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Abstract Alloimmune inflammation damages the microvas-
culature of solid organ transplants during acute rejection. Al-
though immunosuppressive drugs diminish the inflammatory
response, they do not directly promote vascular repair. Repet-
itive microvascular injury with insufficient regeneration results
in prolonged tissue hypoxia and fibrotic remodeling. While
clinical studies show that a loss of the microvascular circulation
precedes andmay act as an initiating factor for the development
of chronic rejection, preclinical studies demonstrate that im-
proved microvascular perfusion during acute rejection delays
and attenuates tissue fibrosis. Therefore, preservation of a func-
tional microvasculature may represent an effective therapeutic
strategy for preventing chronic rejection. Here, we review
recent advances in our understanding of the role of the micro-
vasculature in the long-term survival of transplanted solid
organs. We also highlight microvessel-centered therapeutic
strategies for prolonging the survival of solid organ transplants.
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Introduction

The microvascular circulation comprises vessels that
are <150 μm and includes arterioles, capillaries, and venules
[1]. Arterioles are small arteries proximal to the capillaries,
and in conjunction with the terminal arteries, contribute to the
majority of the resistance to blood flow. The wall of the
arteriole is made up of three layers: the intima, formed by
the endothelial cells (ECs) and the basement membrane, the
media, made up of the internal elastic lamina apposed by one
or two layers of vascular smooth muscle cells (VSMC) and the
adventitia, comprises fibroblasts, collagen bundles, and nerve
endings [2]. Compared with arterioles, the walls of capillaries
and venules are much thinner and contain only two types of
cells: ECs and pericytes. Pericytes are embedded within the
endothelial basement membrane and contact ECs directly in
areas where the basement membrane is absent [3]. The micro-
circulation provides nutrition and oxygen supply to tissues
and maintains tissue hydrostatic pressure; it is essential for
normal tissue function [2]. Indeed, microvascular dysfunction
has been shown to be involved in a number of diseases
including insulin resistance, kidney fibrosis, and systemic
sclerosis [4–7]. More recently, there is an increasing appreci-
ation that coronary microvascular dysfunction may be a cause
of chest pain, indicating that the microvascular systemmay be
a promising therapeutic target for ischemic heart diseases [8].

In solid organ transplantation, chronic allograft vasculopa-
thy in larger vessels has long been recognized as a major
limitation for the long-term survival of transplant patients
[9]. However, how microvascular injury and the accompany-
ing pathologic remodeling affects the progression of chronic
rejection and graft survival is not well known. Several recent
animal studies highlight the importance of the microvascula-
ture in solid organ transplantation. In a mouse orthotopic
trachea transplantation (OTT) model, our group showed that
the loss of a functional microvasculature is a prominent
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pathology that identifies the airways that are destined to
develop fibrosis [10]; in this context, ‘functional’ means that
the vessels are demonstrated to be effectively transporting
blood, as opposed to be only being identified histologically.
We subsequently demonstrated that enhanced airway micro-
vascular repair during acute rejection delays and attenuates
chronic rejection [11]. Protection of the microvascular system
from ischemia reperfusion injury (IRI) has also been demon-
strated to prevent the development of chronic rejection in a rat
cardiac allograft model [12]. Moreover, a number of clinical
studies have shown that loss of the microvascular circulation
precedes and may predispose allografts to chronic rejection or
failure [13–17]. These studies suggest that a functional micro-
vascular system is essential for the health of a solid organ
transplant, and preservation of an intact microcirculation may
represent a novel therapeutic strategy to prevent or attenuate
chronic rejection.

The goal of this review is to provide a better understanding
of the biology of the microvasculature in solid organ trans-
plantation. We will first review the molecular and cellular
mechanisms of vessel formation during development, because
many of these events are recapitulated in vascular repair and
regeneration in adults [18]. Next, the cycle of injury and repair
seen in the transplant microvasculature will be discussed
followed by a review of the mechanisms by which these
microvessels can be damaged and thrombosed. The perspec-
tive will conclude with an exposition on the mechanisms
employed by ECs to protect themselves from injury, the
processes involved in repair of the microvasculature, and the
pathways involved in pathologic remodeling and fibrosis.
Based on these clinical and preclinical studies, we propose a
neologism, ‘graft microvascular disease’ (GMVD) to describe
microvascular abnormalities that can be observed during re-
jection. GMVD includes microvascular pathologies that are
clearly distinct from the classical chronic graft vasculopathy,
which is a diffuse concentric vascular wall narrowing that
mainly affects arteries but not the microvasculature [9, 19, 20].

Overview of developmental vessel formation
and remodeling

Vasculogenesis, arteriogenesis, and angiogenesis are the ma-
jor processes by which blood vessels are formed and
remodeled [21]. Vasculogenesis describes the de novo emer-
gence of primordial ECs and the vascular plexus during em-
bryogenesis [21, 22]. It has been recognized that fibroblast
growth factor 2 (FGF-2) and bone morphogenetic protein 4
(BMP4) are two essential molecules required for the specifi-
cation of mesoderm and its subsequent differentiation into
cells of endothelial lineage [22–26]. Vascular endothelial
growth factor (VEGF) is another key regulator of embryonic
vasculogenesis and acts mainly by promoting EC survival and

proliferation [22]. Following its initial formation, the primitive
vascular plexus is remodeled into a functional vasculature by
the coordinated activation of signaling pathways induced by
factors such as VEGF, retinoic acid, and transforming growth
factor-beta (TGF-β) [18, 22]. Vasculogenesis was previously
thought to occur only during embryogenesis. However, be-
cause of the discovery of circulating endothelial progenitor
cells (EPCs) [27], which have recently been shown to promote
vascular repair and improve tissue perfusion [27–29], postna-
tal vasculogenic activity is now considered possible.

