, neutrophils and dendritic cells and 
particles with a diameter of 2–3 μm diameter. The clathrin dependent endocytosis pathway is a 
receptor-dependent pathway, mediated by clathrin and requires GTPase dynamin. The assembly of 
clathrins occurs in the polyhedral lattice on the cytosolic surface of the cell membrane, which helps 
to deform the membrane into a coated pit with 100–150 nm size for invagination of the cargo 
containing the genetic material [79]. Caveolin-mediated endocytosis is a type of cholesterol and 
dynamin-dependent, and receptor-mediated pathway, involving 50–100 nm invaginations of the 

Figure 1. Electron micrograph of DNA treated with 200 µM of spermidine (Left). Scale bar
is 100 nm. Scanning force microscopy images showing the toroid structures of pGL3 plasmid
DNA formed by incubation with polyamines (Right). (A) 25 µM spermine; (B) 5 µM of
pentamine (3-3-3-3, H2N(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2); (C) 2 µM of hexamine (3-4-3-4-3,
H2N(CH2)3NH(CH2)4NH(CH2)3NH(CH2)4NH2(CH2)3NH2). The numbering system in these synthetic
polyamines is the number of –CH2- groups between amino and imino groups. (D) Scale bar is 200 nm.
Adapted with permission from Reference [41].

The natural polyamines have been extensively studied for their ability to collapse DNA to
nanoparticles [59–63]. The energetic force governing the condensation of DNA is the differential
between attractive and repulsive forces between DNA strands. By combining single-molecule magnetic
tweezers and osmotic stress on DNA assemblies, Todd et al. separated attractive and repulsive
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components of the total intermolecular interaction between multivalent cation condensed DNA
strands [64]. Based on measurements of different cations, including cobalt hexamine (Co(NH3)6

3+),
natural polyamines, synthetic pentamine and hexamine, Todd et al. identified two invariant properties
of multivalent cation-mediated DNA interactions: Repulsive forces decay exponentially with a
2.3 ± 0.1 Å characteristic decay length, and the attractive component of the free energy was always
2.3 ± 0.2 times larger than the repulsive component of the free energy at force-balance equilibrium,
irrespective of the nature of the cation [64]. The experimental measurements indicated the importance
of electrostatic interactions, consistent with theories for Debye-Hückel interactions between helical line
charges and with the order-parameter formalism for hydration forces [26,60]. However, ionic, structural
and temperature effects were evident in the interaction of polyamines with DNA [40–42,65–68].

Thomas et al. tested the ability of a series of polyamine analogues for transporting a triplex DNA
forming oligonucleotide in MCF-7 breast cancer cells and found that hexamine analogues of spermine
were excellent candidates for oligonucleotide delivery [69]. Structurally modified oligoamines were
also developed as nanocarrier gene delivery agents [70]. Polyamine-based delivery vehicles interfered
with the polyamine metabolic pathway and depleted the level of natural polyamines [59,69,70]. DNA
condensation by amino acids and protamine was considered to be a model for DNA packaging in the
sperm [26,71]. Arginine rich polyplexes were also studied for gene delivery [72].

3. Mechanistic Aspects of Gene Delivery by Polymeric Vehicles

The cell membrane is a major barrier for the specific and efficient delivery of the nucleic acid cargo
by non-viral delivery vehicles. Due to their large size and anionic nature, DNA and siRNA cannot
diffuse across the cell membrane and require active internalization by endocytosis [9,26,27,73,74].
Supramolecular chemistry aids in the organization of large DNA molecules to highly organized
nanoparticles of approximately 50–200 nm diameter toroids or spheres by electrostatic and/or other
forms of interactions with nanocarriers, such as cationic polymers [9,26,40]. The DNA nanoparticles
appear to be in a liquid crystalline state, with charge inversion conferring positive charges on
their surface, and facilitating endocytosis through negatively charged proteoglycans on the cell
surface [61,66,75,76]. A schematic model for the cellular uptake mechanism is given in Figure 2.

The endocytic pathway is mainly divided into four different types: (i) Phagocytosis, (ii) clathrin-
mediated endocytosis, (iii) caveolae-mediated endocytosis, and (iv) macro- and micro-pinocytosis [9,12,56,77].
However, other types of processes, such as flotillin-dependent endocytosis, circular dorsal ruffles,
and etosis have also been described in the literature [12,77,78]. Phagocytosis is predominant in
macrophages, monocytes, neutrophils and dendritic cells and particles with a diameter of 2–3 µm
diameter. The clathrin dependent endocytosis pathway is a receptor-dependent pathway, mediated by
clathrin and requires GTPase dynamin. The assembly of clathrins occurs in the polyhedral lattice on
the cytosolic surface of the cell membrane, which helps to deform the membrane into a coated pit with
100–150 nm size for invagination of the cargo containing the genetic material [79]. Caveolin-mediated
endocytosis is a type of cholesterol and dynamin-dependent, and receptor-mediated pathway, involving
50–100 nm invaginations of the plasma membrane [80]. In contrast to the receptor-mediated pathways,
macropinocytosis is a form of bulk fluid intake, mediated by cytoskeletal rearrangement to create
membrane extensions to trap a large vesicle (0.2–5 µm) and fuse it back to the membrane for
endocytotic uptake. It is a form of nonspecific bulk fluid uptake in the absence of any specific
receptor [81]. Micropinocytosis involves the internalization of nanoparticles of <0.2 µm via both
clathrin-coated and uncoated vesicles [82].

