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SUMMARY

The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a 

heightened proinflammatory response: two findings that may be intrinsically linked through the 

concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics 

with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE 
to systematically address the role of APOE across age, neuroinflammation, and AD pathology. 

RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial 

transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain 
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during aging or following an inflammatory challenge. E4 microglia display increased Hif1α 
expression and a disrupted tricarboxylic acid (TCA) cycle and are inherently pro-glycolytic, 

while spatial transcriptomics and mass spectrometry imaging highlight an E4-specific response 

to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, 

our findings emphasize a central role for APOE in regulating microglial immunometabolism and 

provide valuable, interactive resources for discovery and validation research.

Graphical Abstract

In brief

Lee et al. integrate single-cell and spatially resolved -omics technologies to systematically 

characterize APOE4’s role in the brain’s response to aging, peripheral inflammatory challenge, 

and amyloid pathology. E4 microglia display a unique metabolic response to each of these 

paradigms, with increased aerobic glycolysis and altered expression of lipid metabolism pathways.

INTRODUCTION

Metabolic dysfunction and chronic neuroinflammation are two features common to several 

neurodegenerative diseases, including Alzheimer’s disease (AD). Top hits from genome-

wide association studies indicate that the microglial immune response is central to AD 

risk.1-5 Likewise, altered patterns of glucose and lipid metabolism are early biomarkers 

of incipient AD,6 with proteomic and metabolomic studies strongly linking changes in 
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glial glucose metabolism to cognitive impairment and AD pathology.7-10 Tying metabolic 

dysfunction and neuroinflammation together is a well-established process whereby innate 

immune responses invoke metabolic reprogramming in microglia and vice versa.11,12 

However, it remains unclear how this phenomenon of immunometabolism may relate to 

AD etiology and genetic risk factors.

Intriguingly, the strongest genetic risk factor for late-onset AD, the ε4 allele of 

Apolipoprotein E (APOE), has been separately linked to both heightened neuroinflammation 

and alterations in glial metabolism.13 In humans, there are three common alleles of APOE: 

ε2, ε3, and ε4. The ε4 allele is carried by nearly 20% of the population and confers up to a 

15x increase in risk for AD compared with E3 homozygotes.14

Amyloid plaques trigger transcriptional changes in nearby microglia, inducing a shift 

toward a pathological signature.15,16 Similar neurodegenerative profiles have been described 

across several independent studies, being termed activated response microglia (ARMs),15 

neurodegenerative microglia (MGnDs),17 or disease-associated microglia (DAMs).18 These 

signatures were initially described in mouse models with partial validation in human tissue. 

Interestingly, many of the genes within the aforementioned profiles belong to metabolic 

pathways, including core genes such as Ch25h, Fabp5, Hexb, Lpl, and Apoe itself.19-24 

Although several studies attempted to translate these findings to postmortem human brain 

tissue using single-nucleus RNA sequencing (snRNA-seq), they found little overlap between 

human AD microglial gene signatures and those identified in mouse models.25-27 A glaring 

exception to this lack of overlap was Apoe/APOE, whose expression is amplified in 

neurodegenerative conditions across all studies and species, indicating that it is a universal, 

core transcriptomic “switch” within AD-associated microglia. However, it remains unclear 

whether isoform-specific differences in this process underlie the harmful effect of E4 in AD.

A handful of previous studies have examined the role of human APOE on the mouse 

brain transcriptome and metabolome,28-32 and a recent study inferred strong, glial-driven 

APOE genotype effects from whole-tissue bulk RNA-seq of postmortem human brains.33 

Together these important studies highlight both amyloid-dependent and -independent roles 

for APOE, age, and brain region in metabolic and immune changes. However, their reliance 

on pre-selected brain regions and bulk homogenates limits insight into specific glial-cell-

type contributions and lacks subregional anatomic resolution.

Here, we employed a single-source experimental design that combines bulk, single-cell, and 

spatial transcriptomics (ST) with cell-specific and spatially resolved metabolic analyses 

in order to systematically address the role of APOE across age, neuroinflammation, 

and AD pathology. Both bulk tissue and single-cell RNA-seq (scRNA-seq) highlighted 

immunometabolic changes across the APOE4 glial transcriptome. Although aged E4 mice 

lack any observable AD pathology, we note that the gene signature expressed by their 

microglia (1) includes a robust increase in APOE; (2) is overrepresented by genes involved 

in glucose metabolism, lipid processing, and innate immunity; and (3) substantially overlaps 

with gene signatures previously described in both AD mouse models and human AD 

microglia. Further, exposing mice to a systemic inflammatory challenge resulted in a 

metabolically distinct response within E4 microglia. Using metabolomics and functional 
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metabolic assays, we show that E4 microglia are inherently pro-glycolytic and HIF1α-high, 

displaying a metabolic profile associated with classically activated (M[lipopolysaccharide 

(LPS), interferon gamma (IFNg), tumor necrosis factor alpha (TNF-α)]) myeloid cells. We 

then crossed E3 and E4 mice to amyloid-overexpressing 5XFAD mice and utilized ST 

to determine anatomically salient changes in gene expression. ST highlighted the cortex 

and hippocampus as particularly sensitive to APOE4 and revealed a unique response to 

amyloid in the E4 brain characterized by microglial activation and widespread alterations in 

lipid metabolism. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry 

imaging (MSI) confirmed age-, APOE-, and region-specific alterations in lipid metabolism, 

particularly in multiple phospholipid species. Finally, we provide researchers with an 

interactive web-based resource (http://www.ljohnsonlab.com/database.html) in which to 

explore the effects of APOE across aging, neuroinflammation, and AD pathology via bulk, 

single-cell, and spatial transcriptomic datasets. Together, our findings link two phenomena 

consistently tied to AD (metabolic dysfunction and neuroinflammation) to the strongest 

genetic predictor of late-onset AD (E4), emphasizing a role for APOE in regulating glial 

immunometabolism.

RESULTS

APOE4 drives immunometabolic changes across the glial transcriptome

In order to systematically examine the effect of APOE genotype across aging, 

neuroinflammation, and AD pathology, we designed a single-source multi-omics approach 

that combined bulk- and scRNA-seq with cell-specific metabolomics and serial-section ST, 

histopathology, and MALDI MSI (Figure 1A). To examine the effects of APOE across the 

lifespan, we began with bulk sequencing of whole-brain tissue homogenates from young (3 

months), middle-aged (12 months), and aged (24 months) mice expressing human E3 or E4 

(n = 3–5). We identified a few hundred differentially expressed genes (DEGs) between E4 

and E3 brains (Figures 1B and 1C), including previously reported genes such as Serpina3n 
(Figure 1D).28,30 To better understand these gene expression changes at a systems level, 

we performed a pathway analysis of E4 versus E3 DEGs. Nine out of the top 10 Kyoto 

Encyclopedia of Genes and Genomes (KEGG) terms fell under the umbrella pathways of 

“metabolism” or “immune system” (Figure 1E).

To identify cell-specific contributions to these whole-tissue gene expression changes, we 

performed scRNA-seq on the same brains analyzed for bulk sequencing (three pooled 

biological replicates for n = 1 per experimental group). Dimensionality reduction using 

uniform manifold approximation and projection (UMAP) identified 24 clusters that were 

assigned to 1 of 13 unique cell types using established gene markers (Figure 1F; Figure 

S1A). Although age-related enrichment of some clusters was observed, cell numbers were 

similarly distributed across APOE genotypes (Figure 1G; Figures S1B and S1C). Analysis 

of DEGs highlighted astrocytes, oligodendrocytes (OLIGs), ventricular cells, and microglia 

as the cell types most affected by APOE (Figure 1H). Similar to the bulk tissue, the 

number of DEGs decreased with age across several cell types (i.e., the effects of E4 were 

more pronounced in younger brains). A pathway analysis of DEGs across all cells together 

once more highlighted metabolism, particularly the central carbon metabolic pathways of 

Lee et al. Page 4

Cell Rep. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ljohnsonlab.com/database.html


oxidative phosphorylation (OxPhos) and glycolysis (Figure 1I). Further, KEGG pathways 

such as “metabolic pathways,” “glycolysis,” “OxPhos,” and “hypoxia inducible factor 1 

(HIF-1) signaling” were differentially expressed across cell types (Figure 1J; Table S1).

Calculation of metabolic pathway activity for each individual cell using AUCell34 revealed 

the effect of E4 to be highly variable and cell specific. For example, astrocytes showed more 

pronounced E4-associated increases in branched-chain amino acid metabolism and OxPhos, 

while microglia displayed robust E4 increases in glycerolipid metabolism and glycolysis 

(Figure 1K). Together, these results suggest that the major transcriptomic changes driven by 

APOE4 involve glial metabolism and the immune response.

APOE expression is selectively upregulated in aged E4 microglia

We next asked whether expression of APOE itself varied across the lifespan in E3 and E4 

glia. Although APOE expression did not vary by age or genotype in whole-brain tissue 

by bulk sequencing (bulk-seq) (Figure S2A), several changes were noted at the single-cell 

level. First, although APOE was predominantly expressed by astrocytes, many other cell 

types showed measurable levels of both APOE (Figures S2B-S2D) and its respective binding 

partners (Figures S2E, S2F, S3A, and S3B). Strikingly, whereas most cell types had subtle, 

if any, changes in APOE expression across the lifespan, aged E4 microglia showed a 

unique and dramatic upregulation APOE relative to E3 microglia (Figures S2G and S2H). 

Re-clustering of astrocytes and microglia across all ages showed that this upregulation 

was limited to a distinct sub-population of microglia (Mi_6) (Figures S2I-S2K and S3C). 

Finally, the APOE signaling network was differentially altered in both outgoing (APOE) and 

incoming (Ldlr, Lrp1, etc.) signal strength across these microglia and astrocyte sub-clusters 

in the aged E4 compared with aged E3 brain (Figure S3D). In summary, these findings 

highlight an age-related increase in APOE expression, in the absence of AD pathology, that 

is unique to E4 microglia.

Hif1α-high, “DAM-like” microglia are increased in the aged E4 brain

To distinguish microglial genes that significantly change with age and/or E4, we calculated 

gene scores for each individual microglia. Strikingly, genes that are upregulated in both 

advanced age and E4 were heavily enriched for DAM/MGnD genes (Figure 2A). Further, 

E4-specific changes in the microglia transcriptome substantially overlapped with multiple 

AD-relevant gene lists from both mouse and human studies (Figure 2B; Table S1). 

Interestingly, we observed a “flip” in expression patterns for many AD-associated genes 

whereby young E4 microglia had higher expression, but aged E4 microglia had lower 

expression compared with E3, or vice versa (Figure 2C). Due to its unique upregulation of 

APOE, we next focused on microglia cluster 6 (Mi_6). Remarkably, the biomarkers that 

defined Mi_6 were almost exclusively genes associated with the DAM/MGnD signature, 

including metabolic genes Lpl, Ch25h, Fabp5, and APOE itself (Figure 2D; Table S1). 