Arteriogenesis refers to either the remodeling of an existing
collateral artery/arteriole to increase its luminal diameter in
response to increased blood flow or, alternatively, to a de novo
process that occurs by expansion and arterialization of the
capillary bed [21, 30, 31]. Smooth muscle migration, growth,
and differentiation play essential roles in arteriogenesis [30].
One recent study demonstrated that macrophage prolyl hy-
droxylase domain (PHD) 2 haplodeficiency promoted
arteriogenesis in both development and in adult mice, and that
following femoral artery ligation, these mice had better per-
fusion. Further mechanistic studies revealed that PHD2
haplodeficiency polarized macrophages to an M2-subtype,
which produced higher levels of stromal cell-derived factor-
1 (SDF-1) and platelet-derived growth factor-beta polypeptide
(PDGFB). This process, in turn, enhanced vascular smooth
muscle cell migration and proliferation and thereby
arteriogenesis [32]. Another study demonstrated that develop-
mental and adult arteriogenesis was regulated by synectin, a
widely expressed PDZ domain protein involved in intracellu-
lar signaling; this regulation occurred in an EC-autonomous
manner and suggests that ECs are central to both developmen-
tal and adult arteriogenesis [33].

Angiogenesis is a process of vessel sprouting from
preexisting ones [34]. Recent studies have provided tremen-
dous insights into the fundamental aspects of vascular
sprouting during development as well as in tumor angiogen-
esis [34–37]. In a simplified model of vascular branching,
hypoxia induces the production of VEGF. VEGF then stimu-
lates ECs to produce dynamic filopodia, which the ECs use to
probe environmental cues and guide their migration; these
leading cells are termed ‘tip cells’ [34]. Cells that follow the
tip cells are known as ‘stalk cells’; these cells produce fewer
filopodia and instead, proliferate and establish cell junctions to
stabilize the new vessel sprout [35]. VEGF and Notch-
induced signaling pathways are the fundamental drivers of
vascular patterning and cooperate in an integrated intercellular
feedback loop between the tip and stalk cells. In this signaling
feedback loop, VEGF, acting through VEGFR2, induces
delta-like ligand 4 (DLL4) expression in tip cells; tip cell-
expressed DLL4 then activates Notch signaling in the neigh-
boring ECs which downregulates VEGFR2 and neuropilin 1
and upregulates VEGFR1. In this manner, Notch signaling is
important for promoting a stalk cell phenotype [34, 35]. The
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canonical Wnt/β-catenin pathway also regulates angiogene-
sis. This pathway promotes vascular quiescence and stability
by upregulating stalk cell expression of DLL4, which subse-
quently activates Notch signaling in the tip cells and promotes
their phenotypic switch to stalk cells [38]. In addition to the
classical VEGF-Notch driven branch patterning, it was recent-
ly demonstrated that 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 (PFKFB3)-regulated glycolysis in ECs also
plays a role in vascular sprouting by regulating the behaviors
of both the tip and stalk cells [37, 39]. Notably, the principle of
tip-stalk specification by Notch signaling also controls the
branching frequency of tumor vessels [40, 41].

Microvascular EC injury in transplantation

As ECs are the primary targets for alloimmune attack follow-
ing transplantation [42–45], we will focus our discussion on
injury to ECs of the microvasculature. We will discuss in
detail the mechanisms by which immune cells, antibodies,
complement factors, oxidative stress, and immunosuppressive
drugs induce EC injury.

Immune cell-mediated EC injury

In immunosuppressed patients, cytotoxic T lymphocyte
(CTL)-induced EC apoptosis is the major mechanism of acute
cell-mediated rejection [42, 46]. In general, CTL induces
target cell apoptosis primarily through the cell-cell contact-
dependent granule exocytosis of effector molecules, mainly
granzyme (Gr) B, perforin, and GrA and through the death
receptor, FAS/FASL, pathway [47–49]. GrB can induce target
cell death through generation of an active form of BH3
interacting-domain protein (Bid), which causes increased mi-
tochondrial permeability and subsequent release of cyto-
chrome C and second mitochondria-derived activator of apo-
ptosis (SMAC/Diablo). GrB can also induce cell death
through release of the reactive oxygen species (ROS) from
mitochondria and through direct cleavage of caspase-3 and
nuclear laminin [46]. GrA, also found in CTLs, has been
shown not only to directly induce target cell apoptosis [50]
but also to promote monocyte production of proinflammatory
cytokines such as IL-1β, TNF-α, and IL-6 [51]. These find-
ings suggest that CTLs indirectly induce EC dysfunction or
injury by increasing the production of the inflammatory me-
diators. Finally, while FASL induces cell apoptosis through
the FAS-associated death domain protein (FADD)/caspase-8/
10-mediated extrinsic pathway, it plays an uncertain role in
EC death during rejection [43]. Notably, EC death attributed
to alloimmunity, CTLs act predominantly through the GrB/
perforin pathway, and the contribution of FAS/FASL death
signaling is minimal [52]; this result might be explained by the
finding that the expression level of c-FLIP, an inhibitory

protein in the death pathway, is high in ECs [53]. However,
ECs can be sensitized to the FAS/FASL pathway when FAS
and pro-caspase 8 are induced by IFN-γ [54].