The cellular uptake pathway of DNA complexed nanocarriers can be affected by several
factors, including size, surface charge, particle shape, surface modifications, cell type and culture
Conditions [9,12,77]. As mentioned above, large particles are transported by phagocytosis, whereas
smaller particles are taken up by micropinocytosis. In general, nanoparticles formed from non-viral
gene delivery vehicles are heterogeneous in size, shape and surface charge, and hence, different types
of uptake mechanisms might be active with the same type of delivery vehicle and a single cell type [83].
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The cell membrane consists of anionic membrane proteins, and hence, positively charged nanoparticles
are more easily transported through the cell membrane than that of negatively charged particles.
However, the high positive charge will cause cytotoxicity. Therefore, moderately charged particles
are ideal for cellular uptake. Zeta potential measurement is used to determine the surface charge of
nanoparticles [84].
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of 22 kDa linear polyethyleneimine (PEI) treated plasmid DNA with luciferase gene in three breast 
cancer cell lines; MCF-7, SK-BR3 and T-47D [85]. Cellular targetability can be accomplished by cell 
surface receptors, such as hyaluronic acid (HA). Nanoparticles containing HA are selectively taken 
up by MDA-MB-435 cell line, which is rich in CD44 receptors [86]. There have also been many 
attempts to decorate the surface of nanoparticles with different kinds of targeting motifs to enhance 

Figure 2. Schematic representation of DNA uptake by mammalian cells. DNA is compacted in the
presence of polycations into ordered structures, such as toroids, rods, and spheroids. These particles
interact with the anionic proteoglycans at the cell surface and are transported by endocytosis. The
cationic agents accumulate in the acidic vesicles, increase the pH of the endosomes, and inhibit the
degradation of DNA by lysosomal enzymes. They also sustain a proton influx, which destabilizes the
endosome, and release DNA. The DNA then is translocated to the nucleus either through the nuclear
pore or with the aid of nuclear localization signals, and decondenses after separation from the cationic
delivery vehicle. Adapted with permission from Reference [9].

The efficacy of membrane transport differs with cell type even if the delivery vehicle and genetic
material are the same. Our studies showed significant differences in the level of transfection of 22 kDa
linear polyethyleneimine (PEI) treated plasmid DNA with luciferase gene in three breast cancer cell lines;
MCF-7, SK-BR3 and T-47D [85]. Cellular targetability can be accomplished by cell surface receptors,
such as hyaluronic acid (HA). Nanoparticles containing HA are selectively taken up by MDA-MB-435
cell line, which is rich in CD44 receptors [86]. There have also been many attempts to decorate the
surface of nanoparticles with different kinds of targeting motifs to enhance cellular targetability by
receptor-mediated endocytosis. For example, the RGD peptide sequence has been incorporated into
nanoparticles to make use of the peptide’s ability to recognize integrins that are overexpressed on tumor
cells or the angiogenic endothelial cells of the tumor vasculature [87]. Conjugation with polyethylene
glycol (PEG) increases the serum half-life of nanoparticles, thereby increasing their pharmacokinetics
and biodistribution [88]. Therefore, copolymers of PEG and polymeric nanocarriers containing the
RGD peptide sequence are effective for cellular targeting and improved serum stability [89].
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4. Synthetic Polymers for Gene Delivery

The cationic molecules which are currently under development as gene delivery vehicles are
organic cations, including cationic lipids, polyamine-based polymers, chitosan-based polymers,
dendrimers, and polyethyleneimine (PEI) [90–92]. These polymers interact with DNA and provoke
the formation of compact nano-sized polyplexes [12]. The charge neutralized compact polyplex core
protects enclosed nucleic acids from nucleases, and hence, maintain their stability and integrity until
the cellular uptake process occurs [39,93,94]. Although PEI is a non-biodegradable polymer, it is
included herein because it represents a polymer showing high transfection efficiency and could be
made biodegradable by appropriate modifications.

