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Abstract: Hydrocephalus induced by intraventricular hemorrhage (IVH) is associated with unfavor-
able prognosis. The increased permeability of choroid plexus and breakdown of the blood–brain
barrier (BBB) was reported as a prominent mechanism of IVH-induced hydrocephalus, and vascular
endothelial–cadherin (VE–cadherin) was demonstrated to be relevant. Metformin was reported to
protect endothelial junction and preserve permeability widely; however, its role in hydrocephalus
remains unclear. In this study, the decreased expression of VE–cadherin in the choroid plexus, ac-
companied with ventricle dilation, was investigated in an IVH rat model induced by intraventricular
injection of autologous blood. Metformin treatment ameliorated hydrocephalus and upregulated
VE–cadherin expression in choroid plexus meanwhile. We then observed that the internalization
of VE–cadherin caused by the activation of vascular endothelial growth factor (VEGF) signaling
after IVH was related to the occurrence of hydrocephalus, whereas it can be reversed by metformin
treatment. Restraining VEGF signaling by antagonizing VEGFR2 or inhibiting Src phosphorylation
increased the expression of VE–cadherin and decreased the severity of hydrocephalus after IVH. Our
study demonstrated that the internalization of VE–cadherin via the activation of VEGF signaling
may contribute to IVH-induced hydrocephalus, and metformin may be a potential protector via
suppressing this pathway.
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1. Introduction

Intraventricular hemorrhage (IVH) frequently occurs in patients with intracerebral
hemorrhage (ICH) and subarachnoid hemorrhage (SAH), and is associated with high
morbidity and mortality [1–3]. Hydrocephalus, a severe complication of IVH, is recognized
as a prominent risk factor of poor prognosis [4,5]. Current research confirms that the
obstruction of CSF outflow or reduced reabsorption caused by blood clots blockage, and
the increased generation of CSF caused by blood metabolites, are the two main mechanisms
of hydrocephalus after IVH [4,6–9]. However, there are few effective treatments targeting
hydrocephalus yet [10], which surges an urgent need to explore other potential mechanisms
during the process.

The choroid plexus (ChP) is a highly vascularized tissue that secrets cerebrospinal
fluid (CSF) and was suggested as a critical contributor in hydrocephalus after IVH [11].
Together with tight junctions and adherens junctions, ChP constructs the blood–brain bar-
rier (BBB) and prevents paracellular passage [11,12]. Our previous studies discovered that
the decrease of vascular endothelial-cadherin (VE–cadherin) in ChP was associated with
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thrombin-induced hydrocephalus [13]. VE–cadherin, a component of adherens junctions,
is essential for vascular integrity and permeability [14,15]. The reduction of VE–cadherin
in the central nervous system could lead to brain edema, hydrocephalus, and neuroinflam-
mation for the breakdown of BBB integrity [13,16,17].

It is widely accepted that the breakdown of VE–cadherin in endothelial cells is trig-
gered by vascular endothelial growth factor (VEGF) [14,18]. VEGF, an angiogenic factor
regulating angiogenesis and vascular permeability, functions via binding with VEGF recep-
tor 2 (VEGFR2), then results in the VE–cadherin phosphorylation and internalization by a
Src-dependent mechanism [14,18,19]. Several studies showed that the expression of VEGF
is elevated in neurological disorders [20–25]. In the ischemic stroke model, it was found
that VEGF destroyed the integrity of the BBB in the acute phase, while playing a reciprocal
role as neuroprotection in the recovery phase [21]. Notably, VEGF elevation was reported
in patients with hydrocephalus [22–24]. Animal models showed that injection of VEGF into
the lateral ventricle could cause hydrocephalus in rats, and VEGF inhibitor bevacizumab
can restrain the formation of hydrocephalus [25]. However, the effect of VE–cadherin in
homologous blood-induced hydrocephalus and whether it is related with the activation of
VEGF remains unknown.

Metformin, a most widely prescribed hypoglycemic drug, has multiple effects of
anti-inflammation, endothelial protection and, notably, junction protein reservation [26–30].
Zhao et al. discovered that metformin treatment could reverse junction protein reduction in
endothelial cell and permeability exacerbation induced by VEGF exposure, which furthers
ameliorate tumor-induced edema [31]. Moreover, metformin was reported to attenuate
permeability of BBB and thus alleviate brain edema in the ischemia/reperfusion injury
and traumatic brain injury of rats [32–34]. However, the role of metformin in VE–cadherin
expression and then in IVH-induced hydrocephalus remains unknown.