Natural killer (NK) cells use similar mechanisms as those
utilized by CTLs, namely the granule and death receptor
pathways, to kill target cells [55]. In addition, NK cell also
kills target cells through antibody-dependent cell-mediated
cytotoxicity (ADCC), which may be the primary mechanism
for EC death during acute antibody-mediated rejection (AMR)
[42].

Macrophages have long been known to be key cells that
mediate inflammatory injury in allografts [56, 57]. Macro-
phages have also been shown to induce EC death in several
preclinical model systems. Macrophages can induce EC apo-
ptosis through activation of the Wnt pathway in patterning the
eye vasculature during development [58]. Macrophages also
induce EC apoptosis through the TRAIL signaling pathway
during oxygen-induced retinopathy [59]. In addition, macro-
phages can also induce EC death through the production of
hypochlorous acid, inducible nitric oxide synthase (iNOS)-
derived NO and proinflammatory cytokines such as TNF-α
[42, 60, 61]. We recently demonstrated that the lipid mediator
leukotriene B4 (LTB4) produced by infiltrating macrophages
in pulmonary hypertension lungs induced EC apoptosis via
suppression of endothelial nitric oxide synthase (eNOS);
LTB4 was found to induce significant EC apoptotic death in
a dose-dependent manner within 24 h of culture [62]. By
extension, macrophage-produced LTB4 may also induce allo-
graft EC apoptosis during acute rejection. On the other hand,
monocytes/macrophages have also been shown to promote
angiogenesis and vascular regeneration in both transplantation
and nontransplantation models [11, 63], indicating a notable
plasticity in this phylogenetically ancient cell type.

Neutrophils are also found in large numbers in allografts
undergoing acute rejection and are associated with graft in-
flammation [64, 65]. Neutrophils have been shown to contrib-
ute to allograft rejection in various preclinical models [66–68].
In the setting of organ transplantation, neutrophils are thought
to injure or kill ECs through the production of ROS or degra-
dative enzymes used to kill invading pathogens [42]. Howev-
er, research from nontransplant models suggest that the neu-
trophil extracellular trap (NET), which are networks of extra-
cellular fibers, primarily composed of neutrophil DNA, might
be a major mechanism by which neutrophils damage the
microvasculature [69]. It has been shown that following neu-
trophil activation by platelets or anti-neutrophil cytoplasmic
antibodies (ANCAs), NET formation damages capillary ECs
[70, 71]. Consistent with the finding that histones are the
major mediator inducing tissue injury in sepsis [72], it was
recently shown that NETs directly induce EC death, mainly by
the activity of NET components such as histones and
myeloperoxidase but not elastase [73]. Although no studies
have examined the role of NETs in solid organ transplantation,

J Mol Med (2014) 92:797–810 799



these mechanisms may be involved in episodes of acute
rejection.

Antibody and complement-mediated EC death
and proinflammatory responses

Antibody-mediated acute or chronic rejection is a pressing
problem in clinical transplantation [74–79]. Both donor spe-
cific antibodies (DSA) and nondonor specific antibodies
(NDSA) have been described in rejection [80, 81]. DSAs
include anti-donor human leukocyte antigen (HLA) and
non-HLA antibodies [82, 83] and have long been known to
cause profound changes in the ECs of the allograft microvas-
culature [84]. Anti-donor antibodies recognize HLA class I
and II antigens, as well as non-HLA antigens such as angio-
tensin II type I receptor, vimentin, myosin, perlecan, type IV,
V, and VI collagen, MICA, MICB, and ICAM-1 [82, 85–89].
The mechanism by which NDSAs contribute to antibody-
mediated rejection is thought to be through their cross-
reactivity with the major HLA proteins, such as HLA-A/B/C
or HLA-DR/DQ/DP, mismatches at the allele level, and poly-
morphic epitopes with multiple targets [76].

