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Disease dynamics over very different
time-scales: foot-and-mouth disease and
scrapie on the network of livestock
movements in the UK

Rowland R. Kao*, Darren M. Green, Jethro Johnson' and Istvan Z. Kiss*

Department of Zoology, University of Ozford, Oxford OX1 3PS, UK

We analyse the relationship between the network of livestock movements in the UK and the
dynamics of two diseases: foot-and-mouth disease (FMD), which has an incubation period of
days, and scrapie, which incubates over years. For FMD, the time-scale of expected epidemics
is similar to the time-scale of the evolution of the network. We argue that, under appropriate
conditions, a static network analysis can be an appropriate tool for gaining insights into disease
dynamics even when the relevant time-scales are similar, as with FMD. We show that a
subclass of ‘linkage moves’ maintains the network structure, and so removing these links has a
dramatic effect on the number of potentially infected farms, an effect corroborated by
simulations. In contrast, because scrapie has a low probability of transmission per contact and
alongincubation period, a static network representation is probably appropriate; however, the
signature of the network in the pattern of transmission is likely to be faint. Scrapie-notifying
farms were more likely to be associated with each other via trading at markets than were
control farms; however, network community structure proves to be less representative of
prevalence patterns than geographical region. These contradictory indicators emphasize that
appropriate observation time frames and good discrimination among types of potentially
infectious contacts are vital in order for network analysis to be a valuable epidemiological tool.
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1. INTRODUCTION

The contact structure of a population can have con-
sequences for disease transmission, such as when the
variance in the number of potential contacts is high
(Anderson & May 1992; Albert et al. 2000) or when
transmission is localized but with occasional long-
distance jumps (Watts & Strogatz 1998), and the
network paradigm has become a popular one when
modelling highly structured populations (Eubank et al.
2004; Meyers et al. 2005). While such studies have
produced many interesting results, there are few datasets
that include contact structure data that are both relevant
to disease transmission in large populations and suf-
ficiently well described to test the relevance of the
network-based approach. One such dataset is the network
of livestock movements in the UK, where the nodes of the
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network are agricultural premises and the links are the
movements of batches of livestock between them.

The development of the livestock datasets in the UK
has been largely motivated by a need to trace livestock
movements for the purposes of disease surveillance and
control. In particular, sheep, goat and pig movement
data were first recorded extensively following the
catastrophic foot-and-mouth disease (FMD) epidemic
in 2001, where early dissemination of the disease was
facilitated by the rapid, long-distance trading of sheep
(Gibbens et al. 2001; Kao 2002). Records are maintained
in the Animal Movements Licensing System (AMLS;
http://www.defra.gov.uk/animalh/id-move/index.
htm) and its Scottish equivalent (http://www.scotland.
gov.uk/Topics/Agriculture/animal-welfare/Diseases/
IDtraceability) administered by the Scottish Animal
Movements Unit (SAMU), both recording the move-
ments of large livestock (including sheep, pigs and goats)
at the batch level. The FMD epidemic also saw the first
extensive use of simulation and analytical models to
inform disease control during an outbreak. These models
used a combination of epidemiological and demographic
data from the UK annual agricultural census (http://
www.defra.gov.uk/esg/work_htm/publications/cs/
farmstats_web/Census/introduction.htm) to inform
disease control at the farm level (Ferguson et al. 2001;
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Keeling et al. 2001; Morris et al. 2001). Despite their
limitations (Haydon et al. 2004), these data provide a
picture of a uniquely well-described population, includ-
ing spatial relationships between agricultural premises
(most importantly for our purposes, farms and markets),
information about the susceptibility and infectiousness
of nodes (species mix and census population size) and the
direction, timing (to nearest day) and weighting
(number and species of livestock) of the livestock
movements between them.

Prior studies have analysed the network of both
cattle (Kao et al. 2006; Robinson & Christley 2006;
Robinson et al. 2007) and sheep movements (Green et al.
2006; Kao et al. 2006; Kiss et al. 2006; Webb 2006). Here,
we extend the analysis of the recorded sheep movement
network, drawing particular attention to the difficulties
and different approaches that are appropriate when
examining two diseases (FMD and scrapie) that operate
on very different time-scales, but interact on the same
underlying population. We show that simple network
analyses can give us insight into how a population is
structured, but that this depends on the appropriate-
ness of the recorded social network structure for the
disease, both when seen through the filter of the
transmission process and when considering the relative
time-scales of disease and network dynamics.