In this study, we aim to explore the role of VE–cadherin internalization mediated by
VEGF/VEGFR2/p-Src in IVH-induced hydrocephalus and the mechanisms of metformin’s
protection.

2. Results
2.1. Ventricular Injection of Homologous Blood Caused Hydrocephalus and Downregulation of
VE–Cadherin Expression in Choroid Plexus

This current study confirms that the injection of homologous blood results in signifi-
cant ventricular dilation (Figure 1A). Lateral ventricular volumes in IVH rats were signifi-
cantly larger than in rats receiving the saline injection at 7 days (Figure 1B,
32.02 ± 2.166 vs. 12.65 ± 0.8726 mm3 in sham, p < 0.01). In order to explore the role
of VE–cadherin in IVH-induced hydrocephalus, we investigated the level of VE–cadherin
expression in choroid plexus. In the sham group, VE–cadherin was found to be mainly
distributed in the borders of choroid plexus endothelial cells, which was significantly
declined after IVH (Figure 1C). Western blot equally revealed a reduction of VE–cadherin
expression in IVH rats, compared to the sham group (Figure 1D, p < 0.01).
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Figure 1. Ventricular injection of homologous blood caused hydrocephalus and downregualtion of
choroid plexus VE–cadherin expression (A) Frozen coronal brain sections at 7 days after injection
of 200 µL of saline or blood into the right lateral ventricle. (B) Quantification of lateral ventricle
volume from section images, n = 6. (C) Immunofluorescence staining of coronal sections showed the
expression of VE–cadherin in choroid plexus, n = 4, Scale bar = 50 µm. (D) VE–cadherin expression
level was assessed by western blot, n = 6. Data were analyzed by t-test for comparisons between two
groups. Values are means ± SEM, ** p < 0.01.

2.2. Metformin Attenuated the Hydrocepralus and Increased VE–Cadherin Expression in Choroid
Plexus after IVH

To examine the mechanisms of metformin’s protection in IVH-induced hydrocephalus,
rats were treated with metformin (50 mg/kg, i.p.) or saline continuously for 7 days after
IVH. Results showed a significant reduction in hydrocephalus compared to saline injection
(Figure 2A,B, 30.72 ± 2.132 vs. 20.88 ± 1.509 mm3 in IVH + Saline, p < 0.01). In this study,
we hypothesized that metformin could attenuate hydrocephalus by enhancing VE–cadherin
expression. As immunofluorescence staining and western blot revealed, the increase of VE–
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cadherin was accompanied with hydrocephalus amelioration after metformin treatment
(Figure 2C,D, p < 0.05).
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Figure 2. Metformin attenuated the hydrocepralus and increased VE–cadherin expression in choroid
plexus after IVH (A) Injection of 200 µL of blood into the right lateral ventricle, rats were then treated
with saline or metformin for 7 days, examples of frozen coronal brain sections. (B) Quantification
of lateral ventricle volume from section images, n = 6. (C) Immunofluorescence staining of coro-
nal sections showed the expression of VE–cadherin in choroid plexus, n = 4, Scale bar = 50 µm.
(D) VE–cadherin expression level was assessed by western blot, n = 6. Data were analyzed by t-test
for comparisons between two groups. Values are means ± SEM, * p < 0.05, ** p < 0.01.

2.3. Metformin Downregulated the Internalization of VE–Cadherin in Choroid Plexus after IVH

We further evaluated whether the reduction of VE–cadherin was associated with
internalization. As immunofluorescence staining showed, scattered fluorescent spots in
the cytoplasm were detected at 7 days after IVH, which were diminished by metformin
treatment (Figure 3A). Likewise, quantification confirmed a reduction of membrane VE–
cadherin in choroid plexus after IVH (Figure 3C, p < 0.01), accompanied with an elevation
in cytoplasm (Figure 3B, p < 0.01), while continuous metformin injection could reverse it
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(Figure 3B,C, p < 0.05). Results indicate the internalization and breakdown of membrane
VE–cadherin could be attenuated by metformin.
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Figure 3. Metformin downregulated the internalization of VE–cadherin in choroid plexus after IVH
(A) immunofluorescence staining of coronal sections showed the internalization of VE–cadherin,
white arrow showed the intracellular fluorescent signal, n = 4, Scale bar = 10 µm. (B) Western
blot showed the VE–cadherin expression level in cytoplasm, n = 6. (C) Western blot showed the
VE–cadherin expression level in membrane, n = 6. Data were analyzed by one-way ANOVA with
a Tukey’s post hoc test. Values are means ± SEM, ** p < 0.01 vs. sham, # p < 0.05 vs. IVH + Saline,
## p < 0.01 vs. IVH + Saline.

