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Reaching areas at altitudes over 2,500–3,000m above sea level has become increasingly

common due to commerce, military deployment, tourism, and entertainment. The

high-altitude environment exerts systemic effects on humans that represent a series

of compensatory reactions and affects the activity of bone cells. Cellular structures

closely related to oxygen-sensing produce corresponding functional changes, resulting

in decreased tissue vascularization, declined repair ability of bone defects, and longer

healing time. This review focuses on the impact of high-altitude hypoxia on bone defect

repair and discusses the possible mechanisms related to ion channels, reactive oxygen

species production, mitochondrial function, autophagy, and epigenetics. Based on the

key pathogenic mechanisms, potential therapeutic strategies have also been suggested.

This review contributes novel insights into the mechanisms of abnormal bone defect

repair in hypoxic environments, along with therapeutic applications. We aim to provide

a foundation for future targeted, personalized, and precise bone regeneration therapies

according to the adaptation of patients to high altitudes.
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INTRODUCTION

Due to commercial activities, military deployment, tourism, and entertainment, high-altitude areas
(altitude ≥2,500–3,000m) are among the most important residential and business spaces for
modern humans. There are three major plateaus in the world, including the Tibetan Plateau, the
Andes Mountains, and the Ethiopian Plateau. The total plateau area is estimated at more than
11,000,000 km2, with a population of ∼107 million. The main characteristics of the high-altitude
environment include (1) low pressure, oxygen deficiency, and thin air; (2) cold, dry, and strong
winds; and (3) long sunshine time and intense ultraviolet radiation. Specifically, the main factors
affecting the body are thin air, low atmospheric pressure, and reduced oxygen partial pressure in a
high-altitude environment.

There is a relationship between altitude and the decreased partial pressure of oxygen (PO2; i.e.,
the tension produced by oxygen dissolved in the blood). At an altitude of ∼3,000m, although
arterial PO2 (PaO2) is reduced, oxygen saturation can be well maintained (1). The high-altitude
environment affects humans mostly because reduced PaO2 in the blood leads to hypoxia (2, 3). At
sea level plains (henceforth referred to simply as “plains”), the PaO2 is∼21.15 kPa. However, as the
altitude increases by 100m, atmospheric pressure decreases by 5.9 mmHg, and PaO2 decreases by
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1.2 mmHg (4). When the pressure in the air inhaled by humans
is lower than 16 kPa (2,500–3,000m), the symptoms of hypoxia
start to appear, including increased breathing and heart rate,
headache, loss of appetite, poor sleep, decreased exercise ability,
and even mountain sickness (5).

The major metabolic phases of bone defect healing overlap
with biological stages, including several stages: haematoma,
unmineralized cartilage (soft callus), fibrous tissue, sencodary
bone (hard callus), remodeled bone (6). Bone defect repair
is affected in high-altitude environments. Indeed, the high-
altitude environment has a systemic effect on humans, negatively
impacting bone mass, microstructure, and biomechanics of
normal bone (7), resulting in declined repair ability of bone
defects as follows. First, the healing time of bone defects is
significantly prolonged. The incidence of non-union at plateaus
is 20–30%, which is significantly higher than that of plains
(0.4%) (8). Bone repair efficiency is also significantly reduced
(9), and fracture healing time is significantly longer, especially
at extreme altitudes (5,400–6,700m), than that found in coastal
areas (10). Furthermore, X-ray findings reveal no periosteal
hyperplasia and bony callus generation at the fracture end, while
osseointegration is also poor after implantation (9, 11). Second,
the different physiological components of bone defect healing are
compromised. The capacity to regenerate bone is weaker based
on the structural, geometrical, and material properties in a high-
altitude environment (12). In addition, callus reconstruction is
difficult, and the bone defect is filled with less callus tissue, with
mostly new bone and cartilage (13). Moreover, the number of
osteoblasts is reduced, and bone defect healing mainly involves
endochondral bone (14). Third, different challenges are faced as
part of bone defect treatment. For instance, in high-altitude areas,
due to the special natural geographical environment of plateaus,
the treatment of bone defects caused by war trauma differs from
therapies applied in low altitude areas (15). After autogenous
bone transplantation, hyperbaric oxygen therapy (HBOT) is
often needed to achieve a relatively high success rate (16).

Herein, we review the physiological factors influencing bone
repair, the cellular mechanisms of abnormal bone repair, and
therapeutic research progress made in addressing the impact of
a high-altitude environment on bone defect repair.

FACTORS INFLUENCING BONE DEFECT
REPAIR IN HIGH-ALTITUDE
ENVIRONMENTS

The high-altitude environment can exert systemic effects on
humans that presents as a series of compensatory reactions.
Although these compensations are conducive to adaptation to
low pressure and oxygen at high altitudes, they may affect bone
defect repair (Figure 1).

Blood Compensation
The blood system is among the first responses to the high-
altitude environment, leading to a series of compensatory
reactions. When staying at a high altitude for a short time, the
pulmonary arterioles contract, pulmonary blood flow resistance

increases, pulmonary arterial pressure increases, and volume
vessels contract (peripheral veins), resulting in a release of
reserved blood, thus ensuring blood supply to important organs
(heart and brain). After living on a plateau for a longer
time, acclimatization to the environment occurs by increasing
oxygen transport, erythropoietin (EPO) concentration, the
number of red blood cells, and hemoglobin concentration (17).
However, when the physiological capacity to adapt is exceeded,
maladaptation occurs via increased blood viscosity, reduced
oxygen transport and oxygen release to vital tissues, and further
aggravation of tissue hypoxia. Due to genetic differences, the
Andes and Han populations living on the elevated altitudes of
Tibet are more susceptible to this type of maladaptation, while
the Tibetan residents have higher resting and hypoxic ventilation
responses (HVRs), lower arterial oxygen saturation, and reduced
hemoglobin concentration at the same altitude (18).

Blood compensation may affect the healing of bone defects
through increased EPO production in response to the low
pressure and oxygen environment at high altitudes. This in turn
affects mobilization and differentiation (osteoblasts, osteoclasts,
and mature blood cells) in mesenchymal stem cells (MSCs) and
hematopoietic stem and progenitor cells (HSPCs). It is known
that low EPO concentration is conducive to bone formation
and bone defect healing (19, 20), while high EPO levels lead to
the stimulation of osteoclast precursors and induces bone loss,
preventing healing (21).