Alloantibodies may induce EC death by complement-
dependent mechanisms [82, 90]. Full activation of the com-
plement system and the formation of the membrane attack
complex (MAC), C5b-9, directly induce cell lysis [91]. In a rat
cardiac transplant model, electron microscopy revealed that
MAC-induced-EC lysis was characterized by EC swelling,
fragmentation, and dissolution which led to the loss or
narrowing of the microvascular lumen [92]. In addition to cell
lysis, MAC also induces EC apoptosis [93], through a
caspase-dependent process [94]. Similarly, MAC was also
shown to contribute to the destruction of the microvascular
integrity in lung allografts undergoing acute rejection [95].
Our group has also demonstrated that microvascular perfusion
of airway allografts was preserved when grafts were
transplanted into C3-deficient recipients. Further, we showed
that C3-induced microvascular injury depended on anti-donor
antibodies [96]. However, while C3 deficiency generally fa-
vored the preservation of the airway microvascular circula-
tion, it also paradoxically enhanced capillary deposition of
thrombin, which led to excessive generation of C5a that
caused increased vascular leakage [97]. This study illustrates
how using transplant microvascular perfusion as a separate
metric of therapeutic success has the possibility of revealing
surprising results which might not be considered if only
histology is considered. We subsequently demonstrated that
inhibition of both C3 and C5 resulted in near normal micro-
vascular perfusion during acute rejection even in the absence
of T cell suppression [97]. This study is consistent with an
earlier finding that showed that thrombin may act as a C3-
dependent C5 convertase [98]. Other studies have demonstrat-
ed that C5a directly induced apoptosis of target cells, such as

EC and adrenomedullary cells [99, 100]. Thus, it is possible
that in synergy with C3 deficiency, inhibition of C5a-induced
EC injury will result in enhanced microvascular protection in
different forms of solid organ transplantation.

While there is tremendous evidence demonstrating that
antibody-induced EC injury occurs through complement-
dependent mechanisms, noncomplement-fixing anti-EC anti-
bodies have also been identified in transplant tissue, suggest-
ing that there are alternative mechanisms for antibody-
mediated EC injury [87]. Indeed, alloantibodies can induce
target cell apoptosis through the low-affinity Fc receptor for
IgG, FcγRIII (CD16), on the surface of NK cells and macro-
phages [101]. In the last few decades, complement-
independent antibody-mediated EC injury has been increas-
ingly recognized as a relevant mechanism in allograft rejec-
tion, and this complement-independent EC injury is likely the
most prominent mechanism in chronic antibody mediated
rejection [101, 102].

EC exposure to high levels of donor-reactive antibodies
usually results in its lysis or apoptosis. On the other hand, low
levels of donor-reactive antibodies still lead to activation of
complement, but form sublytic levels of MAC. In this situa-
tion, MAC rather than directly killing ECs leads to a proin-
flammatory EC phenotypic change, a process known as EC
activation [43, 84] (Fig. 1). Sublytic concentrations of MAC
have been shown to stimulate EC expression of the adhesion
molecules, ICAM-1, VCAM-1, and ELAM-1 [103]. Comple-
ment also induces EC production of proinflammatory media-
tors such as IL-8, MCP-1, and IL-1α through the activation of
NF-κB [104, 105], as well RANTES in an IL-1α-dependent
manner [106]. In a recent landmark study by Jordan Pober’s
group, a fascinating finding emerged that while alloantibody-
induced MAC deposition on treated ECs, the MAC itself did
not directly cause EC apoptosis but rather enhanced the re-
cruitment of vasculopathic CD4+ T cells via noncanonical
NF-κB signaling in ECs [107]. MAC also induces IL-6 pro-
duction by vascular smooth muscle cells [108], suggesting
that activated complement may also promote an inflammatory
response by stimulating other types of cell layers in the
microvasculature.

Anti-HLA class I antibodies can also directly activate ECs
in the absence of complement by promoting Weibel–Palade
body exocytosis, characterized by the release of Von
Willebrand Factor (vWF) and externalization of P-selectin, a
molecule that facilitates leukocyte rolling and its trafficking to
the tissue parenchyma [109]. Consistent with this finding,
anti-HLA class I antibodies were shown to promote macro-
phage recruitment into cardiac allografts, and that this was
dependent on the expression of P-selectin on the EC surface
[110]. On the other hand, it was recently demonstrated that
complement-fixing antibodies enhanced the recruitment of
monocytes compared with noncomplement-fixing antibodies
through dual-activating effects on both ECs and monocytes

800 J Mol Med (2014) 92:797–810



[111]. Collectively, these studies suggest that donor-reactive
antibodies can induce EC death either through complement-
dependent or complement-independent mechanisms or by
promoting cell-mediated immune responses.

Oxidative stress induced EC damage

Oxidative stress can result from an imbalance between the
generation and elimination of ROS and can lead to EC dys-
function or death [112]. Accumulation of excessive oxidants
have been commonly seen in solid organ transplants and are
attributable to a range of factors including ischemia-
reperfusion injury, posttransplant graft dysfunction, use of
immunosuppressive drugs as well as primary disease of the
transplanted organ [113–117]. In ischemia-reperfusion injury,
ROS is likely produced, initially, by donor vascular EC cells,
followed by a second, much larger, burst of production by
phagocytic cells such as neutrophils and macrophages [43,
118]. In lung transplants with chronic rejection, neutrophils
were shown to be a major source of ROS generation [115].
The immunosuppressant, cyclosporine A, induces ROS pro-
duction in hepatocytes and renal mesangial cells [119, 120].
Sirolimus also promotes ROS production by vascular cells
and causes vessel dysfunction [121].