4.1. Polyethyleneimine and Its Biodegradable Derivatives

Amongst the various cationic polymers containing amine group in their backbone,
polyethyleneimine has been the most extensively studied agent since 1995, when Boussif et al. described
it as an effective gene transfection agent [95–98]. PEI has been synthesized in two different forms,
branched and linear (Figure 3), and both forms have demonstrated high transfection capability both
in vivo and in vitro [85,95–99]. The transfection efficiency of PEI depends on several factors, including,
target cell type, molecular weight (MW) and structure of the PEI (branched as opposed to linear) [85].
Approximately 20% of the nitrogen of PEI is protonated under physiological conditions [100]. Therefore,
PEI could envelope negatively charged DNA molecules, and protect them from lysosomal degradation
and lead to higher expression of the transfected gene [101]. Using fluorescent-labeled PEI and DNA,
Godbey et al. [102] and Venketeswaran et al. [85] found that PEI/DNA complexes attach to cell surfaces
and migrate into clumps that are endocytosed. In addition, endocytosed PEI, whether administered
with or without DNA, could undergo nuclear localization in the form of ordered structures. However,
nuclear delivery of DNA was more facile with a 22 kDa linear PEI compared to that of branched
PEI [85].
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Despite its ability to deliver DNA and oligonucleotides in cellular and animal models, PEI suffers
from the critical shortcoming of non-degradability that leads to severe cytotoxic effects [31,103,104].
In addition, stability in serum circulation, efficient intracellular release and low toxicity are important
criteria for using cationic polymers as gene delivery vehicles. Therefore, several investigators have
attempted to synthesize PEI derivatives with degradable linkages [104–107].

Lee et al. synthesized reducible linear PEI containing disulfides that exhibited transfection
efficiency comparable to PEI and high cell viability [107]. Bifunctional cross-linkers, such as
dimethyl-3,3′dithiopropionimidate (DTBP) and dithio-bis-succinimidyl propionate could react with
primary amines, generating high molecular weight reducible polymers. PEI cross-linked with
homobifunctional, amine reactive, reducible, and cross-linking reagents was tested for its transfection
efficiency in CHO cells and showed that the modified polymers mediated different levels of
transfection-based on cross-linking agent, the extent of cross-linking and N/P (nitrogen to phosphate)
ratios [108]. An improvement in the efficiency of low-molecular-weight PEI is provided by the
synthesis of dipicolylamine-based disulfide-containing zinc (II)-coordinated module (Zn-DDAC) [109].
Optimal Zn-coordinated polymeric vector induced up to 2-orders of magnitude higher luciferase
activity than that of commercial transfection reagents. In a different approach, Albuquerque et al.
constructed block co-polymers of PEI with poly(2-(dimethyl amino)ethyl methacrylate) (PDMA) and
poly(2-(diethyl amino)ethyl methacrylate) (PDEA) for the optimization of DNA condensation and
cellular transport [110].

Heparin-polyethyleneimine (HPEI) nanogels are another group of biodegradable PEI conjugates [111].
After intravenous administration, HPEI degraded, and the degradation products were excreted
through urine. HPEI nanogels had excellent transfection efficiency, low cytotoxicity, and better
blood compatibility than 25 kDa PEI. In addition, pVSVMP/HPEI complexes inhibited the growth
of pulmonary metastases [112]. Low MW PEI was also modified by the stepwise reactions with
methylacrylate (aza-Michael reaction) and amidation with tetraethylenepentamine (TEPA) [113].
The resultant biodegradable copolymers were excellent transfection agents for plasmid DNA
and siRNA in CHO and A549 cells and had target gene silencing ability without compromising
biocompatibility. Targeted delivery of siRNA for gene silencing was accomplished by preparing
polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol)
(Figure 4) [114].
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glycol)-folate (PEI-PCL-PEG-Fol) (A) and schematic illustration of the micelle-like polyplex formation
(B). Adapted with permission from Reference [114].
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PEI-PCL-PEG-Fol/siRNA micelleplexes showed enhanced cellular uptake and in vitro gene
silencing in SKOV-3 ovarian cancer cells that expressed a high level of folic acid receptor, compared to
that of non-folate conjugated copolymers [114]. Similar results were found with xenograft models
also. Miscelles prepared by grafting branched 25kDa, and PEG on poly[(ε-caprolactone)-co-glycolide]
(CG) showed a high level of degradation after cellular internalization [115]. These micelle-based
polyplexes showed high DNA transfection activity, as demonstrated by reporter gene-expression
and siRNA mediated gene knockdown. PEI-related cytotoxicity was reduced by the incorporation
of PEG, with the additional advantage of high serum stability of both DNA and siRNA polyplexes.
Tumor targeting was also achieved by cross-liking low MW PEI with N-octyl-N-quaternary chitosan
(OTMCS), and then conjugated with a trifunctional peptide (RGDC-TAT-NLS) [116]. The delivery
vehicle, thus, prepared (OTMCS-PEI-R18) showed controlled degradation and DNA condensing and
nuclear transportation capacity.