Mi_6 was enriched in aged E4 mice (12.9% of all microglia) relative to E3 (6.1%) (Figure 

2E; Figures S4A and S4B), and a pathway analysis of the Mi_6 biomarkers highlighted 

“Alzheimer’s disease” and metabolic pathways including “cholesterol metabolism” and 

“HIF1 signaling” (Figure 2F).
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In order to identify potential upstream regulators that define these various microglia clusters, 

we used SCENIC (Single-Cell Regulatory Network Inference and Clustering) to reconstruct 

active regulons (i.e., transcription factors [TFs] and their target genes) in individual 

microglia.34 SCENIC revealed a clear and distinctive clustering of Mi_6 defined by 16 

regulons (Figures 2G and 2H). Intriguingly, several of these regulons have been previously 

implicated in AD (Bhlhe40),17 regulate metabolic pathways (Timm8a1,35 Srebf236), or both 

(Hif1α37) (Figures 2G and 2H). HIF1α in particular was substantially upregulated in Mi_6 

(Figure 2H) and was positively correlated with the cell’s DAM/MGnD score (Figure S4C). 

Given the central role of these regulons in metabolism, we next sought to characterize 

metabolic activity within each cluster. A heatmap of metabolic pathway scores revealed 

Mi_6 as the cluster with the highest expression of central carbon pathways, including 

glycolysis (Figures S4D and S4E). Together, these data show that even in the absence 

of overt AD pathology, age and E4 are sufficient to drive changes in microglia that (1) 

overlap with both mouse and human AD-relevant gene lists, (2) strongly resemble a DAM 

phenotype, and (3) prominently feature distinct shifts in the regulation of glucose and lipid 

metabolism.

E4 microglia have a distinct metabolic response to an inflammatory challenge

Given their unique metabolic transcription profile and DAM-like signature, we next asked 

whether E4-expressing microglia would differentially respond to an inflammatory challenge. 

Twenty-four hours following a peripheral injection of LPS or saline, we harvested brains 

from E3 and E4 mice (three pooled biological replicates for n = 1 per experimental group) 

and performed scRNA-seq on microglial populations (Figure 3A). Microglia from the E4 

LPS brains showed a remarkably distinct metabolic profile, with increased activity across 

multiple pathways of amino acid, sugar, and fatty acid metabolism (Figure 3B). At the 

subpopulation level, treatment with LPS resulted in several distinct clusters of microglia, 

including two clusters enriched in E3 LPS brains (5 and 7) and two found almost exclusively 

in E4 LPS brains (8 and 11) (Figures 3C and 3D). Notably, the DEGs defining these E4 

LPS-enriched clusters correspond to Gene Ontology terms related to mitochondrial function, 

aerobic respiration, and energy production (Figure 3E). These E4 LPS-enriched clusters also 

showed high expression of genes belonging to OxPhos and glycolysis pathways (Figure 3F). 

In total, these data suggest that compared with E3, expression of E4 leads to a robust and 

distinct metabolic response by microglia to an inflammatory challenge.

E4 microglia have increased aerobic glycolysis and higher HIF1α expression

We next sought to determine whether these differences in gene expression would be 

functionally reflected in altered metabolism between E4 and E3 primary microglia (Figure 

4A). Using a targeted metabolomics approach, we identified five metabolites that were 

significantly upregulated in E4 microglia (lactate, succinate, glutamine, tyrosine, and 

threonate) and one significantly downregulated (itaconate) (n = 21–22) (Figures 4B and 4C; 

Figure S5A and S5B). Notably, lactate accumulates in cells undergoing increased aerobic 

glycolysis, such as pro-inflammatory activated macrophages.11,12 Citrate and succinate also 

accumulate in pro-inflammatory macrophages because of a break in the TCA cycle.11,12 

Succinate was significantly increased in E4 microglia, whereas concentrations of itaconate, 
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which activates downstream anti-inflammatory and antioxidant signaling pathways,38-40 

were lower (Figures 4B and 4C).

To ascertain whether these differences in steady-state metabolite pool sizes were part of 

a more dynamic alteration in metabolic flux within E4 microglia, we next turned to stable-

isotope-resolved metabolomics. E3 and E4 microglia were stimulated with a combination of 

IFNγ and TNF-α in the presence of [13C]glucose, and incorporation of 13C in downstream 

metabolites was measured. This revealed a significant increase in fully labeled (m+3) [13C] 

lactate as a result of both APOE4 and pro-inflammatory treatment, indicating increased flux 

of glucose through aerobic glycolysis (n = 7–8) (Figure 4D).

To functionally assess the effect of APOE on microglial metabolism, we employed 

the Seahorse platform to measure glycolysis, mitochondrial respiration, and the relative 

contribution of each pathway to ATP production. Interestingly, we noted that E4 microglia 

showed higher rates of basal and compensatory glycolysis compared with E3 (Figures 

4E and 4F) and had lower maximal respiration and spare respiratory capacity (n = 

15–16) (Figures S5C-S5F). In addition, E4 microglia responded to a proinflammatory 

stimulus by dramatically increasing glycolytic ATP production at the expense of decreased 

mitochondrial production. In contrast, E3 microglia significantly increased mitochondrial 

ATP production following stimulation (Figures 4G and 4H). These data suggest that 

E4 microglia rely exclusively on a substantial upregulation of glycolysis to support 

the increased energy demand of the pro-inflammatory response, whereas E3 microglia 

demonstrate increased metabolic flexibility.

Finally, the increased succinate and clear functional shift toward aerobic glycolysis in E4 

microglia is congruent with the increased activity of the Hif1α regulon in the E4 microglia 

SCENIC data. When stabilized by a pro-inflammatory stimulus (and/or succinate), the 

HIF1α TF complex translocates to the nucleus and activates many genes important for 

increasing glycolysis.41 In agreement with this pro-glycolytic E4 phenotype, quantitative 

RT-PCR revealed increased expression of Hif1α in E4 microglia compared with E3 (n = 

6) (Figure 4I). Together these data highlight functional metabolic reprogramming whereby 

E4 microglia are inherently pro-glycolytic and anti-oxidative, a phenotype that mirrors 

classically activated macrophages.

ST identifies unique cortical and hippocampal signatures of APOE4, age, and amyloid 
overexpression

We next leveraged Visium ST technology to assess gene expression across coronal brain 

sections from E3 or E4 mice at young and old ages compared with E3 or E4 mice crossed 

to the 5XFAD amyloid-overexpressing mouse model (Figure 5A; Figure S6A). A total of 

16,979 spots were analyzed across six brains, and high dimensionality reduction identified 

18 total clusters. This included 17 anatomically conserved clusters that expressed canonical 

region-specific markers and visually mapped to broad regions of the Allen Brain Atlas 

(Figures 5A and 5B; Figures S6B and S6C). Intriguingly, the final cluster (cluster 11) was 

found almost exclusively in the E4 5XFAD brain and was primarily localized within cortical 

regions (Figure 5C). This cluster, which we term a “disease-associated” signature, was 

defined by biomarkers enriched in pathways related to lipid metabolism, synapse pruning, 
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neuronal death, and microglial activation (Figure 5D). When we mapped these cluster 11 

biomarkers back to our scRNA-seq data, the signature was exclusively and highly expressed 

by microglia, with the Mi_6 cluster showing peak expression (Figure 5C).

We next assigned spots to one of five primary brain regions (cerebral cortex, hippocampus, 

cerebral nuclei, interbrain, or fiber tracts), noting that the majority of E4 versus E3 DEGs 

were found in the cerebral cortex and hippocampus (Figures 5E and 5F; Figures S7A-S7C). 

Both regions featured a robust upregulation of genes in the E4 5XFAD compared with 

E3 5XFAD brain, many of which were DAM/MGnD genes (Figures 5G-5I). In addition, 

gene markers of glial reactivity previously linked to APOE4 were similarly upregulated 

in E4 aged and E4 5XFAD brains (Figure S7D). Taken together, these results (1) support 

an E4-associated increase in microglial activation, (2) highlight cortical and hippocampal 

regions as areas most affected by APOE, and (3) reveal a unique E4 response to amyloid 

pathology.

APOE4 exacerbates plaque-induced microglial activation and lipid metabolism

To determine whether this unique E4 5XFAD transcriptional profile was spatially linked 

to AD pathology, we stained for amyloid plaques across the 10-μM section immediately 

adjacent to that subjected to ST, and we assigned each spot a numerical plaque intensity 

score (Figure 6A). A correlation analysis revealed a number of genes that either positively 

or negatively tracked with plaque intensity. Notably, in the E4 brain, this included strong 

positive correlations with markers of glial reactivity and a 3-fold increase in the number 

of significantly correlated DAM genes (Figure 6B). A pathway analysis of significantly 

correlated genes showed numerous terms shared by both E3 and E4 (purple), as well as 

some unique to E4 (red) or E3 (blue) (Figure 6C). Shared pathways included terms related 

to synaptic transmission (negatively correlated) or synapse pruning and microglial activation 

(positively correlated) (Figure 6C). Interestingly, pathways unique to E4 were predominantly 

related to lipid metabolism (Figure 6C).

A weighted gene co-expression network analysis (WGCNA) highlighted two networks 

(green, yellow) containing genes related to ion channels and synaptic transmission that 

were negatively associated with plaque intensity and two networks (magenta, red) that were 

positively associated (Figures 6D-6G; Figures S8A and S8B). The magenta network we 

termed a “microglia activation module,” because it mapped almost exclusively to microglia 

in our scRNA-seq database, was enriched for DAM genes and was associated with Gene 

Ontology terms related to synapse pruning, neuron apoptosis, and microglia activation 

(Figures 6E-6G, top). In contrast, the red “lipid, oligodendrocyte reactivity” module mapped 

predominantly to OLIGs, and it included markers of lipoprotein transport, myelin, and glial 

reactivity (Figures 6E-6G, bottom).

Both the red and magenta modules were more highly expressed across the E4 5XFAD 

brain relative to E3 (Figure S8A), and intriguingly they substantially overlapped with the 

OLIG and plaque-induced gene (PIG) networks identified from a previous ST study of AD 

mouse and human brains16 (Figure 6H). Interestingly, the PIG score was lowest in the young 

brains, increased slightly with age, and was highest in the E4 5XFAD brain, with the OLIG 

scoring following the opposite trend (Figures 6I and 6J). In summary, these data highlight a 
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unique E4 response to increasing amyloid pathology characterized by increased microglial 

activation and alterations in lipoprotein and lipid metabolism.

MALDI MSI confirms APOE-, age-, and amyloid-associated changes in lipid metabolism

In whole-brain tissue, we noted significant effects of APOE, age, and their interaction on the 

expression of multiple lipid metabolism pathways (Figure 7A; Figure S9A). At the single-

cell level, changes in lipid metabolism were most pronounced in microglia, specifically in 

glycerophospholipids, with aged E4 microglia having the highest expression (Figure 7B).

In order to validate the gene signatures implicating lipid dysregulation, we turned to MALDI 

MSI to generate qualitative, spatially resolved measures of targeted lipid species (n = 3) 

(Figure 7C). Following fine-spatial scans of coronal sections, we assigned each MALDI 

MSI pixel to one of the anatomically assigned regions. The overall lipid profiles showed 

clear heterogeneity, with samples generally clustering well by anatomical region (Figure 

S9B). The primary exception was the “disease-associated” area found almost exclusively 

in the E4 5XFAD brain. This region did not clearly cluster with itself nor with any other 

specific anatomical region, suggesting widespread dysregulation of lipid metabolism (Figure 

S9B).