Blood compensation may lead to insufficient blood supply
through increased blood viscosity, thus affecting the healing
of bone defects. During bone defect healing, the blood vessels
and interstitial tissue around the bone need to continuously
grow into the center of the defect; hence, the abundance of
blood supply affects the healing process. At high altitudes, blood
compensation leads to an increase in blood cells. When blood
viscosity exceeds a certain limit, it leads to local microcirculation
disturbance (22). Platelets in stagnant blood promote the release
of thrombin and damage endothelial cells, resulting in increased
5-hydroxytryptamine and histamine content (23), basement
membrane exposure, the release of coagulation factors, and even
thrombosis (24–26). Therefore, poor blood supply induced by
blood viscosity may be one of the factors influencing poor bone
defect healing.

Sympathetic Nervous Excitement
In the high-altitude environment, low oxygen stimulates the
sympathetic nervous system, prompts catecholamines secretion,
accelerates the heartbeat, enhances myocardial contractility,
increases cardiac output, and elevates arterial blood pressure to
a certain extent. On the skeleton, the sympathetic nerve fibers
run along the major artery and nourish the bones through
nutrient pores. Both the periosteum and bone marrow receive
nutrients from noradrenergic fibers (often associated with the
vascular system), vesicular acetylcholine transporter (VAChT),
and vasoactive intestinal polypeptide immunoreactive fibers
(often associated with the parenchyma). Sympathetic fibers
on the periosteum branch overlaying the bone marrow and
dense mineralized bone region receive the greatest mechanical
stress and load, while also having the highest metabolic rate.
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FIGURE 1 | Factors influencing repair of bone defects in high-altitude environment. Blood compensation: vessels constrict, EPO concentration and hemoglobin

increased. Sympathetic nervous excitement: inhibit osteoblast activity and promote osteoclast formation. Acid-base compensation: In local acid-base compensation,

decreased pH impeding osteoblasts differentiation and enhanced osteoclast activation. In systemic acid-base compensation, with the decreasing of PaO2 and

increasing of PaCO2, increased pH inhibits bone marrow progenitor cell proliferation (EPO, erythropoietin; PaCO2, partial pressure of arterial CO2; PaO2, partial

pressure of oxygen).

Furthermore, the periosteum is the site with the most abundant
blood vessels and has the highest density of sympathetic and
sensory fibers.

Sympathetic nervous excitement may affect bone defect
repair through vasoconstriction, leading to an inadequate
blood supply. In high-altitude environments, sympathetic nerves
are excited, form a large number of sympathetic active
substances, and act on the vascular smooth muscle α receptor,
leading to vasoconstriction, enhanced resistance of surrounding
blood vessels, and reduced perfusion flow of the tissue (27).
Furthermore, it results in decreased blood supply and hypoxia
in the soft tissue at and around the bone defects, affecting
hematoma organization and callus formation, and interrupting
the healing of the bone fracture. The effect of vasoconstriction
on the reduction of local blood flow in bone defects is more
pronounced with increasing altitude (28).

Sympathetic nervous excitement regulates bone homeostasis
and promotes bone resorption. Sympathetic nervous excitement

at high altitude may result in noradrenaline nerve endings
releasing noradrenaline and stimulating β2-adrenergic receptor
(β2AR) near osteoblasts and osteocytes, bone formation
inhibition, increased receptor activator of nuclear factor-κB
ligand (RANKL) expression, promotion of osteoclast formation,
and increased bone resorption. Altogether, these effects impede
bone formation. Lastly, the secretion of adrenergic agonists
(catecholamines) also stimulates bone resorption, inducing bone
loss (29).

Acid-Base Compensation
High-altitude hypoxia induces hyperventilation and increases
pH, due to the decreased oxygen availability and subsequent
lower PaO2. The HVR occurs when the body attempts to
maintain PaO2 to adapt to the high altitude. Although the PaO2

level during HVR is corrected to a certain degree, partial pressure
of arterial CO2 (PaCO2) is simultaneously reduced, further
leading to decreased plasma H2CO3 concentration and increased
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pH (30). Minor changes in pH have negligible physiological
effects, however, when the pH keeps increasing, a compensatory
acid retention mechanism and increased excretion of HCO3

in urine is triggered, causing diuresis of sodium bicarbonate
and potassium bicarbonate (31), in turn leading to decreased
pH in arterial blood (pHa) compared to the normal level (pHa
≈ 7.4) (32, 33). Insufficient renal compensation may cause a
continuous increase of blood pH, weaken HVR, and reduce
oxygen saturation leading to the onset of acute mountain disease.

Nevertheless, local pH change in bone defects differs from that
of systemic responses. In a high-altitude environment, due to
decreased vascular perfusion, tissue hypoxia generates an acidic
environment in the bone defect area. Moreover, when a bone
defect occurs, disruption of the blood supply can have negative
consequences for the bone via the direct actions of hypoxia and
acidosis on bone cells (34). In severe hypoxia, glycometabolism
at the injury site is incomplete, anaerobic glycolysis is enhanced,
and local acidic products are increased (35).

Healing of the bone defect is affected by systemic and local
acid-base compensation. A continuous increase of physiological
pH caused by the high-altitude environment affects oxygen-
carrying capacity, as well as the transportation and release of
hemoglobin and blood. In addition, it increases the affinity
of hemoglobin to oxygen (Bohr effect) and allows tissues
to absorb more oxygen (33). Therefore, in terms of oxygen
delivery to the bone tissue, the acid-base compensatory
response under the high-altitude environment is advantageous
for increasing the local oxygen content in bone defects.
However, the pH increase resulting from this compensation
does not promote bone marrow progenitor cell proliferation
and may affect bone defect healing. Studies have reported that
promyelocytic KG-1a cells (hematopoietic stem cells) cultured
under high pH have significantly decreased proliferation and
enhanced apoptosis (35). The bone contains a large number of
alkaline minerals (hydroxyapatite), and bone cells are extremely
sensitive to the direct effects of pH. When the acid-base
balance cannot be maintained within a narrow range, these
alkaline minerals can eventually be used to neutralize pH,
in turn reducing alkaline mineral deposition by osteoblasts
in the bone (36), and impeding osteoblasts differentiation
(34, 37). In contrast, the osteoclastic differentiation and
activation are enhanced (37, 38) resulting in detrimental bone
defect repair.

MECHANISM OF ABNORMAL BONE
DEFECT REPAIR IN HIGH-ALTITUDE

High-altitude areas have thin air and reduced PaO2. Therefore,
cellular structures closely related to oxygen sensing, including
the mitochondria and cell membrane ion channels, produce
corresponding functional changes causing oxidative stress
response, ion permeability changes, signaling pathway activity
changes, autophagy, apoptosis, etc. In addition, the high-
altitude environment alters the epigenetic modification-related
effects on genes, thus affecting protein function that may have
consequences for bone defect repair (Figure 2).