Ruan et al. modified low MW (1.2 kDa) PEI through a cross-linking reaction to introduce boric acid
ester bond to make it susceptible to biodegradation by reactive oxygen species (ROS) [117]. Further
modification of this polymer with substance P (SP) as the targeting ligand through PEG produced a
conjugated polymer that had excellent biocompatibility, ROS cleavability ad transfection efficacy and
gene silencing activity in vitro and satisfactory antitumor activity in vivo. A recent study shows that
linking of 600 Da PEI with biodegradable bridges of aromatic rings could enhance the DNA binding
ability of low MW PEI and increase its stability and transfection efficacy [118].

Grafting of PEI with chitosan, PEG and dextran also provided efficient and biodegradable gene
delivery vehicles [119]. Conjugates of low MW PEI with depolymerized chitosans (7 and 10 kDa)
interacted efficiently with DNA to produce nanoparticles of 100–160 nm [120]. These nanoparticles
showed efficient transfection ability in vitro. Luciferase reporter gene analysis in male Balb/c mice
receiving intravenous administration of the polyplex showed higher gene transfer ability compared to
unconjugated chitosan and PEI-based polyplexes. Tseng et al. prepared PEI conjugates with dextran
and folate and found that their toxicity was less than that of PEI [121]. The excellent transfection ability
of these conjugates could be the release of plasmids from endosomes because the conjugated molecules
hindered the protonation of PEI.

Another natural polymer used for modifying PEI is pullulan, a polysaccharide polymer consisting
of maltotriose units [122]. PEI conjugated with different MWs of pullulan (5900 and 107,000 Da) was
complexed with Apo B-siRNA, and injected into the liver of mice. Introduction of pullulan into PEI
dramatically decreased mortality and lung damage in mice after systemic injection as compared to
injection of PEI alone. The vector prepared with high MW pullulan was more efficient in serum stability
and gene expression compared to that prepared with the low MW pullulan. Wang et al. synthesized
pullulan-PEI (P-PEI) conjugates and modified it by conjugating with folic acid. The resulting polymer
was biodegradable, and transported pDNA with excellent efficacy in different cell types [123]. The
P-PEI-FA/pDNA complex showed higher gene transfection and gene silencing efficiency at N/P ratio
of 6.25 compared to the vector lacking pullulan. P-PEI-FA/siRNA can also deliver FAM-labeled siRNA
to endosomes and escape. An amphiphilic bifunctional derivative of pullulan was also synthesized by
conjugating desoxycholic acid and branched 1000 Da PEI onto pullulan [124]. The resulting polymer
conjugate showed excellent blood compatibility, low cytotoxicity and sustained drug release profile
and good DNA-binding ability. These micelles could efficiently transport the p53 gene into MCF-7
cells, and the expressed exogenous p53 protein inhibited the growth of these cancer cells.

Certain amino acids, including lysine-histidine peptides and arginine-rich peptides, were also
used to modify low MW PEI to transport plasmids and siRNA [125,126]. The conjugates prepared by
linking cell penetrating protein (CPP) with PEG showed excellent gene transfection efficiency in two
different lung cancer cell lines, with luciferase reporter gene expression in mouse lungs [127]. The
conjugates sizes were generally <300 nm, thus, enabling them to penetrate through the mucus lining of
the lung and reach the target cells. Taken together, there are multiple approaches to reduce the toxicity
of PEI by conjugation with biodegradable molecules.
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4.2. Poly-β-Aminoesters

Aminoesters are a group of biodegradable polymers that have cationic amino groups and
hydrolysable ester linkages [128]. A typical synthesis of a poly-β-aminoester (PBAE) is illustrated in
Figure 5.
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PBAE molecules are capable of interacting with DNA by electrostatic forces to produce
nanoparticles of 100–200 nm diameter [130]. They are non-cytotoxic and biodegradable with a
half-life of 1–7 h in aqueous solutions [131,132]. Guerrero-Ca’zares et al. synthesized a panel of
PBAE and tested their efficacy in human glioblastoma cells in vitro and in vivo. Nanoparticles formed
with PBAE and DNA showed excellent transfection ability in brain tumor initiating cells in vitro
even when these cells were grown in 3D oncospheres. In addition, cell specificity was evident in the
patient-derived orthotopic murine model of human glioblastoma [131].