The concentrations of multiple lipid species were altered in the E4 5XFAD brain relative 

to other groups, including multiple phosphatidylcholines (PCs), which are a subtype of 

glycerophospholipid (Figures 7D and 7E). Clustering analyses showed distinct separation 

of the E3 5XFAD and E4 5XFAD brains relative to other groups and to each other (Figure 

7F). Interestingly, many of the observed age-, amyloid-, and APOE-associated changes 

in lipid concentrations were regionally specific (Table S2). For example, the PC most 

increased in the E4 5XFAD brain relative to E3 5XFAD (PC (16:0/18:2)) showed dramatic 

changes in the isocortex, hippocampus, and thalamus, but no difference in the piriform 

area, cortical subplate, and hypothalamus (Figure 7G). Together, these results show that the 

transcriptional signatures implicating dysregulation of lipid metabolism in the E4 5XFAD 

brain are validated by alterations in multiple lipid species, in particular, PCs.

DISCUSSION

It is increasingly appreciated that chronic neuroinflammation and metabolic dysfunction 

are early and prominent actors over the course of AD.42-44 Notably, these two features 

are innately linked through the concept of immunometabolism.11,12 Microglia are highly 

metabolically active cells45 that play a central role in maintaining CNS immune 

homeostasis, and the majority of genetic risk factors associated with late-onset AD are 

highly or specifically expressed in this cell type.46 Many of these, including the strongest 

genetic risk factor for late-onset AD, APOE, are thought to integrate metabolic inputs with 

downstream inflammatory signaling.47-49 Here, we set out to systematically study the impact 

of APOE genotype across age, inflammatory challenge, and in response to amyloid using an 

integrative multi-omics approach. Collectively, our findings implicateAPOE4 as a driver of a 

dysfunctional immunometabolic response across each condition.
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A single-cell view of APOE immunometabolism

Our “bulk” tissue sequencing highlighted brain-wide changes in multiple immune and 

metabolic pathways similar to previous studies.28,30 Although these data pointed toward 

E4-associated increases in metabolic, cytokine/chemokine, and complement pathways 

across the whole tissue landscape, the cell-specific changes potentially driving these bulk 

responses remained unknown. Therefore, we leveraged a scRNA-seq approach using the 

same tissue samples analyzed for “bulk” sequencing. In doing so, we identified a unique 

enrichment of a population of microglia, Mi_6, that predominates in the aged E4 brain. 

Differentially expressed biomarkers for this sub-cluster were enriched for genes involved 

in lipid metabolism and the innate immune response, as well as markers associated 

with DAM staging of microglia. Canonically, these populations emerge in response to 

neurodegenerative insults such as amyloid pathology, demyelination, or phagocytosis of 

apoptotic neurons.17,18 It is therefore striking that a similar population of microglia (Mi_6) 

appears in aged E4 brains even while they lack discernible pathology.

These cell-type- and subpopulation-specific differences appear to be important in 

understanding cross-species relevance. For example, Serrano-Pozo et al.33 recently identified 

a transcriptional signature associated with E4 carriage in patients with AD. Interestingly, 

when we compare this gene list with our scRNA-seq data, over 50% of the pro-inflammatory 

and phagocytic genes upregulated in the brains of E4+ individuals with AD were 

significantly downregulated in young E4 microglia. This “flip” in E4 microglia gene 

expression from lower in young to higher in aged was observed across many other gene lists 

from both mouse models of AD and human AD microglia studies. Decreased expression 

of one of these genes, Lgals3 (galectin-3), was recently found to protect against retinal 

ganglion cell (RGC) loss, with E4 microglia failing to upregulate Lgals3 and assume an 

MgND profile in response to the increased intraocular pressure, a model of glaucoma.50 

In the current study, we observed increased microglial expression of Lgals3 in aged E4 

microglia, whereas young E4 microglia had decreased expression relative to E3. These 

differences in E4 microglia Lgals3 expression across age and model systems are intriguing, 

particularly in light of APOE4 leading to increased risk for AD, yet decreased risk for 

glaucoma.50

KEGG pathway analyses conducted across microglia revealed terms of “Alzheimer’s 

disease,” “cholesterol metabolism,” and “HIF1α signaling” for the E4-enriched Mi_6 

subset. Hif1α itself is a DAM gene, and many other important DAM genes (e.g., Spp1, 
Igf1) are also HIF-responsive genes.17,18,51 Several recent reports have also demonstrated 

upregulated HIF1 signaling in AD and collectively point to concurrent activation of both 

Hif1α and OxPhos gene expression as a common feature of amyloid-responding microglia 

in both humans and mice.37,52-54 In line with this, our data also demonstrate that Hif1α 
was a predicted TF enriched in Mi_6. Hif1α regulon activity correlated with a cell’s 

DAM score, a finding that may in part explain the high glycolysis gene expression in this 

sub-cluster. In addition, in a reduced model system, E4 primary microglia had significantly 

higher gene expression of Hif1α compared with E3 microglia. Further, when we examined 

microglia harvested from E3 or E4 mice that received systemic LPS administration, the 

E4-LPS enriched Mi_8 and Mi_11 clusters both showed increased HIF1α activity and the 
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highest glycolysis gene expression. Prior reports demonstrate that E4 is consistently tied to 

increased pro-inflammatory cytokine production after LPS stimulation in both humans55 and 

mice.56 Bolstered by our current findings, we propose that this exaggerated inflammatory 

response, either because of chronic aging or acute pro-inflammatory exposure, may be a 

consequence of the unique E4-driven metabolic phenotype observed here across multiple 

paradigms.

Supporting this E4-associated bias toward Hif1α activation at the transcriptional level, we 

observed multiple functional indices of altered metabolism. For example, Seahorse analysis 

revealed increased aerobic glycolysis and decreased maximal mitochondrial respiration 

in E4 primary microglia compared with E3. Further, targeted metabolomics showed that 

E4 microglia display a marked accumulation of succinate and lactate and a decrease 

in the anti-inflammatory metabolite itaconate. These findings partially align with prior 

work showing region-dependent alterations in mitochondrial respiration in the E4 mouse 

brain30 and reduced respiration and reduced glycolysis in human induced microglia-like 

cells (iMGLs) when edited from E3/E3 to E4/E4.57 We also note decreased maximal 

respiration and reliance on glycolysis for ATP production in E4 microglia in response to 

pro-inflammatory challenge. This may reflect a limit in their ability to engage mitochondrial 

ATP production, precluding effective tissue repair responses by preventing the switch to 

an anti-inflammatory phenotype.11,12 Our findings also dovetail with recent work in which 

human E4/E4 iMGLs treated with conditioned media from neuronal spheroids invoked a 

transcriptional response enriched in HIF-1 signaling and TFs that promote inflammation.58 

OxPhos gene expression was lower in E4 iMGLs, along with decreased uptake of fatty 

acids and reduced expression of lipid catabolism genes.58 Aside from fatty acids and 

glucose, it will also be important for future work to consider the relative contributions 

of other energy substrates in E4 microglia. For example, recent work has highlighted the 

importance of glutamine as a fuel source for microglia,59 and detailed stable-isotope tracing 

experiments in both mouse and human microglial cell lines have shown that supplementation 

with the ketone body β-hydroxybutyrate enhances the LPS-induced glycolytic switch and 

synergistically increased lactate and succinate accumulation.60 Collectively, these findings 

suggest that E4 microglia are predisposed to a pro-glycolytic, pro-inflammatory phenotype, 

which they are then unable to resolve via metabolic reprogramming, setting up a situation 

conducive to chronic neuroinflammation.

A spatial view of APOE immunometabolism

We aimed to complement our bulk and scRNA-seq data with a spatially resolved profile of 

the aging APOE transcriptome. ST highlighted the cortex and hippocampus as particularly 

vulnerable to E4-associated changes, which was exacerbated in the presence of amyloid. 

Specifically, APOE4 appeared to exaggerate transcriptional “activation” of microglia and 

was uniquely associated with alterations in lipid metabolism pathways in plaque-dense 

microenvironments. Interestingly, Navarro et al.61 identified gene expression changes in 

the hippocampus of 3xTg AD mice that pointed to altered metabolism, including an 

upregulation of Lpl similar to our findings in both Mi_6 of aged E4 mouse brains and 

the cortex of E4 5XFAD brains by ST. Using AppNL–G-F mice, Chen et al.16 defined a 

PIG signature, composed of inflammatory genes induced by close proximity to amyloid 
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plaques, as well as an OLIG-induced gene signature, composed of genes responsible for 

remyelination. Strikingly, we found that our “microglial activation” module (magenta) 

strongly overlapped with the PIG signature, being lowest in E3 young, increasing with 

E4 and age, and highest in E4 5XFAD. This may suggest an exaggerated microglial response 

to amyloid in E4 brains, in line with previous studies that have demonstrated increased 

pro-inflammatory responses in E4 microglia.56,62,63 Because the PIGs signature is thought 

to represent dysregulated complement activation,16 it is interesting to note that ApoE limits 

complement activation by forming a complex with C1q, but that the isoforms of ApoE have 

different binding profiles.64,65 Thus, it is conceivable that the PIGhigh/OLIGlow profile seen 

in the E4 brain could lead to increased complement activation, aberrant pruning of synapses, 

and/or an imbalance in axon myelination, thereby feeding forward into a vicious cycle that 

propagates neuroinflammation and impaired lipid recycling.

Lipidomic analyses of the postmortem human AD brain have noted changes in brain 

lipids during the course of the disease.66 Recent work extends these findings to include 

E4-associated decreases in several phospholipid species67,68 and isoform-specific microglial 

responses to ApoE-containing, phospholipid-rich lipoproteins.69 Although brain lipidomic 

profiling typically relies on tissue homogenates from preselected regions, we here leveraged 

MALDI MSI to simultaneously quantify multiple lipid classes across entire intact brain 

tissue sections. This allowed us to identify clear regional patterns of lipid expression that 

were substantially disrupted in the “disease-associated” cortical areas found primarily within 

the E4 5XFAD brain in our ST analyses. These “disease-associated” brain regions had a 

gene signature that clearly mapped back to microglia (specifically Mi_6) in our scRNA-seq 

dataset and was characterized by dramatic upregulation of DAM genes. Further, when we 

used the ST data to correlate our whole-transcriptome profiles with amyloid plaque intensity 

on a spot-by-spot basis, we discovered a unique E4 signature that was highlighted by 

changes almost exclusively in pathways related to lipid metabolism.