Changes in Ion Permeability of the Cell
Membrane
Ion channels participate in a variety of high-altitude adaptive
compensations such as HVR and vascular tension changes.
It is generally accepted that high-altitude environments
inhibit K+ channels and activate Ca2+ channels (39, 40).
Altered K+ permeability affects osteoblast differentiation and
proliferation (41). Meanwhile, altered Ca2+ permeability affects
the mineralization of extracellular inorganic Ca2+, which acts as
a second messenger, impacting the expression of downstream
osteogenesis-related signaling pathways (42), thereby influencing
bone defect repair.

High-altitude-related low oxygen inhibits the activity of K+

channels, leading to membrane depolarization. Acute hypoxia
depolarizes the membrane potential by 15–20mV (43). It has
been confirmed that K+ channels affected by oxygen in bone cells
include voltage-gated potassium channels (Kv), inward rectifying
K+ channels (Kir), Ca2+-activated K+ channels (KCa), ATP-
sensitive K+ channels (KATP), and two-pore K+ channels (KT)
(44). However, the mechanism by which these K+ channels sense
oxygen changes is not fully elucidated. Studies have found that
K+ channels retain their hypoxic reactivity after recombination
(45, 46), indicating that oxygen not only directly regulates K+
channels but also affects ion permeability through pore-forming
subunits or regulatory β-subunits. Six transmembrane subunits
and one pore-forming subunit (Kv1.2, Kv1.5, Kv2.1, Kv3.1, Kv3.3,
Kv4.2, and Kv9.3) of the Kv channels are reversibly blocked by
hypoxia (47). Furthermore, four transmembrane and two pore-
forming subunits of the double-pore potassium ion channel KT
are also involved in oxygen sensing peripheral chemoreceptors
(48). However, whether other subunits play a role in the low-
oxygen environment at high altitudes remains unclear.

High-altitude hypoxia increases intracellular Ca2+ levels and
causes calcium overload, which results from Ca2+ channel
activation. The main Ca2+ channels affected by oxygen in
bone cells include voltage-sensitive Ca2+ channels (VSCCs) and
transient receptor potential channels (TRPs). In these Ca2+

channels, TRPs are the most predominant oxygen sensors (49).
TRP expression differs on the surface of different bone cells;
e.g., TRP vanilloid-5 (TRPV5) is missing in osteoblasts (50).
However, only the hypoxic responses of TRPV1 and TRPV4
have been examined. Nevertheless, TRPV5 and TRPV6 are also
closely associated with bone defect healing (51). Different from
the other TRPV channels, these are highly selective for Ca2+ and
their changes under hypoxia need to be confirmed. In addition,
although VSCC expression is greatly reduced on osteoblasts
compared with excitable cells, reduced PaO2 can lead to rapid
activation of L-type VSCCs (52). However, the change in T-type
VSCC under hypoxic conditions has not been reported. This may
be a result of the T-type VSCC only being involved at the early
stage of cell differentiation, after which its activity significantly
reduces (53).

In addition to oxygen-sensitive ion channels, only a few
studies have examined changes in other ion channels that may
be associated with high-altitude environments. For example,
compensatory responses to high-altitude have been reported
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FIGURE 2 | Mechanism of abnormal bone defect repair in high-altitude, including changes in ion permeability of the cell membrane, ROS production, changes in

mitochondrial function, activation of autophagy, and epigenetics regulation [Akt, protein kinase B; AMPK, adenosine 5
′

-monophosphate-activated protein kinase;

ASIC, acid sensitive ion channel; ATP, adenosine triphosphate; Bcl-2, B-cell lymphoma 2; BNIP3, Bcl-2 19 kDa interacting protein 3; COX, cytochrome C; CRH,

(Continued)
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FIGURE 2 | corticotropin releasing hormone; EPO, erythropoietin; ERK1/2, extracellular regulated protein kinases 1/2; FUNDC1, FUN14 domain-containing 1; HIF-1α,

hypoxia inducible factor-1α; KATP, ATP-sensitive K+ channels; KCa, Ca2+ activated K+ channel; KCNQ1OT1, potassium voltage-gated channel subfamily Q member

1 opposite strand 1; Kir, inward rectifying K+ channel; KT, double-pore K+ channels; Kv, voltage-gated potassium channel; lncRNA, long non-coding RNA; MAPK,

mitogen-activated protein kinase; miRNA, micro-RNA; mTOR, mammalian target of rapamycin; NADH, nicotinamide adenine dinucleotide; NDUFA4L2, NADH

dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2; NOX, NADPH oxidase; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; PI3K,

phosphoinositide 3-kinase; PKA, protein kinase A; ROS, reactive oxygen species; SDHD, succinate dehydrogenase complex subunit D; SPRED1, sprouty-related

EVH1 domain containing 1; TCA, tricarboxylic acid cycle; TRP, transient receptor potential channel; USP19, ubiquitin specific protease 19; VSCC, voltage sensitive

Ca2+ channel].

whereby sympathetic excitation can lead to local vasoconstriction
with increased expression of the mechanically-gated channel
Piezo1 during vasoconstriction (54), activating the downstream
MAPK/ERK1/2 signaling pathways. In addition, the local
extracellular environment of bone defects is acidified under
hypoxia, which can activate acid-sensitive ion channels (34).

It may be speculated from existing studies that oxygen-
sensitive ion channels play the main role in high-altitude bone
defects. Most literature assessing the effects of high altitude on
ion channels focused on pulmonary edema. However, whether
other subtypes of TRPs (such as TRPC, TRPA, TRPM) also
present similar changes in bone cells as pulmonary vascular cells
have not been reported and should be considered for future
research. In addition, there are few studies on Na+ channels.
The latest study showed that Na+ acts as a second messenger to
regulate the permeability of the inner mitochondrial membrane
in an acute hypoxic environment (55). Therefore, attention
should be paid to the changes of Na+ channels in high-altitude
environments as well as the related effects on bone defect repair.

ROS Production
Both acute and long-term exposures to high-altitude
environments induce the production of reactive oxygen
species (ROS), which results in oxidative stress response (56, 57).
The ROS level increase in the bone can affect bone defect
healing by decreasing osteoblast activity and accelerating bone
resorption by osteoclasts (58). In addition, ROS can also induce
osteoblast and osteocyte apoptosis (59), affecting the quality of
bone defect healing.

Hypoxia is the main factor increasing ROS in high-altitude
environments. At a plateau, PaO2 gradually decreases with
altitude elevation. The mitochondria, a main source of ROS, are
affected by the changes in intracellular and extracellular PaO2.
Multiple studies have suggested that mitochondrial complex
III (ubiquinol-cytochrome c oxidoreductase) and complex I
(NADH-ubiquinone oxidoreductase) are major sites of ROS
production (60–62). Hypoxia reduces complex I activity by
upregulating NDUFA4L2 (63). However, studies have found that
complex IV (cytochrome C oxidase) and complex II (succinate
dehydrogenase) in themitochondria are also sensitive to hypoxia.
This is because complex IV has a binding site for oxygen, and
hypoxia can reduce its activity by upregulating COX4-2, an
isoform of cytochrome C oxidase (COX), and downregulating
COX-1 (64). It also affects the activity of complex II by decreasing
SDHD expression (62). In addition, insufficient oxygen supply
can also obstruct mitochondrial electron transport by partially

leaking single electrons from complexes I–III directly to oxygen
leading to the production of large amounts of ROS (56).