2.4. Metformin Diminished the Upregulation of VEGF Expression after IVH

Rats were treated with SU5416 (25 mg/kg, Day0 and Day3, i.p.), an inhibitor of
VEGFR2, or metformin after IVH. Compared to the sham group, the expression of VEGF
(Figure 4A, p < 0.01) and VEGFR2 (Figure 4B, p < 0.01) significantly increased after IVH.
However, inhibitor of VEGFR2 or metformin treatment downregulated the level of VEGF
only (Figure 4A, p < 0.01), while the impact on VEGFR2 expression was not significant
(Figure 4B). This was further investigated using a laser-scanning confocal microscope,
indicating an increase in VEGFR2 localization to choroid plexus after IVH (Figure 4C).
These results showed that metformin could decline the signal of VEGF with VEGFR2 by
decreasing the expression of VEGF after IVH.
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Figure 4. Metformin decreased the upregulated expression of VEGF after IVH (A) Western blot
showed the VEGF expression level in choroid plexus, n = 6. (B) Western blot showed the VEGFR2
expression level in choroid plexus, n = 6. (C) immunofluorescence staining of coronal sections showed
the expression of VEGFR2 in choroid plexus, n = 4, Scale bar = 50 µm. Data were analyzed by one-way
ANOVA with a Tukey’s post hoc test. Values are means ± SEM, ** p < 0.01 vs. sham, ## p < 0.01 vs.
IVH + Vehicle.

2.5. Inhibition of VEGFR2/p-Src Attenuated IVH-Induced Hydrocephalus and Escalated the Level
of VE–Cadherin

We next used the VEGFR2 inhibitor (SU5416, 25 mg/kg, Day0 and Day3, i.p.), Src
inhibitor (PP2, 1 mg/kg, Day0 and Day3, i.p.) to explore the downstream mechanism
in IVH-induced hydrocephalus. Results revealed that infusing SU5416 or PP2 alleviated
ventricular dilation after IVH (Figure 5A,B, p < 0.01). Moreover, the increase of p-Src was
reversed by inhibiting of VEGFR2 or p-Src (Figure 5C, p < 0.05), while the expression
of VE–cadherin was upregulated (Figure 5D, p < 0.05). This indicated that inhibiting
VEGF/VEGFR2/p-Src pathway could increase VE–cadherin expression and then ameliorate
IVH-induced hydrocephalus.
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Figure 5. Inhibition of VEGFR2/p-Src attenuated IVH-induced hydrocephalus and increased the
level of VE–cadherin (A) Frozen coronal brain sections at 7 days after injection of 200 µL of saline
or blood into the right lateral ventricle with a treatment of vehicle/SU5416/PP2. (B) Quantification
of lateral ventricle volume from section images, n = 6. (C) p-Src expression level was assessed
by western blot, n = 6. (D) VE–cadherin expression level was assessed by western blot, n = 6.
Data were analyzed by one-way ANOVA with a Tukey’s post hoc test. Values are means ± SEM,
** p < 0.01 vs. Sham, # p < 0.05 vs. IVH + Vehicle, ## p < 0.01 vs. IVH + Vehicle.

Together with previous results, these data demonstrated that metformin may restore
the expression of VE–cadherin in choroid plexus after IVH, which is dependent on VEGF
signal activation, and thus attenuate hydrocephalus.
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3. Discussion

This study demonstrates these findings as follows: (1) the internalization and reduction
of membrane VE–cadherin in choroid plexus contributed to IVH-induced hydrocephalus;
(2) metformin inhibited VEGF/VEGFR2/p-Src pathway activation and reversed the inter-
nalization of VE–cadherin, thereby ameliorated IVH-induced hydrocephalus.