Spatially resolved quantification of lipids via MALDI MSI showed clear separation 

between the overall E3 and E4 brain lipidomes in aged mice and more so in the amyloid-

overexpressing background of the 5XFAD brain. In line with our ST findings, they highlight 

APOE- and amyloid-associated decreases in a number of PCs, a class of phospholipid 

linked to memory decline.70 Although a handful of PCs were highest in the E4 5XFAD 

brain, the majority of PCs were present in lower concentrations relative to the other groups, 

consistent with findings from the postmortem human brain.67 Regional segregation of lipid 

concentrations revealed that for most PCs, APOE-dependent changes in lipid concentrations 

were more striking in the isocortex, hippocampus, and fiber tracts relative to other brain 

regions. Strikingly, the top six PCs identified in our clustering analysis, where the highest 

concentrations were typically seen in the E4 5XFAD brain, are precursors of common 

phospholipid oxidation products, namely, PCs having arachidonic acid (20:4) and linoleic 

acid (18:2). The double bonds in these PCs are labile to reactive oxygen species, with their 

oxidized forms being highly proinflammatory and associated with impaired mitochondrial 

activity.71-74 We also noted APOE- and amyloid-associated changes in cholesterol and 

several triglyceride (TG) species. These findings are intriguing because cholesterol esters 

and TGs are typically stored in intracellular lipid droplets (LDs), and recent studies 

have highlighted a role for glial LDs in aging and neurodegeneration, with E4 generally 
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associated with LD accumulation and related metabolic disruptions.58,75-81 Together, our 

bulk, scRNA-seq, ST, and MALDI MSI data suggest that E4 predisposes AD-vulnerable 

brain regions to neurodegeneration through a metabolism-centered mechanism, perhaps 

owing to its altered binding profile for lipids and their receptors.82,83

Collectively, our data suggest a potential scenario where metabolic dysfunction caused 

by APOE4 gives rise to chronic neuroinflammation, linking two phenomena consistently 

tied to AD with the strongest genetic predictor of the disease. These E4-associated 

immunometabolic disturbances appear intricately connected to aging and amyloid, with 

the potential to exacerbate these pathological features and propagate synaptic loss through 

mechanisms of aberrant microglial activation and lipid dysregulation. This is especially 

true in the hippocampus and cortex, which were found to be uniquely vulnerable to E4’s 

immunometabolic reprogramming per our regional analyses. Many potentially modifiable 

AD risk factors, such as obesity, diabetes, and physical inactivity, also converge on 

immunometabolic pathways, as do other prominent genetic risk factors, such as TREM2,84 

CLU,85,86 and BHLHE40.87 In addition, a recent study identified several WGCNA modules 

associated with APOE4 that were enriched for genes involved in lipid and carbohydrate 

metabolism,88 a finding also reflected at the protein level by several large proteomics studies 

in cortex,7,89,90 cerebrospinal fluid (CSF),7,91,92 plasma,93 and isolated microglia.94 Thus, 

viewing AD through the lens of immunometabolism holds promise to fuse these seemingly 

disparate risk factors into a comprehensive mechanism whereby impaired microglial 

metabolism triggers chronic neuroinflammation, sparking the neurodegenerative cascade. 

Accordingly, therapies that target metabolism and inflammation in tandem may hold greater 

therapeutic promise in the treatment and prevention of AD.

Limitations of the study

Our study has several limitations. First, some aspects of AD are not fully captured by 

mouse models, such as the 5xFAD model used here, which display differences in plaque 

composition compared with the human brain and lack tau pathology.95 However, our use 

of humanized APOE TR (targeted replacement) mice96-99 appeared to substantially bridge 

the gap between human and mouse studies, resulting in high overlap with multiple human 

datasets. It is also important to point out that although nuclei from neuronal populations 

are retained well during the snRNA-seq workflow, these cells are more vulnerable to 

the processing steps of scRNA-seq. Our datasets here are therefore naturally “neuronally 

depleted” and “glia enriched.” This is beneficial to our ability to survey as many glial 

cells as possible, but it conversely limits our ability to infer neuronal contributions in the 

scRNA-seq data. However, neuronal contributions are still represented in our bulk-seq and 

ST data, which corroborate E4’s role in disrupting immunometabolism. Another limitation 

is that ST has not yet reached single-cell resolution, such that the cluster differences 

observed here likely reflect the contributions of multiple cell types. A notable exception 

in our study was ST cluster 11, which mapped almost exclusively back to microglia cluster 

Mi_06 in our scRNA-seq data. Related to this, another potential caveat to our study is 

that differences in plaque load have been reported in the “EFAD” model (E4 > E3), and 

compared with E3 5XFAD, the E4 5XFAD brain section employed in this study showed 

a similar increase in plaque+ area as previously reported.100 This may confound our ST 

Lee et al. Page 13

Cell Rep. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results by simply exaggerating the microglial response independent of the ApoE isoform 

present. However, this concern is at least partially mitigated by our spot-by-spot approach, 

where we controlled for plaque intensity as a variable trait for each x,y coordinate within the 

spatial transcriptome. In addition, our metabolic analyses in primary microglia are unable 

to fully model the in vivo environment. However, it did allow us to eliminate potential 

vascular confounds; i.e., because E4 is associated with cerebrovascular dysfunction,101 

we considered the possibility that local hypoxia and nutrient stress could be driving the 

increased HIF1α signaling. However, our in vitro experiments suggest that increased HIF1α 
and aerobic glycolysis are an innate feature of E4 microglia, because these cells had equal 

access to nutrients and oxygen in the cell culture medium as their E3 counterparts. Finally, 

although our findings from scRNA-seq, ST, and MALDI-MSI all point toward an outsized 

role for E4 in disrupting microglial immunometabolism, the sample sizes in our studies 

are still limited by the cost-prohibitive and resource-intensive nature of these methods, thus 

necessitating confirmation.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dr. Lance Johnson 

(johnson.lance@uky.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Single-cell RNA-seq, bulk RNA-seq, and spatial transcriptomics data have been 

deposited at GEO and are publicly available as of the date of publication. 

MALDI-MSI and GC-MS data have been deposited to Metabolomics Workbench 

and are publicly available as of the date of publication. Accession numbers are 

listed in the key resources table. Microscopy data reported in this paper will be 

shared by the lead contact upon request.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human APOE mice—Human APOE ‘targeted replacement’ (TR) mice homozygous for 

APOE3 or APOE4 were employed across all experiments in the current study (B6.129P2-

Apoetm2(APOE*3)Mae N8, Taconic #1548-F and B6.129P2-Apoetm3(APOE*4)Mae N8, Taconic 

#1549-F). In these “knock-in” mice, the coding region (exon 4) of mouse Apoe locus 

was targeted and replaced with the various human APOE alleles. Thus, human APOE 
expression remains under control of the endogenous mouse Apoe promoter, resulting in a 

physiologically relevant pattern and level of human ApoE expression.96-99 Mice used for the 

bulk tissue RNAseq and scRNAseq portion of the study were female aged 3 months (young), 
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12 months (middle aged), or 24 months of age (aged). Mice used in the ST and MALDI MSI 

experiments were female mice 3 or 24 months of age, or 12 months of age female E3FAD 

or E4FAD mice (homozygous APOE TR mice crossed to the 5XFAD strain95 (MMRRC 

#34840, B6SJL-Tg(APPSwFlLon, PSEN1*M146L*L286V)6799Vas/Mmjax)). Mice used for the LPS 

study were females 12 months of age and intraperitoneally injected with saline or LPS (5 

mg/kg bodyweight, from Escherichia coli O55:B5 (Sigma #L2880-100MG)) 24 h prior to 

brain dissection. All mice were group housed in sterile micro-isolator cages (Lab Products, 

Maywood, NJ), and fed autoclaved food and acidified water ad libitum. Animal protocols 

were reviewed and approved by the University of Kentucky Institutional Animal Use and 

Care Committee.

Primary cell culture—Primary mixed glial cultures were prepared from postnatal day 0–3 

pups of mice homozygous for E3 or E4. The brain was surgically excised and meninges 

were removed from cortical tissue in ice-cold dissection buffer (Hanks Balanced Salt 

Solution (Gibco # #14025-076) supplemented with 1% HEPES (Alfa Aesar #A14777), 

1M sodium pyruvate (Gibco cat#11360-070), and 1% penicillin/streptomycin (Gibco # 

15140-122). After dissection, isolated cortices were stored in a Petri dish on ice containing 

growth medium (DMEM-F12 (Gibco #11320-033), 10% FBS (VWR# 97068-085), 1% 

penicillin/streptomycin). Tissue from 4-5 mixed sex pups of the same genotype were pooled. 

Cortices were finely minced then transferred to a 15mL conical tube and dissociated with 

5mL 0.25% trypsin-EDTA (Thermo #25200-056) for 25 min in a 37°C water bath with 

gentle agitation. An equal amount of growth medium was added to neutralize trypsin and 

the tubes were centrifuged at 300 x g for 5 min. After removing the supernatant, the tissue 

was washed three times with 2mL of warm HBSS. The tissue was then triturated in 10mL 

of warm growth medium and passed through a 70μm cell strainer (VWR #10199-657) 

to remove large particulates. Warm growth medium was added to a final volume of 

10mL per mouse brain collected and seeded in T75 flasks (USA Scientific #658-175) 

incubated at 5% CO2 37°C. Medium was replaced with fresh growth media after 24hr. 

At 7 DIV medium was replaced with fresh growth medium supplemented with 10% L929 

cell-conditioned medium (LCCM, see below for preparation). Peak microglial confluence in 

the primary mixed glial cultures typically occurred around 12-14 DIV, at which point the 

flasks were shaken at 240rpm for 2 h at 37°C. Supernatant containing detached microglia 

was pooled and centrifuged at 300 x g for 5 min. Cells were then resuspended and plated in 

supplemented growth medium incubated at 5% CO2 37°C. All experiments were performed 

within 2-4 days of plating. Purity of primary microglia cultures was authenticated by 

immunocytochemistry, with >98% of cells positive for microglia markers P2RY12 (1:400, 

AnaSpec #AS-55043A) and IBA1 (1:2500, Wako Fujifilm #019-19741). For cytokine 

stimulation experiments, cells were stimulated with a pro-inflammatory cocktail of 20 ng/ml 

interferon-γ (IFNγ, R&D Systems #485-MI-100) and 50 ng/ml tumor necrosis factor alpha 

(TNFα, R&D Systems #410-MT-025).

L929 cells—L929 cells (ATCC #CCL-1) are a murine fibroblast cell line that produce 

growth factors including macrophage colony stimulating factor (M-CSF) that encourage 

microglial differentiation and proliferation.112 The parent L strain was derived from normal 

subcutaneous areolar and adipose tissue of a 100-day-old male C3H/An mouse. NCTC clone 
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929 of strain L was derived in March, 1948 by WR Earle and deposited to ATCC. The 

cell line has been authenticated by ATCC. L929 cells were maintained in DMEM/F12 with 

10% FBS and 1% penicillin/streptomycin. In order to prepare L929 cell conditioned medium 

(LCCM), cell culture supernatant was harvested before passaging every 7 days, at which 

point it was centrifuged at 300 x g for 5 min, sterile filtered through a 0.20μm vacuum filter, 

and stored at −80C. The same batch of LCCM was used for all primary cultures in this 

study.