In addition to the effects of hypoxia, sympathetic nervous
system excitement at high altitude may be one of the factors
that contribute to increased ROS production. It was found that
adrenaline receptors mediate the production of cellular ROS
induced by sympathetic system over-excitation. β-AR promotes
the mitochondrial tricarboxylic acid cycle, enhances oxidative
respiration, and increases oxygen consumption through the
classical cAMP/PKA pathway, which leads to enhanced electron
leakage into the mitochondrial inner and outer membrane
spaces, thereby increasing ROS production (65). In addition
to the mitochondria, NOX (NADPH oxidase), distributed on
the plasma membrane and multiple organelle membranes, also
produces ROS upon sympathetic system excitation (66) and
promotes vasoconstriction through a RhoA kinase-dependent
pathway (67). However, studies examining sympathetic nervous
excitement with ROS are currently limited to cardiomyocytes and
vascular smoothmuscle cells. Thus, whether a similarmechanism
also exists in bone cells needs confirmation.

The results of in vitro mechanistic studies evaluating high-
altitude-related ROS production as well as the actual in vivo
situation in high-altitude populations may differ due to the
genetic polymorphisms of ROS production in high-altitude
environments. Studies have found that the mtDNA 10609T in
Han people living on the plateau promotes the increase of
intracellular ROS in hypoxia, while the mtDNA T8414 does
not (68). In addition, the high-altitude environment increases
ROS, which has a negative effect on bone defects. On the
other hand, increased ROS can stabilize the activity of hypoxia-
inducible factor 1-alpha (HIF-1α), which is helpful for the
body to cope with the high-altitude environment. Therefore,
balancing the advantages and disadvantages ROS still needs
quantitative investigation.

Changes in Mitochondrial Function
Mitochondrial dysfunction can affect osteoblast, osteocyte,
and vascular endothelial cell functions (69, 70) as well as
inflammatory reactions in chondrocytes. In turn, this leads to
metabolic disorders in chondrocytes, affecting endochondral
osteogenesis (71). Moreover, osteogenic differentiation of human
marrow MSCs can be impeded by mitochondrial dysfunction
(72), which is not advantageous for bone defect repair.

Mitochondria are the main consumers of oxygen in cells
and need to adapt collectively to the decrease in available
oxygen at high altitudes. Low oxygen environments can lead
to an increased number of mitochondria and imbalanced
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proteostasis. A possible mechanism is that hypoxia induces
mitochondrial fission via mitochondrial outer-membrane
protein FUNDC1 signaling. Under hypoxia, the deubiquitinase
USP19 accumulates at the ER-mitochondria contact sites
with FUNDC1. USP19 then interacts with and removes
ubiquitin chains from FUNDC1 at the ER-mitochondria
contact sites. After USP19 stabilizes FUNDC1 and subsequently
promotes Drp1 oligomerization (73, 74), hypoxia-induced
mitochondrial division occurs thus increasing the number
of mitochondria. In addition, recent studies have found
that hypoxia suppresses mTORC1 signaling and mediates
homeostasis remodeling of mitochondrial proteins by regulating
substrate-related mitochondrial metabolism through the
mTORC1-LIPIN1-YME1L signaling axis (75).

In addition, high-altitude environments may also cause
changes in mitochondrial respiration and aerobic capacity.
However, how this dysfunction relates to the degree of hypoxia
is unknown. Mitochondrial respiratory function is not affected
in mild or early hypoxia. It was found that the effect of 15
days of mild normobaric hypoxia on mitochondrial function
is negligible as mitochondria adapt to the environment by
increasing LON protease content, optimizing respiratory chain
function (76). However, severe hypoxia leads to mitochondrial
dysfunction. When the PaO2 in the mitochondria drops to the
critical point of 0.1 kPa (<1 mmHg), dehydrogenase activity
decreases, reducing the respiratory function of the mitochondria
and decreasing ATP production (77). Moreover, mitochondrial
metabolic pathways switch from aerobic to anaerobicmetabolism
under hypoxic conditions. The possible explanation is that
hypoxia upregulates pyruvate dehydrogenase kinase 1 (PDK1),
inactivates pyruvate dehydrogenase (PDH), transforms pyruvate
to acetyl-CoA, and reduces the availability of substrates for
oxidative metabolism, thereby promoting the conversion of
pyruvate to lactate (78).

However, changes in mitochondrial function under high-
altitude environments are correlated with mitochondrial genes.
Studies have found that mitochondrial haplogroups B and
M7 may be related to inadaptability to hypoxia, while
haplogroups G andM9a1a1c1b are related to hypoxia adaptation.
Specifically the T3394C and G7697A mutations in haplogroup
M9a1a1c1b may be the main factor improving the ability
to adapt to the environment in Tibetans living on the
plateau for generations (79). In addition, the mitochondrial
genes MT-ND1 and MT-ND2, encoding two subunits of
mitochondrial NADH dehydrogenase, play an important role
in the oxidative phosphorylation electron transport chain and
contribute significantly to high-altitude hypoxia adaptation of the
mitochondria (80).

In addition to hypoxia, high-altitude factors such as cold
(81) and strong ultraviolet radiation (82, 83) may also impact
mitochondrial function. Nonetheless, no relevant studies have
assessed their role on mitochondria in bone tissue, which may
be an important future direction.

Autophagy
Both acute and chronic high-altitude exposures activate
autophagy and increase cell death (84). Overall, autophagy

exerts a protective effect under short-term moderate stimulation
induced by the high-altitude environment (85, 86), which
can increase the expression of vascular endothelial growth
factor (VEGF) by stabilizing HIF-1α, thereby benefiting
angiogenesis (87). Meanwhile, as a carrier of osteoblasts to
secrete hydroxyapatite crystals, autophagosomes participate in
bone formation (86, 88). However, a sustained high level of the
oxidative stress response can overstimulate autophagy, leading
to premature cell death (89).