Recent studies have elucidated the mechanisms by which
ROS cause EC dysfunction or death. Low concentrations of
H2O2 increase EC surface expression of ICAM-1 and MHC

class I molecules [122]; this finding suggests that low levels of
oxidative stress do not cause irreversible injury but instead
activate ECs and promote inflammation. Oxidized phospho-
lipids also modulate the inflammatory response of ECs by
inducing the unfolded protein response (UPR) [123]. Lastly,
in the mouse OTT model, we have shown that ROS produc-
tion is associated with apoptosis of airway microvascular ECs
[124].

ROS induction of EC apoptosis may act through activation
of the protein apoptosis signaling kinase 1 (ASK1) [125].
ROS may activate ASK1 by lowering intracellular levels of
glutathione and reduced thioredoxin [126, 127], releasing
ASK1 from its inhibitor, protein 14-3-3 [128] and activating
protein kinase D (PKD), which facilitates the oligomerization
and phosphorylation required for ASK1 activation [129].
Activated ASK1 then induces EC apoptosis in a JNK-
dependent or JNK-independent manner [125, 130]. Oxidative
stress also induced EC apoptosis through NF-κB activation
[131]. These studies indicate that ECs of the transplanted
organ may be subject to ROS-induced apoptosis through
discrete mechanisms.

EC damage by immunosuppressive drugs

It is now well accepted that many of the immunosuppressive
drugs used to prevent rejection can cause EC damage and
dysfunction [132]. Studies have shown that different types of

Fig. 1 Model summarizing how antibody and complement components
induce endothelial accommodation and activation. Following antibody
binding to MHCmolecules or binding of antibody-activated complement
components, such as C3a, C5a, and sublytic concentrations of C5b-9,
endothelial cells express anti-apoptotic proteins such as Bcl-2, Bcl-XL,
and HO-1; complement regulatory factors such as CD46, CD55, and
CD59; adhesion molecules such as ICAM-1, VCAM-1, ELAM-1, E-
selectin, and P-selectin; and chemotactic molecules such as CCL-20,

CCL-5, IL-6, IL-1α, IL-8, andMCP-1. EC expression of these molecules
is associated with endothelial accommodation or activation. Abbrevia-
tions: Bcl B-cell lymphoma, HO heme oxygenase, CD cluster of differ-
entiation, ICAM intercellular adhesion molecule, VCAM vascular cell-
adhesion molecule, ELAM endothelial cell-leukocyte adhesion molecule,
E-selectin endothelial cell-selectin, P-selectin platelet-selectin, CCL CC-
chemokine ligand, IL interleukin, MCP monocyte chemotactic protein
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immunosuppressive drugs induce distinct EC dysfunction.
One study showed that at therapeutic concentrations, cyclo-
sporine A, rapamycin, and mycophenolic acid all strongly
induce oxidative stress in cultured human microvascular
ECs and that this stimulation correlated with enhanced EC
apoptosis. On the other hand, tacrolimus only slightly induced
oxidative stress but led to profound increases in endothelin-1
(ET-1) production. Methylprednisolone causes the least
amount of EC dysfunction [133]. Interestingly, another study
showed that endothelial wound repair was significantly im-
paired by methylprednisolone but not by cyclosporine A and
azathioprine [134]. Consistent with the in vitro findings, pa-
tients with kidney transplants treated with cyclosporine A had
impaired NO production at both basal and stimulated condi-
tions compared to patients treated with azathioprine and to
healthy controls [135]. Tacrolimus also causes glomerular
injury through induction of EC dysfunction by directly upreg-
ulating nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase activity and promoting ROS production
[136]. Additionally, cyclosporine A led to microvascular en-
dothelial dysfunction in patients with heart transplants [137].
Sirolimus (rapamycin) also causes coronary vascular dysfunc-
tion in cardiac allografts by upregulating mitochondrial super-
oxide release and by enhancing NADPH oxidase-driven su-
peroxide production [121]. These preclinical and clinical stud-
ies collectively demonstrated that commonly used immuno-
suppressive drugs induce EC dysfunction, with excessively
produced ROS as a prominent downstream effector.

Microvascular thrombosis

The endothelium is the master regulator of microvascular
thrombosis. EC expression of a number of factors is known
to be prothrombotic; these factors include procoagulants, such
as vWF, tissue factor (TF), thrombin receptor and PAI-1,
adhesion molecules, such as ICAM-1, VCAM-1, E-selectin
and P-selectin, vasoconstrictors such as ET-1 and platelet
activating factor (PAF), and proapoptotic molecules such as
Bax, Bad, and CCP32 [138]. Therefore, both the alloimmune
response and nonimmune factor-induced EC activation or
death predisposes the transplant microvasculature to throm-
bosis [42, 43]. In addition, immunosuppressive drugs such as
cyclosporine A, tacrolimus, rapamycin, and antithymocyte
globulin have all been shown to enhance thrombus formation
[139]. In a clinical study, fibrin was found in the microcircu-
lation in about 50 % of human cardiac transplants 1 month
following transplantation and that fibrin deposition was asso-
ciated with the development of coronary artery disease and
graft failure [140]. Moreover, prothrombogenic characteristics
of the microvasculature observed in the early posttransplant
period in heart transplant patients were persistent in a long-

term follow-up of [140, 141]. Correspondingly, a rat model of
heart transplantation showed that a hypercoagulable micro-
vasculature is associated with the development of coronary
artery disease [142]. High-dose treatment with antithrombin
III has been demonstrated to induce long-term survival of
mouse cardiac allografts [143]. Similarly, platelet inhibition
attenuated the development of fibrosis in airway allografts
[144]. Thus, in addition to EC apoptosis induced by
alloimmunity, microvascular thrombosis can also contribute
to compromised transplant perfusion leading to chronic
rejection.