METHOD DETAILS

Seahorse extracellular flux analysis—The Seahorse XF96 Glycolytic Rate Assay 

(Agilent #103344-100) and Mitochondrial Stress Test (Agilent #103015-100) were 

performed on E3 and E4 primary microglia to measure glycolysis and mitochondrial 

respiration, respectively. The Seahorse ATP Rate Assay (Agilent #103592-100) was 

performed to measure the relative contributions of glycolysis and OxPhos to ATP 

production. Cells were seeded onto Seahorse XF96 tissue culture microplates (Agilent 

#101085-004) at a density of 3x104 cells/well in supplemented growth medium (detailed 

above) and incubated at 5% CO2 37°C. 12 h prior to the start of the assay, cells were 

stimulated with pro-inflammatory (IFNγ + TNFα) cytokines as described above. The 

Seahorse Glycolytic Rate Assay (GRA), Mitochondrial Stress Test (MitoStress), and ATP 

Rate Assay were performed according to manufacturer’s instructions using DMEM-based 

medium containing 10mM glucose, 2mM glutamine, 1mM pyruvate, pH 7.4. For the GRA, 

plate was measured under basal conditions followed by serial addition of (A) rotenone and 

antimycin A (0.5μM) and (B) 2-deoxyglucose (50mM). For MitoStress, plate was measured 

under basal conditions followed by serial addition of (A) oligomycin (1μM), (B) FCCP 

(2.0μM), and (C) rotenone and antimycin A (0.5μM). For ATP Rate Assay, plate was 

measured under basal conditions followed by serial addition of (A) oligomycin (1.5μM) 

and (B) rotenone and antimycin A (0.5μM). Data were normalized to cell count using the 

automated Seahorse XF Imaging and Normalization System (Agilent) which utilizes 2μM 

Hoescht 33,342 (Thermo #62249) to label and count cell nuclei. Data were analyzed using 

Seahorse Wave v2.6 software (Agilent).

Metabolomics—Primary microglia were plated at 7x106 cells/well in 6-well plates 

(VWR #10062-894) and incubated at 5% CO2 37°C. Upon reaching confluence, cells 

were removed from the incubator washed with warm 0.9% NaCl solution. Culture plates 

were placed on a bed of crushed dry ice and 1mL of ice-cold 50% methanol (HPLC-

grade, Sigma #A456-4) was added to quench cellular metabolic activity followed by a 

10 min incubation at −80°C to ensure cell lysis. After removing from the freezer, cells 

were detached with a cell scraper (VWR #10062-906) and the entire contents collected 

into a microcentrifuge tube, vortexed briefly, and placed on ice until all samples were 

collected. The tubes were then placed on a Disruptor Genie Cell Disruptor Homogenizer 

(Scientific Industries) for 5 min at 3,000 rpm. Tubes were then centrifuged at 20,000 

x g for 10 min at 4°C. The supernatant containing polar metabolites was isolated to a 

new tube and stored at −80C, and the resulting pellet was briefly dried at 10−3 mbar 

using a CentriVap vacuum concentrator (LabConco) to evaporate remaining methanol, 

followed by determination of protein content via BCA assay (ThermoFisher #23225) to 
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normalize metabolite concentrations to total protein amount of each sample. The supernatant 

fraction containing polar metabolites was thawed gently on ice and dried at 10−3 mbar 

followed by derivatization. The dried polar metabolite pellet was derivatized by a two-

step methoxyamine protocol first by addition of 70μL methoxyamine HCl (Sigma-Aldrich 

#226904-5G) in pyridine (20 mg/mL; Sigma-Aldrich #TS25730) to each pellet followed 

by 90 min dry heat incubation at 30°C. Samples were then centrifuged at 20,000 x 

g for 10 min after which 50μL of each sample was transferred to an amber V-shaped 

glass chromatography vial (Agilent #5184-3554) containing 80μL N-methyl-trimethylsilyl-

trifluoroacetamide (MSTFA; ThermoFisher #TS48915) and gently vortexed followed by 

30 min dry heat incubation at 37°C. The samples were allowed to cool to room 

temperature then analyzed via gas chromatography-mass spectrometry (GCMS). Briefly, 

a GC temperature gradient of 130°C was held for 4 min, rising at 6 °C/min to 243°C, 

rising at 60 °C/min to 280°C and held for 2 min. Electron ionization energy was set to 

70eV. Scan mode for m/z: 50–550 was used for steady-state metabolomics and scan mode 

for m/z: 50-800 was used for stable-isotope resolved metabolomics. Spectra were translated 

to relative abundance using the Automated Mass Spectral Deconvolution and Identification 

System (AMDIS) v2.73 software with retention time and fragmentation pattern matched to 

FiehnLib library113 with a confidence score of >80. Chromatograms were quantified using 

Data Extraction for Stable Isotope-labelled metabolites (DExSI) v1.11. Metabolomics data 

were analyzed using the web-based data processing tool Metaboanalyst.102

For stable-isotope resolved metabolomics, cells were washed with warm, sterile phosphate-

buffered saline (PBS; Thomas #QZY-11666789001-4L) to remove traces of non-13C media 

and then incubated in glucose- and sodium pyruvate-free DMEM (Thermo #11966-025) 

containing 2mM GlutaMAX (Thermo #35050-061), 1% penicillin/streptomycin, and 10mM 

universally labeled 13C-glucose (Cambridge Isotope Laboratories # CLM-1396-PK) for 2 

h with pro-inflammatory stimulus (IFNγ + TNFα, as described above). After the 2 h 

incubation, metabolites were extracted from the cells and processed for GCMS as described 

above. Fractional enrichment was calculated as the relative abundance of each isotopologue 

relative to the sum of all other isotopologues.

Quantitative PCR—E3 and E4 primary microglia were plated at 5x106 cells/well in 

6-well plates and RNA was extracted from the cells using the RNEasy Plus Mini Kit 

(Qiagen #74136) and converted to cDNA using High-Capacity RNA-to-cDNA kit (Thermo 

#4387406) according to manufacturer’s instructions. TaqMan chemistry was used for 

quantitative PCR with TaqMan probe targeting Hif1α (Thermo #4453320) and TaqMan 

Fast Advanced Master Mix (Thermo #4444556). PCR was performed on the QuantStudio 

3 (Applied Biosystems) with default cycling parameters for this master mix (initial holds 

at 50°C for 2 min (UNG incubation) and 95°C for 20 s (polymerase activation) then 40 

cycles of denaturation at 95°C for 1 s followed by annealing/extension at 60°C for 20 s). 

Data were analyzed using the ddCT method with 18s ribosomal rRNA (TaqMan assay id# 

Hs99999901_s1) as the reference gene.

Brain single-cell suspension, cDNA library, and sequencing—Pooled brain tissue 

(3 biological replicates per experimental group)) was processed for ‘glia-enriched’ single 
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cell suspensions.114 Three different mice for each experimental group (18 mice in total for 

Figure 1 and 2; 12 mice total for Figure 3) were anesthetized via 5.0% isoflurane before 

exsanguination and transcardial perfusion with ice-cold Dulbecco’s phosphate buffered 

saline (DPBS; Gibco # 14040133). Following perfusion, brains were quickly removed, the 

three biological replicates were pooled in a single Petri dish, and whole left hemispheres 

sans brainstem and cerebellum were quickly minced using forceps on top of an ice-chilled 

Petri dish. Minced tissue from the 3 pooled hemispheres per group were immediately 

transferred into gentleMACS C-tube (Miltenyi #130–093-237) containing Adult Brain 

Dissociation Kit (ADBK) enzymatic digest reagents (Miltenyi #130–107-677) prepared 

according to manufacturer’s protocol. Tissues were dissociated using the “37C_ABDK” 

protocol on the gentleMACS Octo Dissociator instrument (Miltenyi #130–095-937) with 

heaters attached. After tissue digestion, cell suspensions were filtered through 70 μm mesh 

cell filters to remove debris following the manufacturer’s suggested ABDK protocol. The 

resultant suspension was sequentially filtered (x2) using fresh 30 μm mesh filters. Cell 

viability was checked using AO/PI viability kit (Logos Biosystems # LGBD10012). All 

cell suspensions were determined to have >90% viable cells. Following viability and 

counting, cells were diluted to achieve a concentration of ~1700 cells/μL in a 10μL total 

reaction volume. The diluted cell suspensions were loaded onto the 10X Chromium Connect 

automated cell portioning system. Sample libraries were constructed using Next GEM 

automated 3′ reagents (10X Genomics, v3.1) following manufacturer’s suggested protocol 

(#CG000286 Rev B). Final library quantification and quality check was performed using 

BioAnalyzer (Agilent), and sequencing performed on a NovaSeq 6000 S4 flow cell, 150 bp 

Paired-End sequencing (Novogene).

scRNAseq data processing—After libraries were sequenced and quality control was 

performed, samples were aligned to the mm10 mouse reference genome using the Cell 

Ranger 6.0.2 pipeline. Each sample was aggregated using the cellranger aggr function to 

produce a raw UMI count matrix containing the number of reads for genes in each cell per 

sample. The expression matrix was loaded into R for further analysis and visualization using 

Seurat (v.4.1.0)105. Cells were then filtered to reduce the potential of including doublet and 

low-quality cells using the following criteria: 200 < nGene <5000; 500 < nCount <90,000; 

and percent.mito <30%. Feature counts were normalized using LogNormalize method with 

a scale factor of 10,000 (default option); and the effects of percent.mito were regressed out 

using the ScaleData method. A shared nearest neighbor (SNN) graph was constructed using 

FindNeighbors function with default parameters. Using the Louvain algorithm implemented 

in FindClusters function and the first 15 principal components (PCs), we identified 34 

unique clusters.

To assign glial cell type identity to each cluster, we manually examined the expression 

levels of cell type-specific markers across each cluster using Partek Flow software (Partek) 

to identify clusters containing unique populations of different cell types. Canonical CNS 

cell type markers were compiled from115-118 and included: Aldoc, Aqp4, Gja1, Aldh1l1, 
Gfap, Slc7a10, Sox9 (Astrocytes), P2ry12, Tmem119, Aif1, Slc2a5, Trem2, Cx3cr1, Itgam, 
Gpr34, C3ar1, Csf1r, Fcrls (Microglia), Mgl2, Mrc1, Pf4 (Macrophages), Mog, Opalin, 
Mag, Ermn, Cldn11 (Oligodendrocytes), Pdgfra, Opcml, Tnr, Myt1 (Oligodendrocyte 
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precursors), Kl, Car12, Ttr (Choroid plexus), Ccdc153, Dnah11 (Ependymal), Cd3d 
(Lymphocytes), Flt1, Emcn, Cldn5, Cdh5, Vwf, Tek, Cd34 (Endothelial), Slc47a1, Mgp 
(Vascular leptomeningeal), Acta2, Bgn (Vascular smooth muscle), Vtn, Kcnj8 (Pericytes), 

and Dcx (Neuroprogenitors). This process resulted in stringent filtering of cells with 

ambiguous assignments (>1 cell-specific gene marker; likely ‘doublet’ and ‘triplet’ that 

slipped through the 10X ‘single cell’ droplet workflow), leaving a total of 39,475 cells 

within 24 carefully assigned glial clusters.