Studies have found that autophagy acts in a HIF-1α-
dependent manner under hypoxia (90). HIF-1α activates
downstream BNIF3, then competitively binds Bcl-2 with Beclin-1
for subsequent activation of autophagy. However, the regulatory
mechanism involved in autophagy has not been studied in
bone cells. Findings in other cell types reveal that hypoxia
affects autophagy via the HIF-1α/Beclin-1 pathway in SH-
SY5Y cells (neuroblastoma cells), dendritic cells (DCs) (91),
and vascular endothelial cells (87). However, this autophagy
activating pathway is not present in all cell lines. For example,
autophagy of NP cells (nucleus pulposus cells) in the hypoxic
environment is independent of the HIF-1α pathway. Therefore,
further investigation is needed to determine whether the same
mechanism exists in skeletal cells.

In addition, a high-altitude environment can also regulate
autophagy through the mTOR-related signaling pathway
as mTOR kinase can be inhibited under conditions such
as malnutrition, decreased ATP levels, and hypoxia. Thus,
reduced metabolic activity induces autophagy (90). Cellular
energy deficiency resulting from high altitude leads to
increased AMP/ATP ratio (92), whereas hypoxia induces
the phosphorylation of AMPK (93), all of which regulate the
AMPK/mTOR signaling pathway. Moreover, the increased
number of red blood cells and EPO caused by high-altitude
compensation can activate the PI3K-1/Akt/mTOR signaling
pathway (94). The low-oxygen environment at high altitude
also upregulates corticotropin-releasing hormone (CRH) and
regulates mTOR in autophagy through the MAPK/ERK1/2
pathway (95, 96).

However, the basal level of autophagy is not the same
in different populations; hence, the effects of autophagy on
bone cells may also differ between individuals in high-altitude
environments. Studies have shown significant differences in the
levels of autophagy markers, including LC3 and BNIP3, between
Tibetans living at an altitude of 3,000m and Han nationals
living below 500m (97). Long-term living in high-altitude
environments could increase the level of basal autophagy—
possibly by resisting the negative effects of oxidative stress
through a higher level of autophagy.

Besides, bone marrow is in a hypoxic environment under
physiological conditions. Thus, whether in vitro effects of
hypoxia on autophagy signaling pathways could be translated
in vivo need to be confirmed. However, through literature
review, we found that altitude affects autophagy by various
mechanisms, emphasizing the complexity of the autophagy
signaling pathways. Future research should investigate whether
autophagy is affected by the degree and duration of bone defects
at high altitudes.
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Epigenetics
Populations living at high altitudes for generations all have
a genetic basis for adaptation to high-altitude environments.
However, genetics alone cannot fully explain the mechanism
of impaired bone defect repair at high altitudes. An increasing
number of studies have confirmed that epigenetic alterations
integrate genetic and environmental stimuli to participate in
hypoxia adaptation of tissues and cells, thereby affecting bone
defect repair by regulating related downstream genes. Some
of the most prominent epigenetic mechanisms include DNA
methylation, histone modifications, and non-coding RNAs.

The most intensively studied epigenetic mechanism to date
is DNA methylation. DNA sequencing in high-altitude and
plain populations reveals that genes with differential methylation
are mainly involved in HIF-related signaling pathways (98,
99). The methylation levels of HIF-1α and HIF-2α promoter
regions are significantly lower in plateau animals (99, 100).
HIF-dependent hypoxia response element (HRE)-related genes
are sensitive to methylation, and a large number of CpG
dinucleotides are present at the binding site of the HRE
sequence of HIF (101). When methylation changes occur at the
above sites, binding to various transcription factors is inhibited.
Studies have shown that chronic hypoxia induces CpG for VHL
promoter methylation, reduces VHL expression, and increases
EPO production by elevating HIF-2α expression in the bone
marrow, leading to erythrocytosis (102). Meanwhile, HIF-1α
cannot be degraded by ubiquitination and further accumulates
in cells (103). Evidence suggests that DNA hypomethylation in
high-altitude environments favors the expression of HIF genes,
in turn triggering the hypoxia adaptation response of the tissue
and cells by regulating the activity of downstream genes.

It is known that high-altitude hypoxia also leads to changes
in histone modifications. The modification sites are generally
located on four common histones, including H2A, H2B, H3,
and H4—with H3 and H4 being the most common. Studies
have shown that high-altitude environments increase the levels
of H3K14ac, H4R3me2, H3K4me2, H3K4me3, H3K79me2,
H3K9/27me2, H3K9me2, H3K27me3, and H3K4mel in mice
(104). In addition, the Jumonji domain (JMJD) protein family
comprises enzymes catalyzing the demethylation of arginine and
lysine residues in histones. Both JMJD1A and JMJD2B retain
their activities, bind to specific recognition sites of HIF-1α, and
induce its expression under high-altitude hypoxia (105). The
chemical modification of these histones ultimately alters the
expression of the genes by changing the affinities of the promoter
regions of genes associated with hypoxia response.

Non-coding RNAs are expressed differently in plateau and
plain environments. Examining the expression profiles of
miRNAs between these environments revealed a total of 26
differentially expressedmiRNAs (106). The hypoxic environment
upregulates the expression of miRNA-21 (107) and miR-
486 (108), while increasing osteogenic differentiation of bone
MSCs (BMSCs) through the PI3K/Akt pathway. Studies have
shown that lncRNAs play an important role in the direct or
indirect regulation of HIF-1α expression and related pathways,
and interrupt angiogenesis and bone formation in hypoxia
by negatively regulating HIF-1α at the mRNA level. The

lncRNA KCNQ1OT1 exerts the primary effects in delayed
fracture healing, inducing cell proliferation and inhibiting cell
apoptosis by activating the Wnt/β-catenin signaling pathway
(109). In addition, hypoxia promotes the production of miR-126
production in exosomes to enhance bone defect healing via the
SPRED1/Ras/ERK signaling pathway (110).

It remains controversial whether epigenetic factors are
beneficial to bone defect repair at high altitudes. Most studies
investigating the impact of epigenetic factors started from the
aspect of hypoxia in the high-altitude environment. However, it
is important to identify other key factors involved in the healing
of bone defects to determine how they are regulated under a
high-altitude environment. Moreover, the histone modification
process is extremely complex and has not been comprehensively
studied. For example, the histone protease LSD1 is a key factor
regulating endochondral ossification during bone regeneration
(111). Yet, how it changes under high-altitude environments has
not been elucidated, which deserves further attention.

IMPLICATIONS FOR TREATMENT

Oxygen Therapy
Oxygen therapy is the primary treatment for acute and chronic
altitude sickness. It primarily serves to improve PaO2 and
arterial oxygen saturation, increase the content of arterial oxygen,
and correct various hypoxia levels caused by the high altitude.
Furthermore, oxygen administration can be divided into systemic
and local types.