EC resistance to injury

ECs can acquire resistance to injury by upregulating a number
of cytoprotective molecules. As stated above, cell-mediated
EC injury depends primarily on the GrB/perforin pathway and
to lesser degree, the FAS/FASL pathway. Studies from cancer
biology have demonstrated that induced overexpression of
proteinase inhibitor 9 (PI9), a potent endogenous inhibitor of
GrB, protected cancer cells from T cell and NK cell-mediated
apoptosis [145, 146]. It has also been shown that high PI9
expression in ECs protected these cells against cytolytic cell-
mediated killing [147]. PI9 expression has been shown to be
inducible in ECs by an NF-κB activator, phorbol ester PMA
[148]. These studies suggest that EC expression of PI9 may
render its resistance to cytotoxic cell-induced apoptosis.

ECs may also become resistant to antibody-mediated cell
injury, a phenomenon known as accommodation [101]
(Fig 1). Expression of anti-apoptotic genes such as Bcl-2,
A20, Bcl-XL, and HO-1 has been shown to be increased in
ECs of accommodated xenografts [149, 150]. Bcl-2, Bcl-XL,
and HO-1 expression are also significantly increased in ac-
commodated mouse cardiac transplants and silencing of Bcl-2
abolished the accommodation [151]. Increased expression of
Bcl-XL was found in ECs of accommodated human renal
transplants with circulating anti-donor antibody [152]. This
study also showed that Bcl-XL expression in human ECs can
be induced by exposure to low concentrations of anti-HLA
antibody. Further studies demonstrated that subsaturating con-
centrations of anti-HLA class I antibody not only induced
high expression levels of Bcl-2, Bcl-XL, and HO-1 but also
activated the PI3K/Akt pathway, which facilitated phosphor-
ylation and consequent inactivation of the proapoptotic mol-
ecule, Bad [153].

Complement regulation may also be involved in graft
accommodation via human complement regulatory factors
including CR1, decay accelerating factor (DAF, CD55), mem-
brane cofactor protein (MCP, CD46), and CD59.Mice express
complement receptor-related protein (CRRY) but not MCP.
CD59 inhibits the MAC and the other factors inhibit the
activation of both the classical and alternative pathways at
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the level of C3 convertase and C5 convertase [101]. A number
of studies suggest that upregulation of complement regulatory
factors plays a protective role in transplanted organs. EC
expression of CD55 and CD59 has been shown to be associ-
atedwith improved graft function in patients with complement
deposition [154, 155]. Expression of both CD46 and CD55 is
low in human lung transplants with chronic rejection [156].
Donor EC expression of CD46 in pig-to-baboon xenotrans-
plantation is required to limit hyperacute rejection [157]. In
vitro, CD55 expression can be induced by proangiogenic
factors such as VEGF and FGF-2 [158]. Interestingly,
VEGF-induced CD55 expression can be inhibited by cyclo-
sporine A [159]. These studies suggest that proangiogenic
factors may promote vascular repair by protecting ECs from
complement-mediated injury and that immunosuppressive
drugs may also cause EC injury by negatively regulating the
complement regulatory factors. IFN-γ, TNF-α, and C5b-9
complex all induce EC expression of CD55, and IFN-γ with
TNF-α stimulation reduces complement C3 deposition [160],
suggesting a possible physiological feedback mechanism for
maintaining the integrity of the microvasculature in the pro-
inflammatory milieu of organ transplants. Nonimmune shear
stress was also shown to induce CD59 expression in ECs
[161] and is another mechanism by which a complement
regulatory factor counteracts vaso-injurious stimuli.

Microvascular repair

Using a functional mouse orthotopic tracheal transplant mod-
el, our group described the microvascular phenotypic change
in airway transplants undergoing unmitigated alloimmune
attack and the physiologic consequences of this microvascular
destruction. Of note, chronic rejection developed in this model
manifests mainly as subepithelial fibrosis rather than luminal
fibrosis and so does not replicate the obliterative bronchiolitis
(OB) lesion found in human lung transplants but is quite
similar to the large airway precursor of BOS, lymphocytic
bronchitis. The mechanisms associated with airway fibrosis
from this model have generally been used to cautiously infer
causes of fibroproliferation developing in OB lesions [10, 11].
It is possible, and perhaps likely, that more complex solid
organ transplants are not revascularized in the same manner
as more architecturally simple tracheas; however, use of this
airway model has made it possible to divine simple ‘rules’ of
vascular reorganization following rejection, rescue and re-
modeling. Following transplantation, the graft microvascula-
ture in airway transplants display two general phenotypes
during acute and chronic rejection respectively. In acute rejec-
tion, allografts maintain a donor-derived circulation which is
undergoing both injury and concomitant repair prior to de-
struction. This first vascular phenotype is characterized by
vessels that are relatively permeable to microspheres with

evidence of the repair by donor-derived Tie2+ angiogenic
cells. Transplants perfused by vessels of this phenotype can
be restored to normal with immunosuppression; these allo-
grafts are never ischemic and display pseudostratified colum-
nar epithelium without fibrosis.