Following the FMD epidemic, mandatory movement
standstills after the inward movement of livestock onto
farms were imposed to slow the progress of any inci-
pient epidemic (http://www.defra.gov.uk/animalh/
id-move/rules.htm). Thus, an interesting policy ques-
tion is whether or not these restrictions have had an
important effect on the probability of a large epidemic
should FMD be reintroduced into the UK. The highly
infectious FMD virus acts on a very short time scale
with a farm-level infectious period of days or weeks; in
this case, a small proportion of all sheep movements are
shown to act as ‘bridging movements’ between well-
connected groups of premises. We identify particular
characteristics of these movements and demonstrate
that a static network analysis is appropriate, despite
the similar time-scales of network and disease
dynamics. This is corroborated by simulations. In
contrast, scrapie has a time-scale of years and lower
infectiousness, and we show that, while there is some
evidence of closer associations among affected premises
via sheep movements, this signal is weak and subject to
non-movement-related factors such as regional vari-
ation in farmer behaviour.

2. CRITICAL NETWORK CONCEPTS FOR THE
LIVESTOCK MOVEMENT SYSTEM

In most analyses of contact structure, the emphasis is
placed on the properties of the social network of
potentially infectious contacts (Watts & May 1992;
Ghani et al. 1997; Liljeros et al. 2001; Meyers et al. 2003),
i.e. which nodes could a node infect if it were infectious.
For the tracing of potentially infectious contacts, the
social network structure can be vital (Huerta &
Tsimring 2002; Kiss et al. 2005, 2006). However, in the
absence of control, or when control does not exploit
social network structure, the analysis can be simplified
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by considering only the number of truly infectious
contacts that would occur if a given node is infectious; we
call this the ‘epidemiological’ or transmission network.
The epidemiological network is created from the social
network by ‘thinning’—links are discarded with a
probability of 1 —p(Ti, oj, wlj), where p(Ti, aj, wij) is
the probability that, should the source node i be
infected, destination node j would also become infected,
given an inherent transmissibility 7;of 7, susceptibility o;
of j and weighting of link w;. The epidemiological
network is generated from the social network stochas-
tically, so a proper representation of average network
properties could require multiple realizations (though in
practice, single realizations of very large networks can
give very good results). The epidemiological network
also has directed links, even when the social network
does not. Nevertheless, the result is a network of
unweighted links with properties directly related to
important epidemiological concepts. Three of the most
important of these are the final epidemic size, the value
of the basic reproduction number (R,) and population
heterogeneity, here expressed in terms of communities of
premises that are more likely to infect each other. These
three characteristics are discussed below, in turn.

A component of a network is a group of linked nodes;
in directed networks, a strongly connected component
is a group of nodes mutually accessible to each other via
a series of links, while a weakly connected component
contains a strongly connected component (possibly of
size zero) as well as nodes that are linked to that strong
component in one direction or the other, but not both.
The giant strongly connencted component (GSCC) is
the largest strongly connected component, and, pro-
vided the network is ergodic (Kao et al. 2006), the
GSCC of the epidemiological network is a direct
estimate of the lower bound on the final epidemic size
in the absence of intervention (e.g. the restriction of
livestock movements that would occur following the
confirmation of FMD). For our purposes, it is sufficient
to say that, in an ergodic system (in this case, the
network of farms linked by movements), any state of
the system can be reached from any other via a Markov
process (e.g. Reichl 1980); effectively, this means that
the values and number of parameters that define the
network structure are independent of the time in an
epidemic at which the node is infected.

While the final epidemic size is an indicator of how
large a problem might be caused by the introduction of
a disease, Ry is an indicator of whether a problem will
occur at all. It is generally defined as the number of
secondary infections resulting from the introduction of
a single infection into a wholly susceptible, homoge-
neously mixing population at equilibrium. If R is less
than 1, a large epidemic is unlikely (Anderson & May
1992). However, this intuitively appealing definition is
well known to be dependent on model assumptions. In a
randomly mixed epidemiological network, R, can be
approximated by

<linlout>

<lout> ’
where [, and [, are, respectively, the number of

inward and outward ‘truly infectious’ links per node
and the angled brackets represent the expectation value

R, = (2.1)
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of the bracketed quantity (see appendix A for a more
in-depth discussion).