The most common systemically administered oxygen therapy
is HBOT (112). Hyperbaric oxygen can reduce the cardiac
workload, improve cardiac function, block the vicious cycle of
hypoxia leading to excessive erythrocyte proliferation, reduce the
respiratory rate, and correct the acid-base balance. Hyperbaric
oxygen can play a role in promoting the repair of both
fresh and old bone defects. It helps reduce tissue edema,
restore venous return, improve microcirculation (113, 114), and
stimulate angiogenesis (115), Furthermore, it also increases PaO2

in the fractured area (especially in the callus and medullary
cavity), enhances the activities of osteoclasts and osteoblasts, and
accelerates bone callus formation (116). In addition, hyperbaric
oxygen also enhances the anti-infective ability of local tissues,
especially against anaerobic bacteria (117). Clinically, hyperbaric
oxygen chambers have been widely used in patients with bone
defects to shorten the recovery time. In response to peri-
implant tissue stimulation by titanium (Ti) particle exposure,
ROS production (118), pro-inflammatory cytokines, infiltration
of inflammatory response cells, and activation of the osteoclast
activity (119), HBOT can be used in combination with bone
grafts (120). Lastly, HBOT also improves the implantation of
osseointegration (121).

Topical oxygen therapy (TOT) has been used in diabetic skin
ulcers, post-operative infections, and gangrenous lesions. The
most common method uses the micro-oxygen wound therapy
instrument, which delivers pure oxygen to the wound for 24 h
via an oxygen administration tube yet is not readily applied in
bone defect repair. Studies have also found that local oxygen
administration improves post-operative local PaO2 and oxygen
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saturation at sternal defects and reduces the risk of infection
(122). In addition, reports have adopted innovative local oxygen
delivery methods. For instance, perfluoro-octane-loaded hollow
particles can be used as a local oxygen source, increasing
cell viability, and maintaining the osteogenic differentiation
potential of human periosteum-derived cells under hypoxic
conditions (123, 124). However, only local oxygen-releasing
dressings, including OxygeneSys, Oxyzyme, and Oxyband, have
been marketed to date, and oxygen released from these products
can only act on the wound surface and cannot improve PaO2 to
address deep bone defects.

In general, HBOT has been widely used in clinical practice
with a definite curative effect, but measures should be taken
according to local conditions. Specifically, the treatment pressure
should not be too high, and the speeds of pressure increase and
decrease rates should be reduced, with the times of pressure
increase and decrease extended appropriately. In addition,
the high-pressure oxygen chamber has various shortcomings,
including inconvenient mobility, which cannot meet the
criteria of emergency treatment to combat altitude sickness.
Thus, scientists have also developed a vehicle-mounted mobile
hyperbaric oxygen chamber. However, the effect of local oxygen
therapy in the treatment of bone defects remains unclear and
deserves further investigation.

Systemic Administration
Some drugs can promote the healing of bone defects by
improving the physiological ability to adapt to hypoxic
environments, reducing ROS, and improving ion permeability of
the cell membrane.

As far as traditional Chinese medicine (TCM) is concerned,
the anti-altitude sickness drug rhodiola has the obvious effect
of inhibiting bone resorption. Studies have found that rhodiola
reduces ROS production, significantly decreases the expression
and activity of MMPs, and upregulates the TIMP protein (125).
Salidroside, the major bioactive compound of rhodiola, has
various pharmacological effects and acts through HIF-1α-VEGF
(126) and BMP (127) pathways, simultaneously promoting
angiogenesis and osteogenesis, thereby accelerating bone defect
healing. Rosavin, a rhodiola component, can block the NF-
κB and MAPK pathways, inhibit RANKL-induced osteoclast
formation in vitro and in vivo, decrease the expression of genes
related to osteoclast differentiation, and promote osteogenesis in
BMSCs (128). In addition, Jiuerjiegusan and Jieguling capsules
are used in the treatment of high-altitude traumatic fractures, also
significantly accelerating fracture healing.

Supplementation of antioxidants can reduce the negative
effects of oxidative stress on bone defect repair by reducing ROS
amounts (129). Common oral exogenous antioxidants include
vitamin C, vitamin E, and trace elements. Polyphenols in fruits
and vegetables also act as natural antioxidants. The effects
of oral antioxidants are currently controversial. Studies have
found that antioxidant cocktail therapy has no effects on bone
resorption or formation (130). Epidemiologic studies showed
that although systemic administration of vitamin C improves
the soft tissue healing of tooth extraction wounds (131, 132),
there is no significant difference in the percentage of X-ray

density of new bone formation (133). The main polyphenolic
catechins in green tea increase the survival, proliferation,
increasesdifferentiation, and mineralization of osteoblasts by
promoting osteogenic differentiation of MSCs (134). Conjugated
linoleic acid (CLA) is an important component of the Tibetan
diet, with a strong antioxidant effect. CLA the quality and
mechanical strength of bone callus fracture healing in rats
(135), and significantly reduces alveolar bone loss in rats with
periodontitis and diabetes (136).

Calcium ion antagonists, which dilate blood vessels and
relax bronchial smooth muscles, are commonly used to treat
high-altitude reactions, improving the anti-hypoxia ability to
various degrees. Ronacaleret, a novel calcium-sensing receptor
antagonist, stimulates the release of parathyroid hormone (PTH)
and increases the expression of bone formation markers. A phase
I and II clinical study found that it acts as a potent oral anabolic
agent to promote bone fracture healing (137). However, it has
not been reported whether other calcium antagonists can be
used for the treatment of high-altitude-related bone defects by
systemic administration.

Most of the above reports are basic research, and large-scale,
placebo-controlled, long-term randomized trials with optimal
timing of protocol interventions are still needed to determine
the efficacy of drugs on bone defect repair. In addition, non-
targeted mitochondrial antioxidants cannot accumulate in large
quantities in key steps of mitochondrial ROS production, and
may eventually interfere with subsequent physiological signal
transduction (138). Therefore, the safety of these proof–of–
concept drugs remains to be confirmed in further experiments.
Under the guidance of the TCM theory, TCM has its advantages
in fundamentally preventing and treating altitude sickness. Its
combined application with Western medicine is expected to
become the future therapeutic standard for treating plateau
bone defects.

Local Drug Delivery
Drugs directly acting on bone defects are administered by
local drug delivery. With the development of biomaterials and
bone tissue engineering technology, local drugs are sometimes
combined with biomaterials to enhance angiogenesis and
osteogenesis abilities, which effectively repair bone defects and
promote bone regeneration to a certain extent.