The second vascular phenotype which occurs as a result of
chronic rejection consists of a regrown chimeric microvascu-
lature, largely of recipient origin, following destruction of the
donor circulatory system. It is likely that, in organs with larger
mass than airway allografts, that the degree of chimerism is
substantially less than observed in the tracheal model. In the
latter model, this vascular phenotype is characterized by new
vessels that are structurally and functionally abnormal and
perfuse airways now lined by flattened, cuboidal, and
nonciliated epithelial cells overlying subepithelial fibrosis
[11]. We think these are prototypes of GMVD. In other words,
GMVD includes distinct microvascular pathologies that may
appear in different rejection phases. Once the airway trans-
plant loses its functional microvasculature, it cannot be res-
cued by immunosuppressive therapies and progression to
chronic rejection is unrelenting [10]. Principles that emerged
from this work were that just as microvessel loss following
acute rejection predicted a lack of response to immunotherapy,
so preventing microvessel loss could prevent chronic
rejection.

The repair of donor vessels through the augmentation of
endogenous cellular repair processes in both the donor and
recipient may be key for maintaining a normal transplant. It is
now generally accepted that the ECs which contribute to this
repair process are derived both from the local vascular bed as
well as from the systemic circulation [28, 162]. Because of its
importance in regulating the control of angiogenesis in hyp-
oxic tissue, we investigated the role of hypoxia inducible
factor-1alpha (HIF-1α) in transplant vascular repair. We
showed that HIF-1α deficiency in airway transplant donors
accelerated microvascular loss, consistent with HIF-1α being
an important signaling molecule in microvessel repair. We
found that recipient-derived Tie2-expressing cells (i.e., cells
with EC, monocyte and pericyte lineages) are present in the
donor during acute rejection and that the recruitment and
retention of these proangiogenic cells are regulated by
donor-expressed HIF-1α and its downstream gene, SDF-1.
Overexpression of HIF-1α in the donor promoted enhanced
migration of recipient-derived proangiogenic cells and
prolonged tissue perfusion, which in turn attenuated the de-
velopment of tissue fibrosis [11].We further demonstrated that
knockdown of the VHL gene, a negative regulator of HIF, in
Tie2 lineage cells of the recipient, promoted microvascular
repair in the transplant [163]. This confirms that recipient-
derived proangiogenic cells contribute to the repair of the
donor microvasculature and provides evidence that overex-
pression of HIF in proangiogenic cells enhances their repara-
tive capacity.
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Together, these studies suggest that overexpression of HIF-
1α in both the donor and recipient promotes allograft micro-
vascular repair and that this enhanced repair may result from
an increased expression of proangiogenic factors such as
placental growth factor (PLGF), SDF-1 and to a lesser degree
VEGF [11, 124, 163]. Interestingly, while EC VEGF auto-
crine signaling has been shown to be required for vascular
homeostasis [164], excessive VEGF acting on EC in a para-
crine fashion often results in immature vasculature [165]. It is
therefore possible that locally overexpressed HIF-1α (espe-
cially in EC lineage cells) may promote transplant vascular
homeostasis in part by inducing EC expression of VEGF,
which in turn promotes its survival. Such excessive VEGF
signaling may occur secondary to ‘leukocyte-induced angio-
genesis,’ first described in the 1970s [166, 167]. As reviewed
by Contreras and Briscoe [168], inflammation itself promotes
a form of angiogenesis that is ultimately deleterious to the
transplant. Early physiologic homeostatic repair of graft mi-
crovasculature in the absence of inflammation appears to be
an important factor in limiting tissue fibrosis and chronic
rejection. By contrast, if VEGF is delivered to the tissue, via
exogenous production or by VEGF-producing leukocytes its
effects may be nonphysiological and cause abnormal
neoangiogenesis and disease. In the case of allograft rejection,
delivery of VEGF in this manner results in a maladaptive type
of angiogenesis that causes local hypoxia reminiscent of tu-
mor neovascularization (reviewed in [169]).

While HIF-1α signaling can promote microvessel integrity,
other proinflammatory pathways can foster repair, which as
alluded to above may be less functional than vessels repaired
in the absence of inflammation. The C5b-9 complex has also
been shown to induce EC proliferation and migration in an
Akt-dependent manner [170], suggesting a potential feedback
mechanism for enhancing microvascular repair following
alloimmune-induced inflammation. Other proinflammatory
mediators produced by leukocytes may also promote EC
activation, proliferation, and angiogenesis [169]. However,
these newly produced vessels are abnormal and are not opti-
mized for the delivery of oxygen and nutrition. Therefore, the
ideal therapeutic strategy to promote microvascular repair
should not only mitigate inflammation but also promote more
physiological angiogenesis (such as vascular repair promoted
by HIF-1α).