Hydrocephalus induced by IVH is associated with unfavorable long-term outcomes [35,36].
The possible mechanisms of hydrocephalus may be attributed to unbalanced CSF-generating
and CSF-clearing, in which choroid plexus makes a critical impact [37–40].The choroid plexus,
which is composed of choroid plexus epithelial cells and fenestrated vascular endothelial cells,
constructs the BBB and regulates the movement of water and solutes [12,41]. Controlling
paracellular and transcellular channels, junction protein can affect the permeability of ChP [42].
Our previous studies discovered the decrease of VE–cadherin in ChP caused BBB destruction
and leakage aggravation in thrombin-induced hydrocephalus [13]. Consistent with these
findings, we observed intraventricular injection of autologous blood triggered the reduction of
VE–cadherin in the choroid plexus, which was responsible for subsequent hydrocephalus.

VE–cadherin is essential for vascular integrity and the restrictive barrier, while the in-
tracellular domain of VE–cadherin can be phosphorylated due to VEGF activation [43–45].
The main signal receptor of VEGF, VEGFR2, once be phosphorylated, could regulate the
activation of Src kinases, and thus induce VE–cadherin phosphorylation and internal-
ization [18,45,46]. In addition, VEGF signaling reduces the linkage of VE–cadherin and
associated proteins, such as p120-catenin and β-catenin, aggravates the endocytosis of
VE–cadherin [47,48]. Besides being partially degraded, the intracellular VE–cadherin can
relocate to the cell membrane after removal of VEGF stimulation [14,18].

Some studies revealed that VEGF was increased after stroke or hydrocephalus. VEGF
is secreted by neurons, pericytes, astrocytes, microglia, macrophages and abundantly by
choroid plexus in nervous system, while VEGFR2 is significantly expressed on ependymal
cells, vascular endothelium, and ChP in the ventricle [19,49–51]. Upon the activation of
VEGF, the choroid plexus vascular endothelial fenestration is induced to promote the water
and solutes transport from blood to ventricle [50,52]. Our results show that the expression
of VEGF and VEGFR2 in ChP increased after IVH. Besides, further investigation revealed
that the expression of VE–cadherin decreased in the cell membrane, while increased in
the cytoplasm, indicating the increased internalization after IVH. The maldistribution of
VE–cadherin in ChP resulted in the destruction of intercellular junction, the aggravation of
fenestration and the breakdown of BBB, which contributed to hydrocephalus. Moreover,
barrier disruption caused astrocytes and microglia/macrophages activation in periven-
tricular area, upregulated VEGF expression, and then aggravated barrier breakdown [51].
Obstruction caused by hematoma compounds may also function in VEGF accumulation
and subsequent VE–cadherin internalization.

Furthermore, specific antagonism of VEGFR2 after IVH reduced the phosphorylation
of downstream Src in the choroid plexus and upregulated the expression of VE–cadherin. In
accordance with this finding, Src kinase inhibitor also escalated the VE–cadherin expression
and thus alleviated the occurrence of hydrocephalus. Our results corroborate that the
activation of VEGF/VEGFR2 signaling in the choroid plexus after IVH results in increased
VE–cadherin internalization, leading to the occurrence of hydrocephalus.

Metformin is a most widely prescribed hypoglycemic drug. However, the glycemic
value of rats receiving the metformin treatment was not staticticaly different from saline
treatment in our experiment. Metformin also was known to protect endothelial barrier
and decrease permeability via junction reinforcement, anti-inflammation, anti-autophagy,
and anti-oxidant [53–56]. Moreover, some studies revealed that metformin treatment could
protect BBB [57]. In a rat model of middle cerebral artery occlusion, metformin was found to
decrease BBB permeability via downregulating intercellular adhesion molecule-1 (ICAM-1)
and inflammation cytokines [58]. Furthermore, metformin was reported to prevent endothe-
lial permeability induced by VEGF or hypoxia treatment, and attenuated gliama-induced
brain edema [31]. Notably, some studies uncovered that metformin could increase endothe-
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lial junction and downregulate the expression of VEGF [29,59,60]. Consistent with these
findings, we found that metformin could attenuate IVH-induced hydrocephalus.