Bioactive materials have been widely reported in the treatment
of bone defects, but whether they have the same efficacy in high-
altitude environments remains to be confirmed. In view of the
potential mechanism of poor bone defect repair at high altitudes,
existing studies can serve as a certain reference. Amorphous
silicon nitride (Si(On)x) can be used as nano-coating for titanium
plates, which have a strong attachment to the surface of scaffolds
and induces the sustainable release of Si (+4-valent) for a
prolonged time (139), enhancing the expression of superoxide
dismutase. Thus, its therapeutic use is also expected to promote
bone tissue repair and angiogenesis by reducing the influence
of ROS in the high-altitude environment (140). Bioactive
borosilicate glass (BG) scaffolds and tricalcium phosphate (TCP)
are commonly used materials in bone repair. DMOG, a small
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molecule angiogenic drug that can adjust the stability of HIF-
1α (141), can be added to BG and TCP to promote new bone
formation and neovascularization in bone defects (142).

HIF is a key factor in response to hypoxic stress in high-
altitude environments; direct application of HIF or the use
of HIF-related drugs may promote bone defect repair at high
altitudes. For instance, DBBM-C (deproteinized bovine bone
+10% collagen) combined with HIF-1α promotes the formation
of new bone (143). HIF-1αmediates DNAdelivery via the protein
transduction domain (PTD), and local administration of HIF-1α
via PTD promotes bone growth (142). Under severe hypoxia,
mechanical growth factor E inhibits the expression of HIF-1α
and its transfer to the nucleus, thus regulating the proliferation
and osteogenic differentiation of BMSCs (144). In addition, local
application of HIF-related drugs may also be helpful for cartilage
repair. Studies have shown that HIF-1α combined with collagen
scaffold can repair osteochondral defects of the condyle of the
temporomandibular joint in rabbits (145). Local injection of
icariin inhibits the NF-κB/HIF-2α signaling pathway, thereby
enhancing chondrocyte viability (146).

As discussed earlier, autophagy plays an important role in
poor bone defect repair at high altitudes. Therefore, applying
drugs regulating autophagy may be a potential therapeutic
approach. Metformin, which is commonly used to combat
hyperglycemia, has also been shown to affect bone regeneration.
Metformin increases autophagy in BMSCs under hypoxic
conditions and upregulates the osteogenic markers Runx2,
osteocalcin, and alkaline phosphatase to significantly accelerate
the formation of new bone (147, 148). Simvastatin, a serum
cholesterol-lowering drug, has been shown to promote bone
regeneration. Topical administration of simvastatin enhances
autophagy and reduces the activity of osteoclasts (149), as
well as induces homing of endothelial progenitor cells and
promotes angiogenesis (150). It is as effective in repairing long
tubular and flat bone defects as autografts (151). Other studies
have found that under hypoxic conditions, resveratrol and
angiopoietin 2 improve the survival and differentiation of BMSCs
through autophagy (152, 153). Furthermore, intraperitoneal
administration of the autophagy inducer rapamycin in fractured
rats improves the autophagy level, increases bone callus
formation, and accelerates fracture healing (154). Nevertheless,
rapamycin has many adverse reactions. Therefore, identifying
autophagy modulators with reduced toxicity and good efficacy is
a direction of future research.

Local drug therapy can act directly on the bone defect
site to accelerate fracture healing and enhance bone graft
stability. However, the condition of bone defects faced by
clinicians in high-altitude environments is complex and often
occurs in combination with hypothermia, hypoxemia, and
infection. Therefore, it is possible to combine drugs that
promote osteogenesis with those conferring anti-infection and
rehydration to establish a suitable rescue treatment approach for
bone defects in high-altitude areas.

Stem Cells
The regeneration ability of bone tissue cells is compromised in
high-altitude environments. Fortunately, stem cell therapy by

itself or in combination with drugs, surgery, biomaterials, etc.,
can play a role in accelerating wound repair by improving tissue
differentiation ability.

In high altitude environment, EPO was increased.
Erythropoietin receptor (EPOR) was expressed in bone
marrow stromal cells (BMSC), and it was verified that increased
EPO results in reduced bone by regulating BMSCs (155).
Although the local transplantation of BMSCs accelerated wound
repair of high-altitude femoral defects, the healing rate of the
high-altitude group remained lower than that of the plain group
(156). Therefore, improving the survival rate and osteogenic
ability of transplanted BMSCs in hypoxic regions is crucial.
Studies have shown that BMSC transplantation combined
with FG4592 administration can further accelerate fracture
healing by increasing the proliferation and migration of BMSCs
(157). BMSCs are reprogrammed into induced pluripotent
stem cells (iPSCs), called iPSC-MSCs, whose morphology,
immunophenotype, in vitro differentiation potential, and DNA
methylation pattern are similar to those of BMSCs. Nevertheless,
iPSC-MSCs have a higher proliferative capacity and promote
bone repair and angiogenesis more pronouncedly (158). A 3D
cell oxygen permeation culture device “Oxy Chip” was developed
to generate and supply oxygen to cell spheroids to prevent
hypoxia (159). It could promote osteoblastic differentiation
of MSCs.

Adipose-derived stem cells (ADSCs) could differentiate into
chondroblasts after 2 days of in vitro culture without the addition
of growth factors at low oxygen partial pressure (<1% PO2)
(160). However, for osteogenic differentiation to be achieved,
different growth factors or biomaterials should be combined
to provide an osteogenic induction environment for ADSCs.
The combination of ADSCs and autologous platelet-rich plasma
(PRP) was not statistically significant compared with autologous
bone grafts (161). This may be because the growth factor mixture
in PRP has a short half-life in vivo, which cannot guarantee
osteogenic induction of ADSCs during the whole process of bone
repair. Nonetheless, tissue engineering scaffolds have advantages
in providing a continuous environment for osteogenic induction.
Some scholars have developed epigallocatechin gallate (EGCG)-
coated synthetic fibers encapsulating ADSCs to fabricate stem
cell spheroids for bone tissue regeneration. These EGCG fibers
effectively delivered osteo-inductive and ROS scavenging signals
to ADSCs in spheroids, upregulating the osteogenic markers
RUNX2 andOPN (162). In addition, a novel 3D BG scaffold (BG-
XLS/GelMA-DFO) combined with ADSCs could also promote
bone regeneration under simulated hypoxia conditions (163).

The cell viability and survival time of ordinary 2D-cultured
MSCs after transplantation is not ideal. It is the current trend to
aggregate cells into 3D spheres or to bind, extend, and grow them
on porous 3D scaffolds. Since blood supply plays a crucial role
in bone defect repair, whether the 3D culture of stem cells can
be vascularized has become an important hotspot for research.
Organoids are stem cell-derived 3D culture systems. It is now
possible to re-create the architecture and physiology of human
organs in remarkable detail. A preliminary breakthrough has
shown that organoids can form a vascular network through the
Organ Bud technology (164, 165), which is expected to become a
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future research direction for developing treatment tools for bone
defects at high altitudes by stem cell transplantation.