Microvascular remodeling and fibrosis

Fibrosis is characterized by the excessive production of extra-
cellular matrix constituents and is often a result of chronic
inflammation caused by inadequate tissue repair [171, 172].
Pathological angiogenesis, also called vascular remodeling, is
associated with all fibroproliferative disorders [173]. In a
heterotopic mouse trachea transplantation model, CXCR2

ligand/CXCR2 signaling was associated with pathological
angiogenesis and disruption of this signaling pathway attenu-
ated late abnormal vascular remodeling [174]. Other proin-
flammatory mediators such as IL-1α, IL-1β and TNF-α also
promote vascular remodeling [175], suggesting that patholog-
ical angiogenesis is likely promoted by the proinflammatory
microenvironment of the transplanted organs.

There is an increasing appreciation that the microvascula-
ture plays an important role in the development of fibrosis and
recent studies are beginning to elucidate the mechanisms by
which microvascular remodeling promotes tissue
fibroproliferation [176] (Fig. 2). Hypoxia has consistently
been shown to be involved in the development of lung,
cardiac, liver, and kidney fibrosis [177–180]. In the mouse
orthotopic tracheal transplant model, we found that microvas-
cular remodeling starts after the loss of airway vessels. The
remodeled vessels are tortuous, smaller in caliber, leaky, have
sluggish blood flow, and have lower pO2 in the surrounding
tissue, suggesting that these vessels are both structurally and
functionally abnormal. Promotion of vascular repair of the
airway allograft by overexpressing HIF-1α early after trans-
plantation diminished late tissue remodeling, resulted in aug-
mented tissue pO2 and is associated with a lesser degree of
fibroproliferation [11, 163]. Conversely, insufficient vascular

Fig. 2 Microvascular injury and the development of fibrosis. Normal
microvasculature of the solid organ transplant can be damaged by im-
mune cells such as CTLs, NK cells, macrophages, and neutrophils;
antibody, complement, oxidative stress, and immunosuppressive drugs
also induce vascular injury. Damaged microvasculature can be repaired
and reversed to normal through local production of angiogenic factors,
proliferation of resident vascular progenitor cells, as well as recruitment
of recipient-derived proangiogenic cells. Insufficient microvascular repair
leads to its remodeling. Both injured and remodeled microvasculature are
functionally abnormal and results in tissue hypoxia followed by tissue
fibroproliferation. In addition, vascular remodeling enhances both the
endothelial cell to mesenchymal and pericyte to mesenchymal transition,
both of which promotes fibrosis. Abbreviations: EC endothelial cell, PC
pericytes, CTL cytotoxic T lymphocyte, NK natural killer
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repair followed by remodeling causes prolonged tissue hyp-
oxia which may subsequently act as a promoter of tissue
fibrosis. These findings suggest that tissue hypoxia due to
lack of perfusion may be a leading cause of fibrotic remodel-
ing. Recent work has also provided ample evidence that both
ECs and pericytes may differentiate into myofibroblasts and
contribute to the production of extracellular matrix proteins
[181, 182]. Therefore, microvascular remodeling may pro-
mote tissue fibroproliferation by multiple discrete
mechanisms.

Concluding remarks

Research over the last few decades has established that ECs
are a primary target for alloimmune responses. There is also an
increasing recognition that a functional microvasculature is an
important determinant of the long-term health of transplanted
solid organs. Given that extensive microvascular injury with
insufficient repair leads to pathogenic angiogenesis and sub-
sequent fibrosis, preservation of a healthy microvasculature
by inhibiting pathways that lead tomicrovessel injury, increas-
ing EC resistance to injury, or promoting vascular repair
during acute rejection may represent an effective and novel
therapeutic strategy for attenuating or even preventing chronic
rejection. Inhibition of complement activation, oxidative
stress, and thrombosis pathways may represent potential ther-
apeutic targets for promoting microvascular health. Also,
careful selection of immunosuppressive drugs is required
andwill be helpful in preventing unwanted EC injury. Another
strategy for maintaining a healthy microvasculature is to in-
duce EC-specific overexpression of cytoprotective molecules
such as Bcl-2, Bcl-XL, HO-1, PI9, and complement regulatory
proteins such as CD55, CD46, and CD59, all of which have
been shown to promote resistance to cell- and/or antibody-
mediate injury. Additionally, promotion of physiological mi-
crovascular repair such as by enhancing HIF-1α expression,
especially in cells of EC lineage, during acute rejection may
also be effective in preventing the development of chronic
rejection; effectiveness of this approach will likely be en-
hanced by limiting leukocyte-driven angiogenesis (i.e., giving
increased immunosuppression). Lastly, once pathological an-
giogenesis and accompanying fibroproliferation has started,
blockade of this nonproductive vascular remodeling may also
be of therapeutic efficacy. Toward this end, a better under-
standing of angiogenesis gained from developmental models
may help to discover other effective targets for intervention.

GMVDmay display distinct forms during acute and chron-
ic rejection phases. During acute rejection, GMVD can be
reversed to normal by appropriate immunosuppression with
potential benefit from adjuvant therapies which promote phys-
iological vascular repair. During chronic rejection, an emerg-
ing therapeutic goal appears to be attenuating pathological

microvascular remodeling. Of note, both forms of GMVD
may coexist in a transplant when different parts of the organ
are in different rejection phases. Identification of the forms of
GMVD within a transplant is therefore essential for optimiz-
ing new effective therapeutic interventions.
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