Enzyme-catalyzed copolymerizaton of the lactone with dialkyl diester and amino diols produced
polyamine(co-esters) that could condense DNA and undergo facile cellular transport in a variety of
cells, including human embryonic kidney 293, U87-MG, and 9L cell lines [133]. Targeted delivery of
the pro-apoptotic TRAL gene by these agents showed significant inhibition of tumor growth in tumor
xenograft models, with minimal toxicity in vitro and in vivo. PBAE could also recognize minicircle
DNA to form nanoparticles for delivery in kidney 293 cells and mouse embryonic fibroblasts, as
model cell types [134]. Intraperitoneal injection of minicircle DNA in vivo resulted in high transgene
expression, and the level of expression was double with PBAE complexed DNA compared to control
experiments. Mastorakos et al. further developed highly stable PBAE-based DNA nanoparticles
and tested their ability to penetrate the nanoporous and highly adhesive mucous airways as a
potential therapeutic approach for respiratory diseases and lung cancer [135]. In addition, these
PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level
transgene expression throughout the mouse lungs, superior to several gold-standard gene delivery
systems. Transgene expression was robust for more than four months by a single administration
in mice. The safety profile of these PBAEs was excellent, following intratracheal administration
(Figure 6). In addition, surface-modified poly(lactic-co-glycolic acid) (PLGA)/poly-(β-aminoester)
(PBAE) nanoparticles (NPs) have shown great promise in pulmonary gene delivering and genes
editing [136].

PBAE conjugation with 5 kDa PEG was used to increase the circulation half-life of PBAE complexed
DNA nanoparticles [136]. The PEG-coated nanoparticles penetrated healthy brain parenchyma and
orthotopic brain tumor tissues in rats and achieved widespread transgene expression throughout the
tumors in vivo. In addition, these brain penetrating nanoparticles loaded with an anti-cancer plasmid
DNA improved the survival time in two aggressive orthotopic brain tumor models in rats [137].

Kauffman et al. synthesized a family of low toxicity poly(amine-co-ester) (PACE) terpolymers via
an enzyme-catalyzed polymerization for potential use in transporting plasmid DNA, miRNA, and
siRNA [138]. The advantage of PACE polymers is that they could be synthesized in a fine-tuned manner,
based on cell type and nucleic acid characteristics. Another approach for cell-type specific delivery is
the synthesis of Branched poly(Ester Amine) Quadpolymers (BEAQs) via the Michael addition reactions
from small molecule acrylate and amine monomers and then end-capping with amine-containing
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small molecules to assess the influence of polymer branching structure on transfection [139]. BEAQs
with moderate degrees of branching were optimal for delivery in serum-containing media. Reducible
branched ester-amine quadpolymers (rBEAQs) are also under development to co-encapsulate and
deliver DNA plasmids and RNA oligos for applications, such as non-viral CRISPR-mediated gene
editing, utilizing Cas9 DNA and siRNA codelivery [140].

Figure 6. In vivo safety profile of DNA-NPs. (A) Representative images of lung parenchyma 24 h after
administration of DNA-NPs. (B) Histopathological scoring of lung inflammation. (C and D) Total cell
counts (C) and % neutrophils (D) in bronchoalveolar lavage fluid following a single administration
of DNA-NPs. Data represent the mean ± SD (n = 3–5). The differences are statistically significant
(p < 0.05) compared with untreated control (*) or mice dosed with Conventional PEI nanoparticles
(PEI-CPs) (#). Adapted with permission from Reference [135].

4.3. Poly-L-Lysine (PLL)

The cationic peptide, PLL (Figure 7) and its low molecular weight analogues, oligolysines were
studied for their ability to collapse DNA to nanoparticles and transport DNA to cells [58,141].

Studies by Nayvelt et al. provided mechanistic insights into oligo- and poly-L-lysine-mediated
DNA collapse to nanoparticles, with typical morphologies of toroids, spheroids, cubes and rods [58].
Korolev et al. found salt-dependent and salt-independent regimes in the interaction of oligolysines
with plasmid DNA [142]. Modification of PEI with PLL enhanced the transfection efficacy of PEI
in HeLa cells, in addition to significantly reducing its toxicity [143]. In a recent report, Malik et al.
showed that polylysine-modified PEI could provoke genetically engineered mesenchymal stem cells
for combinational suicidal gene therapy in glioblastoma [144]. Kodama et al. developed dendrigraft
PLL (DGL) as an alternative to PLL and complexed it with γ-polyglutamic acid (γ-PGA) for gene
delivery [145]. The ternary complex formed with DNA showed high transfection efficiency in the
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liver, lungs and spleen of experimental animals. Other investigators are synthesizing copolymers of
poly-L-lysine for enhanced gene delivery applications [146].
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Several other cationic peptides have also found use as biocompatible and biodegradable gene
delivery vehicles. Cell penetrating proteins (CPPs) are a group of cationic peptides that can condense
DNA and facilitate DNA/siRNA delivery [147]. CPPs contain <30 amino acids and their design
is inspired by a trans-activating transcriptional activator (Tat) of human immunodeficiency virus 1
(HIV-1) with the amino acid sequence of GRKKRRQRRRPQ and penetrating peptide of the sequence,
RQIKIWFQNRRMKWKK [148]. DNA transporting efficacy of CPPs depends on their sequence length
and on the position of the arginine residue in the peptide sequence. Linear and flexible versions of
CPPs have been synthesized [147]. Tumor targeting peptides, including RGD and Lyp-1, have also
been developed to bind to epithelial cells to transport the DNA cargo directly to tumor cells [149].
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5. Natural Carbohydrate Polymers for Gene Delivery