Gene Modifications
The rapid development of modern molecular biology theory
and technology has given rise to innovative solutions to address
bone defect repair. For instance, using gene therapy, a target
gene combined with a carrier can be injected directly into the
target tissue. Alternatively, gene-modified stem cells can be used
to promote new bone formation and repair bone defects. The
most common methods of gene modifications are viral and non-
viral vectors, including retroviruses, lentiviruses, adenoviruses,
liposomes, and cationic polymers.

Osteogenesis-related genes can be introduced to target cells
by vectors. This enables achieve long-term stable expression
of the genes of interest within the bone defect, which
could promote bone defect repair. Studies have shown that
adenovirus transduction of human BMP2 promotes osteogenic
differentiation of adipose tissue fragments (166). Introducing the
BMP2 gene into BMSCs can induce bone differentiation and
accelerate the healing process (167–169). Furthermore, using
gene modification, the OPG gene was introduced into BMSCs
seeded on a hydroxyapatite (HA) scaffold to form a novel
OPG-BMSC-HA complex, which could promote the osteogenic
effect of BMSCs and facilitate bone defect reconstruction
therapy (170). Runx2 gene-modified MSC-derived 3D spheroids
have also been used to effectively promote bone regeneration
(171). VEGF transfected with recombinant adenovirus vector
preserves the oxygen sensitivity of HIF-1/HRE and promotes
vascularization (172).

As small non-coding RNAs that regulate gene expression,
miRNAs have become new targets for poor bone healing. Studies
have shown that ADSCs transfected with miR-26a (173), as
well as BMSCs transfected with miR-218 (174) and miR-29b-
3p (175), can improve bone regeneration capacity. In addition,
miR-378 can stimulate both osteogenesis and angiogenesis (176).
Therefore, it can be used as a reference target for the treatment
of bone defects at high altitudes (177). Regarding the mechanism
underlying the effect of high altitude on bone repair, the hypoxic
environment can upregulate miR-21 (107) and miR-486 (108).
Therefore, these two miRNAs are also potential therapeutic
targets. It was found that miR-21 activates the PI3K/Akt signaling
pathway (178, 179) and significantly increases the volume of
new bone formation and mineralization at the bone defect site.
miR-486-3p targeting catenin β-interacting protein 1 can activate
the Wnt/β-catenin signaling pathway and promote the bone
formation of BMSCs (180).

Exosomes exhibit biological characteristics similar to those of
the parent cells and can be used as carriers to deliver genes to cells
(181). In addition, direct application of exosomes can also reduce
the risk of immunogenicity, avoiding the ethical and technical
issues linked to cell therapy (182). BMSC-derived exosomes
carrying miR-335 promote fracture recovery through activation
of the Wnt/β-catenin signaling pathway (183) and enhance bone
regeneration by inhibiting hypoxia-induced osteocyte apoptosis
(184)—thus, significantly preventing bone loss and increasing the
blood vessel volume of the femoral head (185). Ther exosomal

release is induced upon hypoxia (186) and this approach may
be used in the treatment of bone defects in high-altitude-related
hypoxic environments. In addition, umbilical cord MSC-derived
exosomes increase the expression of VEGF and HIF-1α, which
may accelerate fracture healing by promoting angiogenesis (181).
The combination of exosomes with biomaterials is also one
of the potential therapeutic strategies for repairing cartilage
(187) and bone defects (188). Lastly, a novel “NANOBIOME”
approach based on the biobanking of exosomes secreted byMSCs
has shown promise as an innovative “cell-free” regenerative
medicine (182).

Genetic regulation in organisms is a highly sophisticated
dynamic process. The safety of gene-modified therapies in
humans still needs consideration as their improper use may lead
to cell dysfunction and other side effects. For example, miRNAs
can be involved in multi-target regulation and may cause adverse
reactions in tissues other than the bone when applied in vivo. In
addition, human manipulation of epigenetic regulation requires
higher legal requirements. Therefore, convenient, rapid, efficient,
and safe epigenetic modification methods are required to achieve
accurate treatment of bone defects at high altitudes.

CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE
RESEARCH

In most in vitro experiments, researchers applied oxygen
concentrations of 1–5% as hypoxic conditions and used oxygen
concentrations of ∼21% at standard atmospheric pressure
for comparison. However, the latter is indeed much higher
than the oxygen concentration in the physiological state of
the tissue microenvironment, whereas the former is close to
normal physiological conditions in humans [e.g., the oxygen
concentration in the bone marrow is 4–7% (189)]. Furthermore,
studies examining high-altitude environments are often limited
to reduced oxygen content which can be misleading. First, actual
oxygen concentration at the plateau is not low as all oxygen
levels are ∼21% between sea level to an altitude of 100,000m.
Altitude sickness is actually caused by a drop in PaO2. At this
elevation, hypoxia occurs when PaO2 in the air inhaled by the
human body falls below 16 kPa (2,500–3,000m). Since the key
molecule in oxygen sensing and adaptation is HIF-1, it may be
a more accurate method to simulate the effect of high altitude
on cells by regulating the expression of intracellular HIF-1. For
example, prolyl hydroxylase inhibitors can be used to effectively
increase HIF-1α protein stability (190).

At present, there is no clear optimal treatment plan for
bone defects at high altitudes. The existing clinical work
in high-altitude areas is mainly based on systemic oxygen
therapy and bone transplantation. This is because many
treatment methods involving signaling pathways and gene
modifications are still in the basic research stage. Therefore,
drugs targeting mitochondrial dysfunction and novel bone graft
materials with oxygen-carrying capacity are urgently needed.
Elabel (ELA), a peptide hormone, has been shown to promote
the growth, survival, and pluripotency of human embryonic
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stem cells (191, 192). However, to date, ELA has only been
studied for the treatment of cardiovascular diseases (193, 194),
and its therapeutic effect on bone defects at high altitudes
requires investigation.

As biomaterial and bone tissue engineering technology is
advancing, developing biomaterials for plateau environments
could be a future research hotspot. A new type of bone graft
with an oxygen-carrying function can provide both local oxygen
supply and bone substitute. Wang et al. (195) developed a novel
oxygen sustained-release biomaterial composed of CaO2/gelatin
microspheres and a 3D printed polycaprolactone/nano-
HA composite porous scaffold. Their results showed that
CaO2/gelatin microspheres continuously released oxygen for
19 days, improving the survival rate of transplanted BMSCs in
the rabbit model by reducing local apoptosis. However, further
experiments evaluating high-altitude animal models are needed
to confirm the repair effect of this material on bone defects.

With the discovery of mitochondrial dysfunction, autophagy,
signaling pathways, and epigenetic mechanisms of high-altitude
bone defects, the development of better, targeted, personalized,

and precise bone defect repair methods adjustable according to
the high-altitude adaptation of patients should be expected.
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