Of course, populations are rarely well approximated
as being random. While in the simplest epidemiological
models all individuals interact equally with each other,
population structure can often be usefully represented
by metapopulation dynamics models where disease
spreads among groups of populations, with strong
homogeneous coupling within groups and weak
coupling between groups. This group structure is
related to the growth of the epidemiological network
which increases with the probability of transmission;
nodes that are more likely to infect each other will
appear in the same components at low probabilities of
transmission. If nodes are less likely to do so, then they
will only ‘join up’ in the same component either when
the probability of transmission is high or when they are
linked by combinations of other nodes that are likely to
infect each other. This property is related to network-
based definitions of community structure, i.e. the
existence of more closely linked nodes in subgroups of
the population (e.g. Girvan & Newman 2002; Palla
et al. 2005). However, most community structure
algorithms are based on concepts that are appropriate
for unweighted networks; for example, node ‘between-
ness’ and ‘centrality’ are measures that both identify
critical nodes for linking community subgroups
(Newman & Girvan 2004) and do not consider the
weighting of the links. A related community structure
concept (Newman 2004) used in very large networks
has been adapted and shown to be a useful concept for
the livestock movement network (Green et al. 2006;
Kao et al. 2006). In this algorithm, partitions are
established that maximize the quantity

Q = Z €i — aina?uta (2.2)

where e;; is the fraction of total links starting at a node
in partition ¢ and ending at a node in the same parti-
tion; a?" is the fraction of links that begin in partition 4
and @™ is the fraction of links that end in partition i.
The partition that maximizes equation (2.2) maximizes
the difference in the amount of interaction that occurs
within partitions compared with between partitions.
This algorithm scales as O(N” In N) and is thus much
better suited than most other existing algorithms for
use in larger communities.

3. NETWORK PROPERTIES OVER SHORT
TIME-SCALES: FMD IN THE UK

3.1. Epidemiological background

FMD virus is a highly contagious pathogen that infects
pigs and farmed ruminants, including cattle, sheep and
goats. It can spread rapidly within herds and flocks,
infecting large proportions of animals within days (see
Haydon et al. (2004) for a review). The introduction of
FMD into the UK in 2001 was exceptionally cata-
strophic, with control of the epidemic resulting in an
estimated 8.5 million culled livestock and a combined
direct and indirect cost of £4-6 billion (Anderson 2002).
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Figure 1. Growth of the GSCC with increasing R, over two
time frames (open symbols, four-week period starting 1 May
2003; closed symbols, four-week period starting 1 Nov 2003).
Different values of Ry are obtained by a combination of
increasing the probability of retaining a link from 0 to 1, and
by increasing the infectious period of farms from zero to four
weeks. Within each time frame, the growth of the GSCC is
similar (consistent with ergodicity); between time frames, the
growth of the GSCC is markedly dissimilar (not consistent).
Adapted from Kao et al. (2006).

The analysis of the rate of evolution of the FMD
virus (Cottam et al. 2006) shows that introduction into
the UK is likely to have occurred in early February; in
the three weeks following this, the dissemination of
FMD via sheep movements showed evidence of ‘scale-
free’ properties (the importance of ‘superspreaders’
such as Longtown market) and ‘small-world’ properties
(the occasional long-distance transport of sheep; see
Kao 2002; Shirley & Rushton 2005; Kao et al. 2006;
Ortiz-Pelaez et al. 2006).

3.2. Targeting high-risk movements

Recent analyses have considered the movements of
livestock in the context of FMD since 2001 (Green et al.
2006; Kao et al. 2006; Kiss et al. 2006). Evaluation of Ry
according to equation (2.1) shows the existence of
percolation-like behaviour for R, substantially above 1,
associated with occasional, long-distance movement of
sheep similar to those that were important in the 2001
epidemic. These conditions vary seasonally, with the
network particularly vulnerable to invasion around
early autumn. Comparing the growth of the GSCC
during two different time frames (figure 1) shows that,
while the GSCC growth is consistent with ergodicity
within four-week periods, there are important struc-
tural changes in the network when comparing different
time frames within the year.