Re-clustering of specific glial cell populations (ex. microglia)—We used the 

FindAllMarkers function to identify genes that act as markers for each cluster, using 

the Wilcoxon rank-sum test. A gene was considered the marker of a cluster if it had a 

Bonferroni-adjusted p value <0.01 and an average log fold change >0.1. The data were 

further filtered to contain only astrocytes, microglia or other glial cell types using the 

markers described above. After re-clustering with a resolution of 0.1 and the first 15 PCs, 

we identified 11 microglia sub-clusters and 12 astrocyte sub-clusters. To perform differential 

expression analysis in the cell-specific datasets, we used Seurat’s FindMarkers function and 

performed Wilcoxon rank-sum tests. A gene was considered differentially expressed if it had 

a Bonferroni-corrected p value <0.05 and a natural log fold change (logFC) > 0.25.

Pathway enrichment analyses—The Seurat function FindMarkers conducted the DEG 

analysis via grouping for comparison by clusters, APOE genotype, or age (min.pct was set 

as 0.25 and logFC.threshold was set as 0.25). The DEGs were selected if the adjusted p 

value was less than 0.05 and the absolute value of log-fold change was higher than 0.1. 

The KEGG enrichment analyses described in Figure 1 were performed using Partek Flow’s 

GSA DE feature. Based on the identified DEGs, the enrichment analyses of GO terms 

(Biological Process (BP) were performed via Enrichr106 or the rWikiPathways R software 

package107 with cutoff by FDR-adjusted adjusted p values 0.05. The bar-plot functions 

from the software package with a color-blind-friendly color scheme were applied for the 

visualizations.

Gene set enrichment analysis for metabolic pathways gene signatures—
AUCell R software package (v.1.14.0) was applied for the identification of gene signatures 

at the single-cell level.34 AUCell uses the "Area Under the Curve" (AUC) to calculate 

whether a critical subset of the input gene set is enriched within the expressed genes 

for each cell. AUC scores were calculated for each individual cell and distribution across 

cell populations of interest allowed for exploration of the relative expression of the gene 

signature. AUCell scores of seventy KEGG pathway gene sets associated with pathways of 

mammalian metabolism (https://www.genome.jp/kegg/pathway.html) were manually curated 

and applied to multiple datasets. All pathways organized under the KEGG umbrella term 

“Metabolism” were considered metabolic pathways, however non-mammalian pathways 

were removed (ex. “Photosynthesis”) and multiple sub-pathways were condensed into more 

manageable lists. For example, our pathway “Glycosaminoglycan biosynthesis” contains 

lists for three small sub-pathways “-chondroitin sulfate/dermatan sulfate”, “heparan sulfate/

heparin”, and “keratan sulfate”. This curation, based off of previous publications and 

designed to infer maximal biological relevance,119 resulted in a total of 79 metabolic 
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pathways. Each pathway and its corresponding gene lists are detailed in Table 3. Finally, 

the average AUCell scores of each KEGG metabolic pathway were plotted as heatmaps 

using pheatmap R software (v.1.0.12) sorted by either cell subtypes and/or experimental 

groups.

Gene-gene network analyses using WGCNA—Weighted gene co-expression network 

analysis (WGCNA) (v1.70-3)108 was used to identify gene modules and build unsigned 

co-expression networks, including both negative and positive correlations. Briefly, WGCNA 

constructs a gene co-expression matrix, uses hierarchical clustering in combination with the 

Pearson correlation coefficient to cluster genes into groups of closely co-expressed genes 

termed modules, and then uses singular value decomposition (SVD) values as module 

eigengenes (MEs) to determine the similarity between gene modules or calculate the 

association between module and a preselected sample trait (ex. APOE genotype, treatment, 

or plaque intensity). For both the spatial transcriptomics WCGNA and plaque intensity 

correlation analyses (Figure 6) we include all spots from the two 5xFAD samples (E3 

5XFAD and E4 5XFAD). For each analysis, the top 3,000 variable genes were selected 

to identify gene modules and network construction. Soft power of 6 was chosen by the 

WGCNA function pickSoftThreshold. Next the function TOMsimilarityFromExpr was used 

to calculate the TOM (Topological Overlap Matrix) similarity matrix via setting power = 6, 

networkType = "signed”. The distance matrix was generated by subtracting the values from 

the similarity adjacency matrix by one. The function flashClust (v.1.01) was used to cluster 

genes based on the distance matrix, and the function cutreeDynamic was utilized to identify 

gene modules by setting deepSplit = 3. Cytoscape (v.3.8.2) was applied for the gene-gene 

network visualization.

Gene score plots—Pairwise differential expression analyses were then performed 

between E4 vs E3, aged vs young, aged vs middle, and middle vs young. For each gene 

within each differential expression analysis, a gene score was calculated to represent a 

combination of effect size and statistical significance of the differential expression. The 

gene score was calculated as the product of the log2 fold change (FC) and negative of the 

log-transformed false discovery rate (FDR), log2(FC)*-log10(FDR).

Gene transcriptional regulatory network analyses using pySCENIC—For 

regulon identification, gene regulatory network analysis was performed using the 

pySCENIC software packages (v.0.11.2)110. The arboreto package is used for this step 

using the algorithm of GRNBoost2 (version 0.11.2) to identify the potential transcriptional 

factor (TF)-targets based on their co-expression with RcisTarget (version 1.12.0) for 

cis-regulatory motif enrichment analysis in the promoter of target genes (mm9-500bp-

upstream-10species.mc9nr and mm9-tss-centered-10kb-10species.mc9nr databases provided 

in the pySCENIC package), and to identify the regulon, which consists of a TF and its 

co-expressed target genes. Correlations between a list of 1,390 human transcription factors 

(TFs) curated by Lambert et al.120 and the genes in the expression matrix were evaluated, 

and co-expression modules with a minimum size of 20 genes were defined. Finally, for 

each regulon, pySCENIC uses the AUCell algorithm to score the regulon activity in each 

cell. The input for SCENIC was the n (genes) by n (cells) matrix obtained after filtering, 
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and gene expression is reported in count units. Parameters used for running were specified 

as default options in the original pySCENIC pipeline. The cellular activity pattern of a 

predicted regulon can be binarized as being in an ‘on’ or ‘off’ state based on the bimodal 

distribution of a regulon’s AUCell values and visualized as a heatmap for identification of 

regulon clustering.

Brain preparation for spatial transcriptomics—The mirroring hemisphere (right) 

from brains processed for scRNAseq (see STAR Methods section “brain single-cell 

suspension, cDNA library, and sequencing”) were immediately placed in OCT compound 

(Fisher HealthCare Tissue Plus O.C.T. Compound Clear 4585) and gently lowered into 

isopentane (Sigma-Aldrich 2-Methylbutane M32631) in a beaker surrounded by dry 

ice (isopentane chilled to approximately −70°C). Brains were submerged for 60 s, 

placed on dry ice, wrapped in aluminum foil, and stored at −80°C until sectioning. 

Prepared brain hemispheres were cryosectioned to 10 μm thick coronal sections at 

approximately bregma −2.00 mm. Serial 10 μm sections immediately rostral and caudal 

to the section mounted on the Visium Spatial Gene Expression slide (10X Genomics) were 

collected for immunohistochemistry. Optimal tissue permeabilization time was determined 

using the manufacturer’s optimization protocols (10X Genomics, Visium Spatial Tissue 

Optimization), and accordingly, experimental tissues were permeabilized for 18 min for 

Visium Spatial Gene Expression analysis. Prior to library preparation, tissue sections were 

methanol-fixed, stained with hematoxylin and eosin (H&E) (VWR 95057-844), and imaged 

on a Nikon NiU microscope with Fi3 color camera. Sections were then permeabilized and 

processed to obtain cDNA libraries, which were subsequently prepared according to the 

manufacturer’s protocol (https://support.10xgenomics.com/spatial-gene-expression/library-

prep). Final library quantification and quality check was performed using BioAnalyzer 

(Agilent), and sequencing performed on a NovaSeq 6000 S4 flow cell, 150 bp Paired-End 

sequencing (Novogene).

Spatial transcriptomics data processing—Raw FASTQ data and H&E images were 

processed by the Space Ranger v1.3.0 (10X Genomics) pipeline. Illumina base call (BCL) 

files from the sequencing instrument were converted to FASTQ format for each sample 

using the mkfastq. Visium spatial expression libraries were analyzed with the count 

command. Image alignment to predefined spots was performed by the fiducial alignment 

grid of the tissue image to determine the orientation and position of the input image. 

Sequencing reads were aligned to the mm10 reference genome using STAR (v2.5.1b) 

aligner. Gene expression profiling in each spot was performed with UMI and 10X barcode 

information. The spots with gene expression data were analyzed with the Seurat package 

(v.4.1.0). Gene counts were normalized using ‘Log-Normalize’ methods in Seurat. The top 

highly variable genes (n = 3,000) were then identified using the ‘vst’ method in Seurat. 

The number of RNA counts for each spot and the frequency of mitochondrial gene counts 

were regressed out in the scaling process. Six spatial transcriptomic datasets were merged 

and rescaled (E3 young, E4 young, E3 aged, E4 aged, E3 5XFAD, E4 5XFAD). Principal 

component analysis was performed using the top highly variable genes. For visualization, 

dimension reduction was performed using UMAP on the top 20 principal components were 

applied. Graph-based clustering based on the Louvain community detection algorithm was 
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performed. Markers for each cluster were identified by Wilcoxon rank-sum tests for a given 

cluster vs. other clusters implemented in Seurat as a ‘FindAllMarkers’ function.

Integrative analysis of amyloid plaque intensity and spatial transcriptomic 
data—The anatomical location of each cluster was visually identified by comparison 

with the Allen Mouse Brain Reference Atlas (https://mouse.brain-map.org/static/atlas). 

The region annotation information (ex. isocortex, fiber tracts, etc.) was integrated as spot 

metadata. Separately, the amyloid plaque (X-34 stained) images were prepared from a 

10 μM section immediately adjacent (caudal) to the 10 μM section used for the ST data 

generation. The plaque image was resized to exactly match the same-section H&E image 

for the ST coordinates. Cropping and rotation were performed to overlap both images, and 

the color channels specifically addressing the plaque intensities (X-34, blue) were extracted 

using the Photoshop image analysis tool. The quantitative extraction of plaque intensity 

scores was performed using the Squidpy software package (version 1.0.0)111. The resulting 

plaque intensity score values were added as spot metadata for downstream analyses.

Ligand–receptor cell-cell interactions—Cell-to-cell communication was identified by 

evaluating the expression of pairs of ligands and receptors within cell populations using the 

CellChat R software package (version 1.1.3)109. CellChat infers the biologically significant 

cell-cell communication by assigning each interaction with a probability value and 

performing a permutation test. CellChat models the probability of cell-cell communication 

by integrating gene expression with prior known knowledge of the interactions between 

signaling ligands, receptors, and their cofactors using the law of mass action. We examined 

the interaction among different cell types or microglia and astrocyte subtypes. The 

databases, including ‘Secreted Signaling’ provided by Cellchat, were used. To identify 

the ligand-receptor interactions of ApoE, a gene list of APOE and target receptors (ex. 

Ldlr) reported by Sheikh et al.121 was added to the receptor-ligand interaction database of 

CellChat. The ApoE-ApoE receptor list is included in Table 1.

Matrix assisted laser desorption ionization (MALDI) mass spectrometry 
imaging (MSI)—Brain sections (10 μm) were mounted on glass slides and prepared for 

MALDI MSI (see STAR Methods section “brain preparation for spatial transcriptomics“). 