Several natural polymers (Figure 8) have been studied for gene delivery as these agents are
relatively non-toxic and biodegradable [12,150].
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Figure 8. Chemical structures of commonly used natural polymers for gene delivery. Chitosan (a)
is a linear amino polysaccharide comprising randomly distributed β(1,4)-linked D-glucosamine
and N-acetyl-D-glucosamine units. Pullulan (b) is a water-soluble linear polysaccharide, with
α-1,4-glucopyranose and-1,6-glucopyranose units. Dextran (c) is a carbohydrate polymer composed
predominantly of α-1,6-linked glucopyranose units with a low degree of 1,3-branching. Hyaluronic acid
(HA) (d) is an anionic polysaccharide, a glycosaminoglycan (GAG) composed of repeating polymeric
disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine linked by a glucuronidic β (1→3) bond.

5.1. Chitosan

Among the natural carbohydrate polymers, chitosan (Figure 8a) has received the most attention
as a nanoparticulate drug and gene delivery vehicle [151]. Chitosan condenses DNA to nanoparticles
at acidic and neutral pH, due to the presence of amino groups that confer a high positive charge
density [152]. It is obtained by the N-deacetylation of chitin, and has randomly distributedβ(1,4)-linked
D-glucosamine and N-acetyl-D-glucosamine units. Low immunogenicity, biocompatibility and minimal
cytotoxicity are some of the advantages of using chitosan as a gene delivery vehicle. Hydrogels
formed by it are compatible with biodegradation by lysozyme and chitosanase enzymes and have
low toxicity [153]. As described in the previous section, this property of chitosan has been utilized in
preparing conjugates with other polymers, such as PEI, to render them biodegradable. The interaction
between chitosan and DNA is electrostatic in origin, as reported for the majority of polycations [154].
Since chitosan is a weak base with a pKa of 6.5, pH is an important factor governing facile interaction
of its amino groups with DNA. Compaction of DNA with low MW chitosan gives nanoparticles with
an average radius of ~150 nm diameter (Figure 9). Such an interaction appears to be strong enough
that the chitosan-DNA complex does not dissociate until it has entered the cell. Once its role is over,
chitosan is degraded into the common amino-sugar, N-acetyl glucosamine, which is incorporated into
the metabolic pathway of glucoproteins, and is subsequently excreted form the body [155].

The transfection efficiency of chitosan depended on the degree of deacetylation and MW of the
chitosan, pH, the presence of serum, chitosan to DNA charge ratio and cell type. The poor solubility in
water, low specificity and low transfection efficiency have been major hindrances to its development as
an effective gene delivery vector [156]. Morris et al. prepared chitosans of a wide range of MW and
degree of deacetylation to determine the optimum conditions of this biopolymer for gene delivery
applications [157]. Chitosans of medium MW (49–51 kDa) and a high degree of deacetylation produced
stable, uniform-sized nanoparticles. Biological studies with the spherical nano-sized polyplexes formed
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between 50 kDa chitosan of 94% degree of deacetylation and pEGFP plasmid DNA (N/P ratio = 5)
showed excellent gene transfection efficiency at pH 6.5 in HeLa cells. This complex had no cytotoxicity,
indicating its potential use as a gene delivery vehicle. This study also showed that chitosan in the MW
range of 49–51 kDa could be useful in condensing DNA to deliver nanoparticles of near-uniform size
(~50 nm) for gene delivery applications [157].
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The presence of hydroxyl and amino groups in the backbone of chitosan makes it amenable
to the chemical modification to improve its chemical properties and effectiveness. Quaternization
of the amino groups could be used to render medium and low MW chitosans water-soluble over a
wide range of pH and to confer controlled cationic character [157]. Cellular targetability could be
introduced by conjugation of folic acid through the quarternized derivative because of the presence
of folate receptors on tumor cell [157,158]. The conjugated polymer could provoke plasmid DNA
condensation to uniformly-sized nanoparticles of ~140 nm size and high positive surface charge density.
The pH profiles of folic acid conjugated trimethylated depolymerized chitosan suggested that the
polymers had endosomal disruption capacity, and the gel electrophoretic mobility band retardation
showed efficient condensation of DNA. Folic acid derivatized chitosan, and its DNA complex were
less toxic and hemocompatible than that of PEI and its DNA complex. The chitosan complex also
showed excellent transfection efficiency, as tested in human KB epidermoid cell line. Plasmid pGL3
was transported to the cell nucleus [159]. The water-solubility and transfection efficiency of chitosans
could be improved when the depolymerized trimethylated chitosans were modified with the histidine
moiety [159]. Spherical nanoparticles could be formed, and these derivatives could buffer in the pH
range of 10 to 4. The transfection efficiency of this chitosan conjugate was comparable to that of
control PEI. Taken together, the enhanced cellular and nuclear uptake of chitosan conjugates show that
chitosan can be modified to yield highly efficient gene delivery vehicles.