The GSCC growth in autumn is markedly greater
than at other times: farmers who purchase sheep from
one market and immediately sell sheep at other markets
are relatively few in number (of the order of 5% of
recorded movements) and are critical for creating new
foci of infection; we shall refer to these latter farm-
to-market moves as ‘linkage moves’. The distribution of
farms engaging in linkage moves is highly overdis-
persed, with tendencies towards scale-free properties,
though over less than two orders of magnitude
(figure 2a). Targeting linkage moves (Kao et al. 2006)
and highly active farms (Kiss et al. 2006) have both
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Figure 2. (a) The distribution of linkage movements per
premises per week. The distribution is highly skewed, with
approximately scale-free properties. (b) Linkage movement
activity over 2005. Linkage moves are grouped in monthly
periods. Graph shows the total number of linkage moves
(diagonally hashed bars), the number of farms engaged in
linkage activities (grey bars) and the variance-to-mean ratio b
of the annual activity levels of farms engaging in linkage
movements that month, weighted by the number of trans-
actions in that month (black line). The value of b varies
considerably but with no discernible annual pattern,
suggesting that highly active farms are equally active in
linkage moves over the entire year, but the number of active
farms increases in the autumn.

been shown to be effective in targeting FMD control.
Here we ask whether these properties can be exploited in
concert: are highly active premises (i.e. highest total
number of transactions, including both buying and
selling) that link markets particularly important for
transmission? Figure 2b shows the distribution of the
number of linkage moves and number of premises
engaging in linkage moves over 2005, and the expected
variance-to-mean ratio (the overdispersion index b).
The value of b increases as the distribution becomes
increasingly overdispersed, from b=1, for a Poisson
distribution, to b— oo, for a scale-free distribution.
Increases in b are indicative of increased participation of
highly active farms compared with the less active ones.
As changes in the value of b show no long-term trends
over 2005, this implies that, at any given time of year,
highly active linkage farms are no more active than
other farms performing linkage activities at any one
time of year. Linkage movements from low- and high-
activity farms also appear to have the same overall
contribution to network structure. Figure 3 shows the
growth of the GSCC as movements are added to a
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movements in the period from 3 to 31 October 2005, i.e.
the four-week period of highest activity. As movements
are added to the network, the GSCC size is measured as
an indication of their contribution to any epidemic.
Whether linkage movements are added in order either
starting from the least active farms to the most or vice
versa, the GSCC grows at the same rate, suggesting that
the nature of the movements from both highly active
and less active farms has the same characteristics. In
contrast, adding farm-to-farm moves to the system
causes the GSCC to grow more slowly, indicating that
these are typically much less efficient at spreading an
epidemic. The occasional large jumps in the GSCC size
as links are added indicate the ‘absorption’ of smaller
strong components into the GSCC.

The predictive power of this analysis was tested via
‘non-parametric’ simulations, to account for the effects
of the timing and ordering of movements, factors that
are lost in the static network analysis. Epidemiological
parameters and rates of ‘local spread’ (i.e. other types
of transmission not directly involving livestock move-
ments) appropriate to the 2001 epidemic were used
throughout, in this case considering only the sheep
population (parametrization and methods described in
detail by Green et al. (2006) and Kao et al. (2006)). The
UK livestock population was seeded with five FMD-
infected farms and then infection allowed to spread in a
replay of the movements exactly as recorded. Con-
sidering 2000 iterations, epidemics starting on 3
October 2005+ 14 days and allowed to run for four
weeks resulted in a mean of 7.3 premises infected in
simulations without linkage movements and 7.9 pre-
mises with them. While this difference appears mar-
ginal, the number of linkage moves over this time frame
is small (11 587 out of 499 361 movements over 2005 or
just over 2% of the total) and so the relative effect is
dramatic. Furthermore, epidemics of 60 or more
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Figure 4. Distribution of FMD epidemic sizes predicted by
non-parametric simulations run for four weeks. Data rep-
resent epidemics with all moves allowed (patterned bars),
epidemics where linkage moves are removed (solid bars) and
the proportionate differences between them (solid line).

infected premises are of similar extent to the initial
dissemination in the 2001 epidemic and account for
roughly 9% (174 out of 2000) of simulations. These are
reduced by 27% if all linkage movements are removed
(figure 4).