Slides were prepared as follows.122 After desiccation for 1 h, slides were sprayed with 

14 passes of 7 mg/mL N-(1-Naphthyl) ethylenediamine dihydrochloride (NEDC) matrix 

(Sigma) in 70% methanol (HPLC-grade, Sigma) was applied at 0.06 mL/min with a 3mm 

offset and a velocity of 1200 mm/min at 30°C and 10psi using the M5 Sprayer with a heated 

tray of 50°C. Slides were used immediately or stored in a desiccator until analysis. For 

the detection of lipids, a Waters SynaptG2-Xs high-definition mass spectrometer equipped 

with traveling wave ion mobility was employed with the flellowing parameters.122 The laser 

was operating at 2000 Hz with an energy of 300 AU and spot size of 50 μm at X and Y 

coordinates of 100μm with mass range set at 50–1000 m/z in negative mode. MALDI-MSI 

data files were processed to adjust for mass drift during the MALDI scan and to enhance 

image quality and improve signal-to-noise ratio using an algorithm available within the 

High-Definition Imaging (HDI) software (Waters Corp). To adjust for mass drift during 

the MALDI scan, raw files were processed using a carefully curated list of 20 MALDI 
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NEDC matrix peaks (m/z) 26 small molecule MALDI peaks(m/z), and 24 lipid peaks(m/z) 

validated by spotting standards. Files were processed at a sample duration of 10 s at a 

frequency rate of 0.5 min, and an m/z window of 0.1 Da, using an internal lock mass 

of previously defined metabolite of taurine 124.007 m/z with a tolerance of 1amu and a 

minimum signal intensity of 100,000 counts. Data acquisition spectrums were uploaded to 

the HDI software for the generation of lipid images. Regions of interest (ROIs) were user 

defined by a blinded investigator using anatomical reference points based on the mouse 

Allen Brain atlas. For all pixels defined within a ROI, peak intensities were averaged and 

normalized by total ion current (TIC) and number of pixels.

Immunohistochemistry—Brains were sectioned coronally at 10 μm at approximately 

bregma −2.00 mm. Serial 10 μm sections immediately rostral and caudal to the section 

mounted on the Visium Spatial Gene Expression slide (10X Genomics) were collected 

for immunohistochemistry and stored in cryoprotectant at −20 °C. Primary and secondary 

antibodies were diluted in 3% normal goat serum (LAMPIRE Biological Laboratories 

#7332500) with 0.2% Triton X-100 (Sigma CAS #9036-19-5). The tissue was blocked 

in 10% normal goat serum with 0.2% Triton X-100. Sections were incubated overnight at 

4 °C with rabbit anti-P2ry12 (Anaspec #AS-55043A, 1:400), rat anti-GFAP (Invitrogen 

#13-0300, 1:400), followed by PBS wash and incubation with goat anti-rat AF568 

(Invitrogen #A11077, 1:400) and goat anti-rabbit AF488 (Invitrogen #A11304, 1:200) for 

2 h at room temperature. The sections were then washed, mounted on slides, and allowed 

to dry overnight. The slides mounted with dried tissue were then incubated in X-34 (Sigma 

#SML1954) 10μg/mL solution for 10 min at room temperature before being washed in PBS 

and differentiated in 80% ethanol for 1 min. The slides were coverslipped with ProLong 

Gold Antifade Mountant (ThermoFisher #P10144) and imaged on a Zeiss Axio Scan Z1 

digital slide scanner at 20× magnification.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the bulk seq data in Figures 1D and S2A, n = 3-5, APOE and Age effects were 

analyzed using a two-way ANOVA, and significance was noted as p < 0.05. Error bars 

represent standard error. MALDI-MSI data were analyzed using multiple comparisons 

ANOVA in Prism v9.0 software (GraphPad). Statistical significance for gene list overlap 

was determined using a hypergeometric distribution test using the dhyper and phyper 

functions in R. For in vitro primary microglia experiments (Figure 4), cells from each 

litter of mice are pooled together before final replating for experiments. Therefore, each 

n represents an individual well in the final cell culture vessel used for experiment. For 

targeted metabolomics and qRT-PCR, each n is one well of a 6-well plate (n = 6 per group 

for qRT-PCR, n = 21-22 per group for metabolomics). Metabolomics data are combined 

results from four independent GCMS runs from different batches of primary microglia. For 

metabolomics data, two-tailed T tests adjusted for multiple comparisons were performed 

using Metaboanalyst v5.0102. For qRT-PCR, samples were run in triplicates and statistical 

significance assessed using a two-tailed T test in Prism software (v9.0, GraphPad). For 

Seahorse experiments, each n represents one well of the Seahorse 96-well plate. Data shown 

for Glycolytic Rate Assay (Figures 4E and 4F) and the MitoStress assay (Figures S5C-S5F) 

are representative of three independent assays for each, with n = 15-16 per group per assay 
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for the GRA and n = 12-15 per group per assay for MitoStress. Data shown for the ATP 

Rate Assay represent data from a single assay with n = 5-9 per group (Figures 4G and 4H). 

Statistical significance was assessed using two-tailed T tests (GRA, MitoStress) or two-way 

ANOVA with Tukey post-hoc test for multiple comparisons (ATP Rate Assay) in Prism 

software (v9.0, GraphPad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• APOE4 and age interact to drive DAM-like signatures in the absence of AD 

pathology

• APOE4 microglia have increased aerobic glycolysis and higher Hif1α 
expression

• APOE4 exacerbates plaque-induced microglial reactivity and lipid 

metabolism

• Mass spectrometry imaging reveals distinct phospholipid distribution in 

E4FAD brains
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Figure 1. APOE4 drives immunometabolic changes across the glial transcriptome
(A) Experimental design. Brains from APOE3 and APOE4 mice were analyzed across the 

lifespan (3, 12, and 24 months of age) and in the presence of an inflammatory challenge 

(LPS) or AD pathology (amyloid overexpression).

(B and C) Number (B) and overlap (C) of differentially expressed genes (DEGs) (p < 0.01) 

between E3 and E4 brains at each age (bulk RNA-seq). Each circle is a comparison in young 

(light purple), middle-aged (purple), or aged (dark purple) mice; relative size corresponds to 

total DEGs.

(D) Gene expression of Serpina3n in whole brain. APOE p < 0.001, two-way ANOVA. Error 

bars denote SEM.

(E) The top 10 KEGG pathways most significantly altered by APOE4 in whole-brain tissue. 

Terms in bold fall under KEGG umbrella pathways of “metabolism” or “immune system.”

(F) UMAP showing 24 clusters classified based on canonical gene expression markers.

(G) Number of cells per cluster. Bars are colored by individual cluster color from the UMAP 

in (F).

(H) DEGs between E3 and E4 brains within each cell type at each age (scRNA-seq). Young, 

open bars; middle aged, gray dashed bars; aged, black dashed bars. Dashed lines indicate the 

number of DEGs in this, as well as two previous, bulk-seq analyses.28,29

(I) The top 10 KEGG pathways most significantly altered by APOE4 across all cells 

(scRNA-seq).
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(J) Venn diagram showing overlap of KEGG pathways differentially expressed between 

E4 and E3 in the four cell types most affected by APOE4. Numbers represent number of 

significantly altered pathways in each cell type. The top five overlapping KEGG pathways 

are listed for each intersection.

(K) Heatmap of the top 10 KEGG metabolic pathways altered by APOE in each cell type. 

Pathways in red show increased expression in E4 cells; blue indicates decreased expression.

(B–K) Bulk-seq, n = 3–5 per group; scRNA-seq, 3 biological replicates were pooled 

together for n = 1 per experimental group. Glycerophos., glycerophospholipid metabolism; 

Gly,Ser, glycine and serine metabolism; OxPhos, oxidative phosphorylation; PPP, pentose 

phosphate pathway.
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Figure 2. Age and APOE4 are associated with an increase in “DAM-like” microglia
(A) Gene score plot showing DEGs between E4 versus E3 microglia (y axis) and aged 

versus young microglia (x axis). Genes labeled in black are common to both DAM/MgND 

phenotypes. Inset: ridge plot showing DAM/MgND score for each individual microglia as 

calculated by AUCell.

(B and C) E4-specific changes in the microglia transcriptome substantially overlap with 

AD-relevant gene lists from mouse and human studies. (B) Overlap of published gene 

lists with DEGs (E4 versus E3) in young (left) and aged (right) microglia (*p < 0.05, 

hypergeometric distribution test). (C) Expression of select “homeostatic” and DAM/MgND 

genes in young, middle-aged, and aged microglia. n = 1,422–1,951 cells/group. Error bars 

denote SEM.

(D–F) Aged E4 microglia are enriched for a sub-cluster of cells with a DAM-like expression 

profile (cluster 6; Mi_6). (D) tSNE (t-distributed stochastic neighbor embedding) of 

microglia sub-clusters. Top biomarkers for the “homeostatic” clusters (0 and 1) and the 

“DAM-like” cluster 6 are displayed beneath the cluster labels. (E) Donut charts showing the 

distribution of aged E3 (left) and aged E4 (right) microglia within each sub-cluster. Clusters 

labeled in white are enriched in the respective group. (F) Top five Gene Ontology (GO) 

terms associated with the biomarkers that define Mi_6.

(G) SCENIC was used to reconstruct active regulons in each individual microglia and 

meaningfully cluster cells based on shared activity patterns (binarized). Mi_6 is defined 
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by selective high activity of 16 TFs (red box, “Mi_6 Enriched Regulons”) and the relative 

absence of activity of other TFs.

(H) Ridge plots (top) or tSNE (bottom) showing regulon activity scores for HIF1α (left) and 

Srebf2 (right).
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Figure 3. APOE4 microglia are metabolically distinct in response to an inflammatory challenge
(A) Experimental design. E3 and E4 mice were injected with lipopolysaccharide (LPS; 5 

mg/kg) or saline, and brains were dissected 24 h later for scRNA-seq.

(B) Heatmap showing expression of KEGG metabolic pathways in microglia from LPS- or 

saline-treated mice.

(C and D) E3 and E4 brains show enrichment of distinct microglia sub-clusters following 

LPS treatment. (C) tSNE plot of microglia from LPS- or saline-treated E3 and E4 mice. 

Colors highlight the 12 microglia sub-clusters. (D) Stacked bar plot showing distribution 

of experimental groups within each microglia sub-cluster. Top five biomarkers for the two 

“homeostatic” (0 and 1), E3-enriched (5 and 7), and E4-enriched (8 and 11) clusters are 

listed below.

(E and F) E4 LPS microglia are associated with energy production and OxPhos pathways. 

(E) Top five GO terms associated with the two E3 LPS-enriched (left, 5 and 7) and two 

E4 LPS-enriched (right, 8 and 11) clusters. (F) tSNE plots showing higher expression of 

central carbon (i.e., energy production) pathways in sub-clusters enriched in the E4 LPS 

brain. Three biological replicates were pooled together for n = 1 per experimental group.
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Figure 4. E4 microglia have increased aerobic glycolysis and higher Hif1α expression
(A) Experimental design. Primary microglia were isolated from E3 and E4 mice and 

stimulated in vitro with a pro-inflammatory (20 ng/mL IFNγ +50 ng/mL TNF-α) cytokine 

cocktail prior to Seahorse analysis or targeted metabolomics (both steady-state and stable-

isotope-resolved metabolomics).