In our study, we observed that metformin upregulated VE–cadherin expression in
choroid plexus, and then ameliorated ventricle dilation. Moreover, the internalization
was reversed after metformin continuous treatment, accompanied by VEGF reduction.
In contrast, a poor impact was found on VEGFR2 expression. Restraining VEGF signal-
ing by antagonizing VEGFR2 or inhibiting Src phosphorylation increased the expression
of VE–cadherin and the severity of hydrocephalus after IVH. Together with these find-
ings, metformin could reduce the expression of VEGF, thus diminishing the activation of
VEGF/VEGFR2/p-Src pathway, restored the membrane VE–cadherin expression in choroid
plexus, and then, in this way, attenuated hydrocephalus.

However, there is also considerable evidence on other mechanisms of metformin in
hydrocephalus protection. For example, tight junction proteins, such as ZO-1 and claudin-5
of ChP, may also contribute to BBB permeability. Metformin was reported to decrease
BBB permeability via increasing claudin-5 expression and restoring ZO-1 distribution [61].
Besides, activated by NF-κB dependent inflammatory signal, the potassium cotransporter
in ChP, NKCC1, was reported to be upregulated after IVH, accompanied with the CSF
hypersecretion, which may also make sense in metformin’s protection in IVH-induced
hydrocephalus [62]. Additionally, the brain parenchymal system controlling glymphatic
CSF-ISF exchange was reported as an another source of CSF production [63]. Without
fenestrations, the astrocyte aquaporin 4 (AQP4) system promotes water influx into the
peri-capillary Virchow-Robin space (VRS) and regulates the CSF circulation together with
ChP [64]. Zhao et al. found that metformin treatment could reduce the expression of AQP4
on astrocytes and ameliorate tumor-induced edema [31]. Whether the glymphatic system
was associated with the function of metformin in IVH remains unknown. These potential
mechanisms need to be further evaluated in our future research.

4. Materials and Methods
4.1. Animals Model

Animal protocols were approved by the Zhejiang University Animal Experimentation
Committee on the Use and Care of Animals. A total of 140 male Sprague–Dawley rats
(3-month old, Zhejiang University Laboratories, Zhejiang, China) were used in this study,
at the weight of 280–320 g. Animals were anesthetized with pentobarbital (50 mg/kg
intraperitoneally (i.p.)) and were positioned in a stereotaxic frame (MICRO2T, World
Precision Instruments, Sarasota, Florida, USA). A cranial burr hole (1 mm) was drilled
0.6 mm posterior, 1.6 mm lateral to the bregma, and a 26-gauge needle was inserted 4.5 mm
ventral into the right lateral ventricle through the hole. A total of 200 µL homologous blood
or saline was injected over 15 min using a microinfusion pump (MICRO2T, World Precision
Instruments, Sarasota, Florida, USA). The needle remained for 10 min, and was then gently
removed. The burr hole was filled with bone wax, and the skin incision was sutured.

4.2. Experimental Groups

Briefly, this study has three parts. First, rats were randomly divided into two groups
(sham, IVH). The IVH group received an injection of 200 µL homologous blood while the
sham group received the same volume of saline into the right lateral ventricle. Rats were
euthanized at day 7, the brains were used for ventricular volume calculation (n = 6 per
group), western blot (n = 6 per group) and brain histology (n = 4 per group). Second, rats
were treated with metformin [65,66] (Abcam, 50 mg/kg, i.p.) or saline (equal volume, i.p.)
daily for the following 7 days after IVH, then were euthanized at Day 7. The brains were
used for ventricular volume calculation (n = 6 per group), western blot (n = 6 per group),
internalization assay (n = 6 per group) and brain histology (n = 4 per group). Third, rats
were divided into sham, IVH + Vehicle (2% dimethyl sulfoxide in saline), IVH + VEGFR2
inhibitor (SU5416, MCE, 25 mg/kg, i.p.) and IVH + p-Src inhibitor (PP2, Abcam, 1 mg/kg,
i.p.). SU5416 or PP2 were injected at day 0 and day 3 [13,67,68]. At day 7, rats were
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euthanized and the brains were used for ventricular volume calculation (n = 6 per groups),
western blot (n = 6 per groups) and brain histology (n = 4 per groups) (Figure 6).
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4.3. Ventricular Volume Analysis

Rats were perfused with 4% paraformaldehyde in 0.1 mol/L phosphate-buffered
saline (pH 7.4). The brains were removed and kept in 4% paraformaldehyde for 24 h and
then protected in 30% sucrose. Brains were embedded in optimal cutting temperature
compound and 200 µm thick slices cut using a cryostat (LEICA, CM3050S). In the meantime,
we took high-resolution pictures of serial coronal sections using same camera (200 µm apart,
Logitech) positioning and external lighting [62]. Bilateral ventricles from frontal horns
to the fourth ventricle were outlined and measured using Image J software [13]. Pixels
were converted to area, and ventricular volume (mm3) was calculated by summing the
ventricle areas over all sections and multiplying by the distance (200 µm apart). All image
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analysis was performed by a blinded investigator. All statistical analysis were completed
in GraphPad Prism 8 (GraphPad software).