4. NETWORK PROPERTIES OVER LONG
TIME-SCALES: SCRAPIE

4.1. Epidemiological background

Scrapie is a neurodegenerative disease of sheep, goats
and moufflon, which is generally believed to be the
source of bovine spongiform encephalopathy (BSE)
in cattle (http://www.defra.gov.uk/animalh/bse/
publications/bseorigin.pdf). The discovery of the link
between the fatal human disease variant Creutzfeldt—
Jakob disease and BSE (Bruce et al. 1997; Hill et al.
1997), and concerns that BSE may have entered the
sheep population and been masked by scrapie (Kao
et al. 2002), have led to concerted efforts to eradicate
scrapie, with control largely aimed at exploiting scrapie
resistance in some sheep genotypes (Hoinville 1996).
More recently, concerns that BSE could be maintained
in putatively resistant genotypes (Houston et al. 2003;
Kao et al. 2003), and the discoveries of BSE in a French
goat (Eloit et al. 2005) and ‘atypical’ scrapie in sheep
across Europe (Benestad et al. 2003; Le Dur et al. 2005),
have presented new challenges to the development of
policy, and motivate the development of targeted
surveillance programmes that could better use our
knowledge of the structure of the national flock to
identify diseases that will appear with, at most, very
low prevalence.

Scrapie has a long incubation period and is
virtually undetectable until near the terminal point
of the infection. Thus, buying activity has been
identified as the most important risk factor for
acquiring infection (McLean et al. 1999). Models of
scrapie in sheep have considered the movement of
sheep from premises to premises (Kao et al. 2001;
Gubbins 2005), but without a detailed representation
of the contact structure. We ask whether, even with
the increased time-scale of scrapie transmission, the
signature of the movement structure can still be seen
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in the patterns of scrapie-notifying farms, as is the
case for a highly infectious, short time-scale disease
such as FMD. The use of the sheep movement data
suffers here from three problems. First, very few
contacts will result in transmission, and thus the truly
infectious contacts are likely to be only a small
proportion of all movements. Second, the data
themselves are not ideally suited for this use—move-
ments of sheep occur for many purposes and may
involve very short residence times. The high infectiv-
ity of the placenta (Race et al. 1998) and identification
of lambing practices as a risk factor (McLean et al.
1999) would suggest that the residence time of sheep
in infected flocks is important, at least as a surrogate
variable for identifying sheep present at time of
lambing. Third, most horizontal transmission is likely
to occur on-farm, with no transmission events
occurring at a market—this is in contrast to a highly
infectious agent like FMD virus, which can be
transmitted by short-duration events and fomite
transmission. Thus, the inability to trace individual
sheep passing through a market means that, while all
farms buying sheep from a market selling infected
animals must be considered as potentially infected,
only a very few might be actually exposed.

Owing to these difficulties, a different approach to
FMD is required. Here, we ask two network-related
questions: are two scrapie-notifying farms more likely
to be associated with each other by buying or selling at
the same livestock market on the same day, and are
scrapie-notifying farms more likely to belong to the
same communities?

4.2. Farm interactions via markets

Because knowledge of scrapie may influence a farmer’s
trading behaviour, we consider only the combination of
sheep movements in 2003 together with scrapie
notifications in 2004 and 2005. In the UK (excluding
the Shetlands, for which movement data were not
available), there were 198 scrapie-notifying farms in the
period from 2004 to the end of 2005 with usable records.
These were paired with matching non-reporting farms
in the same county. The geographical pairings were
used to reduce differences in agricultural practices
between farms; matching at finer geographical scales
(e.g. parish) was not possible due to the limitations in
the possible matches.