Another group of investigators synthesized thiolated methylated N-(4-N,N-dimethyl- aminobenzyl
N,O-carboxymethyl chitosan derivatives to improve the solubility and delivery properties of
chitosan [160]. These derivatives had a higher solubility in water compared to that of chitosan and had
no significant toxicity against Hek293 kidney cell line in comparison to that of chitosan. Rahmani et al.
prepared trimethyl chitosan, methylated 4-N,Ndimethyl aminobenzyl N,O-carboxymethyl chitosan
and thiolated trimethyl aminobenzyl chitosan and showed that these polymers could condense DNA
to nanoparticles [161]. These nanoparticles exhibited facile transfection in SKOV-2 ovarian and
MCF-7 breast cancer cell lines. With siRNA, O-methyl-free N,N,N-trimethylated chitosan showed
excellent gene silencing activity comparable to that of PEI in H1299 human lung cancer cells expressing
firefly luciferase, indicating the use of chitosan derivatives in siRNA delivery [162]. A recent report
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showed that folic acid-modified polyethylene glycol-chitosan oligosaccharide lactate nanoparticles
facilitated siRNA delivery targeted to multiple genes in a pancreatic cancer xenograft model and
strongly inhibited retroperitoneal invasion and inhibited peritoneal dissemination compared to the
other nanoparticles [163]. Several other modified forms of chitosan are under active investigation for
gene delivery applications of different cell types [164–167].

5.2. Pullulan

Pullulan (Figure 8b) is a water-soluble linear polysaccharide, with α-1,4-glucopyranose and
α-1,6-glucopyranose units [168,169]. It is non-toxic, non-immunogenic, non-carcinogenic and
non-mutagenic and has found applications in food packaging and pharmaceutical industries.

Derivatization of pullulan with cationic molecules, such as spermine, can produce positively
charged nanoparticles with an excellent binding affinity toward DNA and gene transfection
efficacy [170]. Priya et al. synthesized cationic pullulan by conjugating it with protamine [171].
This polymer could protect DNA from degradation and had excellent haemocompatibility and
improved cellular viability. A recent study showed the synthesis of a redox-responsive system by
combining a charge- reversible pullulan derivative (CAPL) and disulfide-containing PBAE for the
co-delivery of a gene and a chemotherapeutic agent [172]. This agent could condense DNA and deliver
a dye-labeled pDNA in human hepatoma HepG2 cells. Pullulan conjugation also enhanced the gene
delivery efficacy of PAMAM dendrimer in HepG2 cell line [173].

5.3. Dextran

Dextran (Figure 8c) is another carbohydrate polymer with applications in biomedicine and gene
delivery. It is composed predominantly of α-1,6-linked glucopyranose units with a low degree of
1,3-branching [12,174]. Cationic, biodegradable dextran hydrogel nanoparticles could be prepared by
derivatization with cationic methacrylate monomers for siRNA delivery [175]. In addition, negatively
charged dextran sulfate could form polyelectrolyte complexes with positively charged polymers, such
as poly-L-arginine for siRNA delivery [176]. Dextran-grafted branched PEI was found to be effective
to improve the stability of the PEI complexes with DNA in the presence of BSA [177]. Dextran-PEI
conjugates were less toxic than unmodified PEI, as determined by the MTT assay [178]. Nanoparticles
formed by the complexation of polyallyamine (PAA)-dextran conjugate with DNA were more efficiently
transfected than that of PAA-DNA nanoparticles [179]. Chitosan-dextran conjugates showed excellent
transfection efficiency of frizzled-related protein 4 (SFRP4) in both JU77 and ONE58 cell lines [180].
Histidine (H)-containing peptide-grafted dextran (D-RxHy) displayed a 6-8-fold higher luciferase
expression compared to that of 25 kDa branched PEI [181].