4.4. Immunofluorescence Staining

Rats were perfused with 4% paraformaldehyde in 0.1 mol/L phosphate-buffered saline
(pH 7.4). The brains were removed and kept in 4% paraformaldehyde for 24 h and then
dehydrated in 30% sucrose for 2 to 3 days at 4 ◦C. Brains were embedded in optimal cutting
temperature compound and 18-µm thick slices cut (coronal) using a cryostat (CM3050S,
LEICA, Wetzlar, Germany). Sections were blocked 5% donkey serum albumin for 2 h at
room temperature and then incubated with mouse anti-VE–cadherin (1:50 dilution, Santa
Cruz Biotechnology, Dallas, TX, USA) or rabbit anti-VEGFR2 (1:800 dilution, Cell Signaling
Technology, Danvers, MA, USA) at 4 ◦C overnight. After washed three times with PBS,
sections were incubated with appropriate secondary antibodies (1:400 dilution, donkey
anti-mouse Alexa Fluor 488, donkey anti-rabbit Alexa Fluor 488, Abcam, Cambridge, UK)
for 1 h at room temperature. Then, using a fluoroshield mounting medium with DAPI
(Abcam, Cambridge, UK), evaluation was performed under a confocal laser scanning
microscope (FV3000, Olympus, Tokyo, Japan). Images were collected randomly from five
fields and experiments were repeated in at least three times.

4.5. Western Blot

Brain tissue was homogenized (Diax 900, Heidolph, Schwabach, Germany) in a west-
ern sample buffer. The lysate was centrifuged at 13,600× g for 30 min at 4 ◦C, and then
the supernatant was collected. Proteins concentration was determined by the BCA protein
assay kit (Pierce, Thermo Fisher Scientific, Waltham, MA, USA). Proteins were separated us-
ing SDS-polyacrylamide gel electrophoresis (BIO-RAD, Hercules, CA, USA) and transferred
to the nitrocellulose membrane (Merck Millipore, Burlington, MA, USA). After blocking
with 5% nonfat milk for 1 h, the membranes were incubated with primary antibodies
anti-VE–cadherin (1:200 dilution, Santa Cruz), anti-p-Src (1:1000 dilution, Cell Signaling
Technology, Danvers, MA, USA), anti-VEGFA (1:1000 dilution, Abcam, Cambridge, UK),
anti-VEGFR2 (1:1000 dilution, Cell Signaling Technology, Danvers, MA, USA) at 4 ◦C
overnight. Then, the membranes were reacted with antibodies against rabbit IgG (1:3000,
Affinity Biosciences, OH, USA) or mouse IgG (1:3000, Affinity Biosciences, OH, USA) for 2 h
at room temperature. Protein signals were visualized using a chemiluminescence detection
system (Tanon, Shanghai, China), and bands were analyzed with Image J software.

For VE–cadherin internalization, the proteins in cell membrane and cytoplasm were
isolated by the membrane protein extraction kit (P0033, Beyotime, Jiangsu, China). Briefly,
brain tissue was homogenized in membrane protein extraction reagent A, and incubated
for 10–15 min. The lysate was centrifuged at 3000× g for 10 min at 4 ◦C, and then the su-
pernatant was collected. After that, the obtained supernatant was centrifuged at 14,000× g
for 30 min, and the supernatant was extracted as the cytoplasmic protein solution. A mem-
brane protein extraction reagent B was added to the sediment and incubated for 5–10 min.
After centrifugation at 14,000× g for 10 min at 4 ◦C, the supernatant was collected as
the cell membrane protein solution. Then, proteins were studied with western blot as
described above.

4.6. Statistical Analysis

Values was given in means ± SD. The data was analyzed with t-test and one-way
ANOVA with a Tukey’s post hoc test. All statistics were completed in GraphPad Prism 8
(GraphPad software). Differences were considered significant at p < 0.05.
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