The number of interactions of case—control farms at
markets (i.e. a buying farm moving sheep away from a
market within 2 days of records of a selling farm
bringing sheep to the same market) was calculated
accounting for direction and time of movement.
Within-pair comparisons using McNemar’s test were
used to determine whether farms of the same type are
significantly more likely to associate with one another.
These results are given in figure 5. For the 2004-2005
notification data, scrapie-reporting farms were more
likely to sell sheep at markets where scrapie farms were
buying (p=0.02). This partially reflects the fact that
these farms are more active, making more movements
on and off the premises in a year. However, if farm
activity were the only factor, one would also expect to
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Figure 5. Distribution of number of times scrapie-notifying farms (open circles) and control farms (solid circles) when scrapie-
notifying farms (z-axis) and control farms ( y-axis) purchased (a) sheep at markets (buying behaviour) and (b) brought sheep to
that market (selling behaviour) within the previous 48 hours. Scrapie farms were significantly more likely to buy when scrapie
farms were selling ( p=0.02). Numbers in brackets represent (number of control farms, number scrapie farms) where these are
greater than one. Associations were found for 70 control farms and 76 scrapie farms. Not shown is the number of farms for which
no associations were found (total of 152 pairs in the comparison). Also not shown are points representing single scrapie-notifying

farms at (17,2), (18,18) and (20,12).

find control farms more likely to purchase from markets
when scrapie farms were selling, but this was highly
insignificant (p=0.68).

While the results are significant, they may not be
important, as the number of farms involved in active
trading is much lower in all cases than the number of
farms that were inactive, with only 70 of the control
farms and 76 of the reporting farms showing any
associations at all. However, we must also consider that
the time frame of exposure is probably much longer
than the dataset (movements in 2003) we have

J. R. Soc. Interface (2007)

available. Should farmers most often purchase sheep
from ‘new’ trading partners, given that the number of
possible interactions scales as O(N?), where N is the
number of potentially interacting farms, the number of
associations could increase linearly over the entire
infectious period of a scrapie-affected farm, a period
that could run into decades, especially since many
within-flock epidemics could remain undetected
(Hagenaars et al. 2003, 2006). Thus, were a dataset
over a longer time frame available, the number of
associations could increase markedly.
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4.3. Distribution of scrapie among trading
communities

The limitations of the data for determining direct
associations suggest that a community-based approach
may be more appropriate—i.e. are scrapie-affected
farms more likely to belong to some communities of
sheep-rearing farms rather than others? Five large
communities based on all recorded movements in 2003
were resolved using equation (2.2). The resultant
partitions are highly regionalized and presumably
centred around local markets (figure 6a). Variations
in the community-level prevalence of confirmed scrapie
during the period 2004-2005 differed significantly from
random in their distribution (x3=62.015, p<0.001).
For comparison, farm associations via geographical
region were considered (figure 6b; table 1). If we assume
that the distribution of disease is binomial, and use the
prevalence of disease in ‘core’ elements (e.g. in table 1,
in the community of 11 532 farms centred in northwest
England, the core element is composed of the 5363
farms in the region defined as the northwest) as an
estimate of the prevalence in ‘fringe’ elements (i.e. the
6169 farms in other regions), only in the Wales region
are differences significant (p=0.02). However,
differences are significant in all communities except
North Wales, and, in this case, only 127 out of 3062
farms lie outside the core element. Since fringe elements
of regions appear similar to their associated core
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element, but fringe elements of communities are
dissimilar to their core element, it appears probable
that region is a better indicator of the prevalence
distribution of notified cases.

5. DISCUSSION

Contact structure data with the detail found in the
livestock movements database are invaluable for
developing network models and for testing the validity
of network concepts. Here, we show how the interaction
of the social network and the epidemiological process is
critical (see also Kao 2006; Trapman 2007). In this
context, the epidemiological network representation is
invaluable for determining the true impact of contact
heterogeneity on disease transmission. While this
representation is simple, complications will arise
depending on other network properties. For example,
where the in- and out-links are correlated (in extremis,
where the links are bidirectional), the rate of link
turnover relative to epidemiological properties becomes
important. In our system, farmers typically will buy
from one farm and sell to another, and so in- and out-
links are poorly correlated. However, in the case of
bidirectional links (i.e. complete correlation), link
switching rates are critical (e.g. Watts & May 1992).
While these limitations must be considered, so long as
the infectiousness of a node does not depend on the level
of its prior exposure to infection, the often complicated
analyses required for weighted networks (Barrat et al.
2004) can be avoided.