5.4. Hyaluronic Acid (HA)

HA (Figure 8d) is an anionic polysaccharide that has found biomedical applications, including
drug and gene delivery. It is composed of D-glucuronic acid and N-acetyl-D-glucosamine [182]. It binds
with the CD44 receptor, that is overexpressed on the surface of many types of tumor cells, and hence, it
is an excellent vehicle for targeted delivery of genes and drugs to cancer cells. HA can form nanogels by
electrostatic interaction with polycations, such as polyarginine [183]. The interaction of siRNA and HA
by van der Waals forces has been exploited for gene silencing in a CD44-positive human osteocarcinoma
cell line (MG63) and in human mesenchymal stromal cells [184]. Nanoparticle formulations prepared
by the complexation of HA conjugated PEG (HA-PEG) and HA-PEI produced excellent results in
gene transfection and gene expression with negligible cytotoxicity in HeLa and A549 human lung
cancer cell lines [185]. HA was complexed with PEI and the complex used to deliver MMP13 gene in a
mouse model of liver fibrosis, with excellent results [186]. Lipoplexes containing plasmid DNA within
polyelectrolyte multilayers composed of glycol-chitosan (Glyc-CHI) and hyaluronic acid (HA) was
used to transfect NIH2T3 fibroblasts and HEK293 kidney cells in vitro [187]. Ternary nanocomplexes
of HA conjugates with poly(hexamethylene biguanide) and chitosan were to deliver an anti-KRAS
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siRNA to colorectal cancer cells, exploiting the interaction of HA with CD44 as a means to achieve
selective targeting of CD44-positive cancer cells [188]. Multilayers of HA/PEI were also constructed to
deliver siRNA and gene silencing [189].

We have summarized work on four natural biodegradable polymers above; however, there are
several other molecules, such as heparin, chondroitin sulfate, and alginate that are under investigation
as gene delivery vehicles [12].

Table 1 shows a summary of the modifications on polymers to confer biodegradability and enhance
cellular transportation.

Table 1. Polymer modifications to facilitate biodegradability and/or cellular transport.

Polymer Modification References

Polyethleneimine (PEI)

Disulfide linkage
PDMA/PDEA copolymer
Heparin
TEPA
PCL-PEG-FA
PCL-CG
Chitosan
Boric acid
Aromatic ring bridges
Dextran
Pullulan/FA
Desoxychlic acid
Amino acids

[107–109]
[110]
[111,112]
[113]
[114]
[115]
[116,119,120]
[117]
[118]
[121]
[122]
[123,124]
[125–127]

PBAE
PLGA/PEG
PACE
BEAQ

[136]
[138]
[139]

PLL PEI
γ-PGA

[143,144]
[145]

Chitosan
FA
Dimethylaminobenzyl
FA/PEG

[157,158]
[160,161]
[163]

Pullulan

Spermine
Protamine
PBAE
PMAM

[170]
[171]
[172]
[173]

Dextran

PEI/Polyarginine
PAA
Chitosan
Histidine

[176]
[179]
[180]
[181]

Hyaluronic Acid, HA

PA/PEI
PEG
Glycol
Biguanidine

[183,186]
[185]
[187]
[188]

6. Concluding Remarks

Polymer-based non-viral gene carriers have been developed, due to their merits in safety, including
the avoidance of potential immunogenicity and toxicity, the possibility of repeated administration, and
the ease of establishing good manufacturing practice (GMP) [50]. Although preclinical studies and
human clinical trials demonstrated therapeutic benefit of several gene therapy approaches, efficient
gene delivery remains a key obstacle for moving several drug candidates to the clinic.

There are several systemic and cellular barriers, including serum proteins in the bloodstream, cell
membrane, endosomal compartment and nuclear membrane. Polymer design and modifications have
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been successfully used to circumvent these barriers. Structural modifications include incorporations
of guanidinium group, carboxyl group, disulfide bond, alkyl chain, branching, acetyl groups,
benzoyl groups, and quaternary nicotinamide moieties to facilitate DNA condensation, cellular
uptake, endosomal escape, nuclear entry and gene expression (Table 1). Polymer complexed DNA
nanoparticles can be administered by injection, infusion and/or inhalation for realizing the potential
therapeutic benefits.

7. Future Directions

The cellular transport of DNA is a complicated process, and the mechanistic aspects of this
process are not clearly understood at present. The development of polymeric gene delivery vehicles
focused on molecules that could compact DNA to nanoparticles and transport the genetic material
in a facile manner, produce no immunogenic response and degrade to small molecules that could
easily get eliminated from the body. Although significant progress has been made in the development
of DNA condensation agents, the discovery of an ideal biodegradable delivery vehicle has not been
accomplished. Modification of currently existing natural and synthetic polymers with linker groups
that can undergo hydrolysis and enzymatic degradation is making significant progress.
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