(B and C) Targeted metabolomics on E3 and E4 microglia (n = 21–22 per group). (B) 

Volcano plot showing changes in steady-state metabolites. (C) Schematic of TCA cycle and 

glycolysis. Pathways and metabolites associated with pro-inflammatory immunometabolism 

are highlighted in red, with corresponding bar graphs for E3 and E4 steady-state metabolites 

overlaid on each.

(D) Stable-isotope tracing reveals increased fractional enrichment of fully labeled (m+3) 

lactate in pro-inflammatory-treated E4 microglia (n = 7–8 per group) after 2 h.

(E) Proton efflux rate (PER) (pmol/min/1,000 cells), a measure of glycolysis, measured over 

time in E3 and E4 microglia during the glycolytic rate assay (Agilent).

(F) E4 microglia showed higher basal glycolysis (left) and compensatory glycolysis (right) 

compared with E3 controls (n = 15–16 per group).

(G) ATP production rate (pmol/min/1,000 cells) measured during the ATP rate assay 

(Agilent) in E3 and E4 microglia, with glycolytic ATP production (GlycoATP) to the left of 

the y axis and mitochondrial ATP production (MitoATP) to the right (n = 5–9 per group).
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(H) xy plot with MitoATP displayed on y axis and GlycoATP displayed on x axis. 

E4 microglia respond to stimulus by dramatically increasing GlycoATP and decreasing 

MitoATP (red dashed arrow), whereas E3 microglia respond with only a slight increase to 

GlycoATP and instead show a dramatic increase in MitoATP (blue dashed arrow).

(I) Quantitative RT-PCR analysis shows increased Hif1α gene expression in E4 primary 

microglia (n = 6 per group).

Error bars denote SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Two-way 

ANOVA (D and G), two-tailed t test (F and I), or two-tailed t test adjusted for multiple 

comparisons (indicated as FDR [false discovery rate]) (B and C).
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Figure 5. Spatial transcriptomics (ST) highlights unique cortical and hippocampal signatures of 
APOE4, age, and amyloid overexpression
(A and B) ST identifies 17 unique clusters that are anatomically conserved, plus one unique 

cortical cluster primarily restricted to E4FAD mice (cluster 11, dark green). (A) Spatial 

transcriptomic plots of brain sections from young, aged, and amyloid-overexpressing E3 and 

E4 mice. (B) UMAP plot of all 16,979 spots analyzed across all six brains. Clusters were 

assigned labels based on anatomical concurrence to the Allen Brain Atlas.

(C and D) Cluster 11 is enriched in the E4FAD brain and consists of genes related to 

lipid metabolism and microglial activation. (C) E3FAD and E4FAD brains showing spots 

belonging to cluster 11. Cluster 11 biomarker genes were re-plotted to scRNA-seq data, 

showing highest expression in microglia, specifically in Mi_6. (D) Top 10 Gene Ontology 

terms for cluster 11, highlighting pathways of lipid metabolism and immune activation.

(E) Number of spots within each cluster for each experimental group. Clusters are organized 

by respective brain regions.

(F–H) E4 drives gene expression changes primarily in the cortex and hippocampus. (F) 

DEGs between E4 and E3 brains within each brain region. (G and H) DEGs within the 

cortex (G) and hippocampus (H) of the 5XFAD mice. Genes labeled in black correspond to 

DAM/MgND genes.

(I) ST plots showing DAM/MgND scores for each spot (calculated with AUCell). n = 1 

brain per group.
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Figure 6. APOE4 exacerbates plaque-induced microglial activation and alterations in lipid 
metabolism
(A) E4FAD brain stained with P2ry12 (green; microglia), GFAP (red; astrocytes), and X-34 

(blue) to demarcate amyloid plaques (left). X-34 intensity was quantified to generate a 

“plaque intensity score” for each individual spatial transcriptomic spot (right).

(B) Gene correlation with plaque intensity in E3FAD (blue, left) and E4FAD (red, right) 

brains. y axis values represent correlation coefficients, with genes at the top of the graph 

positively correlated with plaque intensity, and genes at the bottom negatively correlated. 

Distance from center on the x axis represents significance of the correlation (−log10(p 

adjusted)). DAM/MgND genes are noted in gray.

(C) Top five Gene Ontology terms for genes that were positively (left) or negatively 

(right) correlated with plaque intensity. Some GO terms were uniquely correlated with 

E4 (red), some uniquely correlated with E3 (blue), and some correlated with plaque 

intensity regardless of APOE genotype (purple). Venn diagrams show overlap between genes 

correlated with plaque intensity in E4FAD (red circles) or E3FAD (blue circles) brains.

(D–G) Gene networks associated with plaque intensity. (D) The correlation between module 

eigengenes (MEs) and amyloid plaque intensity. Values in the heatmap are Pearson’s 

correlation coefficients, and asterisks represent significant correlations: *p < 0.05; ***p 

< 0.001. Modules with positive values (red) indicate positive correlation of MEs with plaque 

intensity, modules with negative values (green) represent a negative correlation. (E) Network 
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plots of the top 10 genes with the highest intramodular connectivity (hub genes) in the 

magenta (top) and red (bottom) modules. (F) UMAP plots map expression of module gene 

lists (sum) back to the scRNA-seq dataset. (G) Top five Gene Ontology terms associated 

with the magenta or red modules.

(H) Venn diagrams showing overlap of red and magenta modules with oligodendrocyte 

(OLIG) and plaque-induced gene (PIG) lists from Chen et al.16 Overlapping genes are listed.

(I and J) The E4FAD brain has a high PIG score and the lowest OLIG score. (I) Ridge 

plots showing PIG (left) and OLIG (right) scores for each experimental group. (J) Spatial 

expression of PIG (left) and OLIG (right) gene lists.
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Figure 7. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging 
(MSI) reveals APOE- and region-specific changes in multiple lipid species
(A and B) Expression of glycerophospholipid pathway genes increases with age in whole-

brain tissue (A, ‘bulk’) and is highest in aged E4 microglia (B, ‘scRNA-seq’).

(C) Experimental workflow for MALDI MSI.

(D) Volcano plot of targeted lipid species highlights changes in select phosphatidylcholine, 

sphingomyelin, ceramide, and triacylglycerol.

(E) Heatmap of quantified lipid species (average values across all regions) shows clear 

clustering by age and amyloid expression, with distinct separation of E3 5XFAD and E4 

5XFAD brains. Brackets include multiple possible fatty acid chain lengths and/or double-

bond positions.

(F) Principal-component analysis (PCA) plot of MALDI MSI-detected lipids shows clear 

separation of E3 5XFAD and E4 5XFAD brains.

(G) Regional intensity of an example lipid from (E) (phosphatidylcholine (16:0/18:2)). (Top) 

Scans show spatial distribution of lipid across coronal brain sections. (Bottom) Average 

pixel intensity across each brain region for PC(16:0/18:2). n = 3 per group. Error bars denote 

SEM. *p < 0.05, **p < 0.01, multiple comparisons ANOVA.

Regional data for all scanned lipids can be found in Table S2.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

P2RY12 AnaSpec AnaSpec; EGT Group Cat# 55043A, 
RRID:AB_2298886

GFAP Invitrogen Thermo Fisher Scientific Cat# 13-0300, 
RRID:AB_2532994

IBA1 Wako Fujifilm FUJIFILM Wako Shibayagi Cat# 019-19741, 
RRID:AB_839504

Chemicals, peptides, and recombinant proteins

Recombinant Mouse IFN-gamma Protein R&D Biosystems 485-MI-100

Recombinant Mouse TNF-alpha (aa 80-235) Protein R&D Biosystems 410-MT-025

Lipopolysaccharides from Escherichia coli O55:B5 Sigma Aldrich L2880-100MG

X-34 Sigma Aldrich SML1954

Critical commercial assays

Seahorse XF Glycolytic Rate Assay Agilent 103344-100

Seahorse XF Mitochondrial Stress Test Agilent 103015-100

Seahorse XF ATP Rate Assay Agilent 101085-004

RNEasy Plus Mini Kit Qiagen 74136

High Capacity RNA-to-cDNA Kit Thermo 4387406

Adult Brain Dissociation Kit, mouse and rat Miltenyi 130–107-677

Acridine Orange / Propidium Iodide Cell Viability Kit Logos Biosystems LGBD10012

Deposited data

Bulk RNA-sequencing, APOE x aging This paper (Figure 1) GEO: GSE212343

Single-cell RNA-sequencing, APOE x aging This paper (Figure 1 and 2) GEO: GSE212317

Single cell RNA-sequencing, APOE x LPS This paper (Figure 3) GEO: GSE215444

Spatial transcriptomics, APOE x aging and amyloid This paper (Figure 5 and 6) GEO: GSE212323

Primary microglia metabolomics, GC-MS, Steady state This paper (Figure 4) Metabolomics Workbench: PR000639

Primary microglia metabolomics, GC-MS, 13c Glucose 
SIRM

This paper (Figure 4) Metabolomics Workbench: PR000639

APOE x Amyloid, MALDI-MSI This paper (Figure 7) Metabolomics Workbench: PR000639

Experimental models: Cell lines

L929 fibroblasts ATCC #CCL-1

Experimental models: Organisms/strains

Mouse: B6SJL-Tg(APPSwFlLon, 
PSEN1*M146L*L286V)6799Vas/Mmjax

The Jackson Laboratory MMRRC stock #34840; RRID: 
MMRRC_034840-JAX

Mouse: B6.129P2-Apoetm3(APOE*4)MaeN8 Taconic Biosciences Model #1549-F

Mouse: B6.129P2-Apoetm2(APOE*3)MaeN8 Taconic Biosciences Model #1548-F

Oligonucleotides

Hif1a Taqman Gene Expression Assay Thermo Taqman Assay ID# 4453320

18s rRNA Taqman Gene Expression Assay Thermo Taqman Assay ID# Hs99999901_s1

Software and algorithms

MetaboAnalyst v5.0 (Pang et al)102 www.metaboanalyst.ca
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REAGENT or RESOURCE SOURCE IDENTIFIER

Seahorse Wave v2.6 Agilent https://www.agilent.com/en/product/
cell-analysis/real-time-cell-metabolic-
analysis/xf-software/seahorse-wave-desktop-
software-740897

Prism v9.0 GraphPad www.graphpad.com

Automated Mass Spectral Deconvolution and Identification 
System (AMDIS) v2.73

(Davies et al)103 www.amdis.net

Data Extraction for Stable Isotope-labelled metabolites 
(DExSI) v1.11

(Dagley et al)104 https://doi.org/10.1093/bioinformatics/bty025

Cell Ranger v6.0.2 10X Genomics https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/latest

Space Ranger v1.3.0 10X Genomics https://support.10xgenomics.com/spatial-gene-
expression/software/pipelines/latest/installation

Seurat v4.1.0 (Hao et al)105 https://doi.org/10.1016/j.cell.2021.04.048

Partek Flow Software Partek https://www.partek.com/partek-flow/
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