Our two disease-network systems present very
different challenges for analysis—the epidemiological
network context is useful for FMD, but less so for
scrapie where many of the recorded movements are
likely to be unimportant for disease transmission. In
the case of FMD, epidemics prior to identification of
disease and the imposition of a national movement ban
might be expected to last in the order of a month. As
sheep movements vary seasonally, this is similar to the
time-scale of the evolution of the network, and thus
identifying when a static network analysis is useful is
important. The ergodic hypothesis can help us here,
indicating when changes in the network structure will
change the potential for disease transmission. We
note, however, that it remains only a supposition that
the network is ergodic over this time frame—consider-
ing each year to be a replicate dataset, there are as yet
only 3 years sufficiently well described to parametrize
the underlying putative Markov process. Neverthe-
less, results thus far are consistent with the concept
being useful, and structures identified by analysing the
static network are shown to be valid in the dynamic
simulations. In particular, analysing the effect of
targeting a subclass of linkage moves that are largely
responsible for connecting up the network, we show
that removing these movements or links has a
dramatic effect on the number of potentially infected
farming premises. This is not proved to be a general
result: more sophisticated analyses must be developed
to characterize systems where the dynamics of the
network itself become important. Nevertheless,
removing linkage moves has a dramatic effect on the
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Table 1. Distribution of scrapie cases over 2004-2005 in the five largest communities identified by (a) the ‘@ algorithm and
(b) region. (Data from smaller communities (all fewer than 50 farms) are excluded, as are notifications and farms in the
Shetlands, for which no movement data were available. Data are divided into core (e.g. for a given community, the single region
with the largest number of farms) and fringe (e.g. for a given community, farms in all of the other listed regions). Shown are the
number of farms and notifications in each category, and a p-value based on assuming a binomial distribution of cases, using
prevalence in the core group as an estimate of the true prevalence in the fringe.)

core farms fringe farms core notifications  fringe notifications p-value

region

Southeast and Midlands 5533 4062 8 9 0.06
Southwest 5803 341 23 3 0.11
Wales 7072 2959 74 12 0.00
Northwest 5363 133 8 0 0.82
Northeast 3808 2002 13 7 0.15
Scotland 5936 1166 6 1 0.36
community

North Wales 2935 127 12 0 0.59
Northwest 5363 6169 8 27 0.00
South Wales 7072 3101 74 6 0.00
South and East 5803 5662 23 10 0.00
Scotland and Northeast 5936 2010 6 6 0.01

number and severity of very large epidemics and
targeting them for surveillance or increased biosecur-
ity may be a cost-efficient control policy. However,
owing to the inherent variability in the system, and
the expected short time-scale of any pre-movement
ban epidemic, the signature of the network structure
in a single realization of a simulated epidemic may not
be noticeable, emphasizing the dangers of basing a
policy on the outcome of only a few outbreaks,
especially in cases where the underlying susceptible
population is not well described or well known.
Scrapie presents a very different problem to FMD—
the long infectious period of farms means that the static
network picture is more likely to be appropriate;
however, the signature of the network in disease
transmission is likely to be faint, due to the low
probability of transmission per potentially infectious
contact. The prior evidence that sheep movements are
important for scrapie transmission is strong, and this is
corroborated by the evidence that scrapie farms are
more likely to be associated with each other via buying
and selling at markets. On the other hand, there is
contradictory evidence showing that region is a better
predictor of notification prevalence than trading com-
munity, thus the AMLS and SAMU data should be used
with caution. Both analyses would benefit from a longer
observation time frame and better discrimination among
types of livestock movements. Interestingly, cross-
comparison of the communities and regions shows that
scrapie cases in the period 2004-2005 occurred most
often in an area (South Wales) that traditionally has
shown no evidence of high scrapie prevalence (Hoinville
et al. 2000). These data could reflect a new outbreak
confined within a regionally restricted trading group.
However, there is also a risk that the non-random
distribution of scrapie cases is an artefact reflecting
regional control of scrapie monitoring or regionally
varied responses to the Compulsory Scrapie Flock
Scheme implemented in 2004 (http://www.defra.gov.
uk /corporate/consult /tseregs-scrapiecomp/letter.htm).
Thus, the strong correspondence between physical
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geography (which may be a surrogate for other non-
epidemiological factors) and community structure must
be accounted for when considering the use of trading
communities as a marker of disease risk.

The difficulties associated with identifying network
signature in disease transmission and control highlight
the importance of good parametrizations of both
epidemiological characteristics of diseases and the
underlying demographic structure of the populations
on which the epidemics transmit. More generally,
extensive data are useful only if they are appropriate
data and/or the appropriate questions are asked. As the
demands placed on quantitative epidemiology become
more extensive, more sophisticated analyses become
increasingly important. Fortunately, the availability of
improved datasets means that achieving these goals,
while challenging, should be achievable in many
important situations.

We thank DEFRA and the Scottish Executive for providing
the data, L. Danon for use of the community structure
algorithm, and four referees for their useful comments. R.R.K.
and I.Z.K. are funded by the Wellcome Trust, D.M.G. and
J.J. by DEFRA.

APPENDIX A. R, IN SOCIAL NETWORKS

In general, one can define Ry=limy e (141/1,),
where N is the population size; n is the generation
number; and [, is the number of infected individuals in
all classes in generation n. In a randomly mixed
epidemiological network, R is the network percolation
threshold (Cohen et al. 2002; Schwartz et al. 2002),
loosely defined as the point at which the final epidemic
size is expected to scale with the size of the population
(discussed by Kao et al. (2006)). By randomly mixed,
we mean that the probability of connection between
nodes is directly proportional to the number of links to
those nodes (with obvious extensions to directed
networks). Following Kao (2006), the probability that
a node of in-degree «™ is connected to a node of

out-degree k™ is P(k™[k°") = k™™ p, e (k) /(k), where
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Pout (k) is the out-degree distribution of the network.

For a random insertion of a single infected node into the

population, and for a per link transmission probability

7, the number of infected elements of an arbitrary

in-degree k™ for the first generation of transmission is
IKinJ =7 Z F)(Kin|Kout)KoutpoUt (Kout)

KOllt

7-"Kinpin (Kin) Z Koutpout (Kout)

Kom

<Kin>

= TrKinpin (Kin) )

(A1)

since the expectation value (ki;)= (kouw). In the

following generation:
IKin’Q = Z P(Kin|K0ut)KoutIKmJP/(Kout|Kin)

Ki",K“‘"
<K0utKin>
(k)
where P’(k°"|k) is the probability that a node with
in-degree k™ has out-degree k°". It is easy to show using
equations (A 1) and (A 2) and summing over all node
degrees that I,/I;=1,/I, for all subsequent succes-
sive  generations n and n-+1; therefore,
Ry = m(KinKour)/ (Kous). By extension, with weighted
links and variable susceptibility of nodes,

= 2 () (A2)

<Tkout akin ’UJ>

ROZﬂ— ) (A3)

<Tk0utw>
where 7 and ¢ are the weighting of the out- and in-links;
w the weighting associated with each node; ki, is the
number of inward links; and k.. is the number of
outward links. This reduces to equation (2.1) in the
epidemiological network, where [;, and [, are,
respectively, the number of inward and outward truly
infectious links per node. Of course, most ‘real’
networks will have considerable structure and thus
will not be randomly connected—in our example, farms
preferentially buy and sell at particular markets,
usually one to which there are in close proximity
(Kao et al. 2006). The value of p( M), i.e. spectral radius
of the epidemiological network contact matrix M
(where an element my; is either 1 or 0, depending on
whether there is an infectious contact between nodes ¢
and j), is an alternative approximation for R,. While
this explicitly accounts for the full contact structure of
the network, the evaluation of extremely large,
reasonably dense matrices (O(10%) nodes with some
highly active nodes having hundreds of potentially
infectious links) is difficult and time consuming,
particularly when this must be repeated multiple
times. However, comparisons between the two approxi-
mations for subsets of the sheep network with several
thousand nodes show little difference in the two
estimates (typically less than 5%; results not shown).
Should the rate of accrual of inward and onward
links be fixed, equivalent values of R, as determined by
equation (2.1) or (A 3) can be derived by either
increasing the probability that a potentially infectious
link in the social network is infectious or increasing the
average infectious period of nodes. Under these
circumstances, differences in the GSCC size for the
same R, would imply that the network is not ergodic,
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and that the fundamental structure has changed in a
meaningful way (Kao et al. 2006).
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