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Abstract: Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures,
filaments, and rings. The septin cytoskeleton has a number of cellular functions, including
regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin,
forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the
septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in
various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has
not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as
well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells.
Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory
effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either
CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target
effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control
and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor
and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution
is warranted while using this compound to examine the biological functions of septins in cellular
systems and model organisms.

Keywords: septin cytoskeleton; epithelial cells; migration; wound healing; hepatocyte growth factor;
epithelial barrier; off-target effects

1. Introduction

The cytoskeleton is a major determinant of the architecture and function of eukaryotic cells. It
is composed of various filaments formed via self-assembly and the polymerization of specialized
structural proteins [1–3]. There are four types of cytoskeletal structures in eukaryotic cells: actin
filaments, microtubules, intermediate filaments, and septin complexes. These cytoskeletal elements
play crucial roles in regulating homeostatic and specialized functions of different cells. Such functions
include regulation of cell shape and size, cell division, migration, vesicle trafficking, cell-cell interactions,
receptor signaling, etc. [1–3]. Abnormal architecture and dynamics of different cytoskeletal structures
are linked to the development of various diseases, most notably cancer and inflammation [4–7].
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Crucial advances in understanding the organization and cellular functions of the cytoskeleton
were driven by the discovery of cell permeable small molecules that selectively bind to, and alter, the
dynamics of different cytoskeletal elements [8]. For example, deciphering the roles of actin filaments
and the non-muscle myosin II (NM II) motor in various cellular processes was greatly accelerated
through the use of actin filament-disrupting drugs, cytochalasins [9] and latrunculins A/B [10,11], a
filament stabilizer, jasplakinolide [12], and NM II inhibitor, blebbistatin [13]. Examples of important
pharmacological tools selectively targeting microtubules include nocodazole and taxol, which inhibit
microtubule assembly and disassembly, respectively [14,15]. The aforementioned cytoskeletal drugs
appear to be highly specific to their targets since no major off-target effects are reported after extensive
investigation of these compounds. However, in addition to these success stories, there are many
examples of different cytoskeleton-modulating compounds that turned out to not be as specific as
suggested during their initial discovery and characterization. For example, wiskostatin, initially
developed as a blocker of N-WASP-dependent actin polymerization [16], was subsequently shown
to also be a potent ATP-depleting agent [17]. Another example of a non-specific compound is 2,3
butanedione monoxime, used to inhibit NM II ATPase activity [18,19], but appeared to disrupt the
actin filament assembly via NM II-independent mechanisms [20,21]. Furthermore, a small molecule,
miuraenamide A, was originally characterized as a novel actin filament-stabilizing drug [22]. However,
a subsequent study revealed its profound effects on protein expression that includes decreasing the
levels of components of the Wnt signaling pathway [23]. These examples illustrate that caution should
be used in interpreting the cellular effects of new or poorly characterized cytoskeletal drugs; proposed
mechanisms of their actions should be verified using more specific genetic tools.

Septin cytoskeleton is the least studied cytoskeletal type in eukaryotic cells. In mammals, septin
filaments and rings are assembled by hetero-oligomerization of thirteen different members of a family
of GTP-binding proteins [1,24–26]. Septin filaments interact with membrane phospholipids and
other cytoskeletal elements, thereby acting as important cellular scaffolds controlling the shape and
positioning of different intracellular organelles [1,24–26]. The structure and functions of the septin
cytoskeleton have been studied using different experimental approaches. One such approach utilizes
forchlorfenuron (FCF), a synthetic small molecule suggested to selectively target septin filaments,
affecting their architecture and dynamics [27,28]. In silico docking proposes that FCF stabilizes septin
filaments by interacting with the nucleoid-binding pocket of septin monomers, thereby preventing
GTP binding and hydrolysis [29]. A number of studies have used FCF treatment to interrogate the
functional roles of septin filaments in different mammalian cells. FCF was shown to interfere with cell
proliferation [27,30], block cell migration and invasion [27,30,31], attenuate formation of the epithelial
barrier [32], modulate growth factor receptor trafficking and signaling [33], block store-operated
calcium entry [34,35], and inhibit synaptic transmission [36–38]. Targeting the septin cytoskeleton by
FCF was frequently complemented by genetic downregulation of septin expression [31,32,34,35,38,39].
However, in several studies, FCF was the only tool used to perturb septin filament organization and
dynamics [30,33,36,37].

FCF appears to be active at relatively high concentrations, 50–500 µM, increasing the probability
of off-target effects. A study in budding yeast cells demonstrated that FCF was able to inhibit the
proliferation of septin deficient mutants, thus highlighting septin-independent cellular activities
of this compound [40]. The possibility of off-target effects of FCF in other experimental models
was suggested by the same group [40,41] but has never been proven experimentally. Since FCF is
frequently used to probe septin functions in different mammalian cells, it is important to understand
its specificity in such experimental systems. In the present study, we found that FCF inhibits the
spontaneous, as well as hepatocyte growth factor (HGF)-induced, motility of human colonic and
prostate epithelial cells, and disrupts the integrity of the epithelial barrier in colonic epithelial cell
monolayers. Surprisingly, these inhibitory effects of FCF were evident even after the genetic disruption
of the septin cytoskeleton, suggesting septin-independent functions of FCF in human epithelial cells.
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One such septin-independent FCF activity involves the modulation of intracellular signaling via the
suppression of c-Jun expression and ERK signaling.

2. Materials and Methods

2.1. Antibodies and Other Reagents

The following primary polyclonal (pAb) and monoclonal (mAb) antibodies were used to detect
cytoskeletal and signaling proteins: anti-SEPT2, SEPT9 pAbs, and anti-α-tubulin mouse mAb
(Millipore-Sigma, St. Louis, MO, USA); anti-SEPT2, SEPT6, and SEPT8 pAbs (Proteintech, Rosemont, IL,
USA); anti-SEPT7 pAb (Santa Cruz Biotechnology, Dallas, TX, USA); anti-SEPT11 pAb (Abcepta, San Diego,
CA, USA); anti-Erk1/2 and phospho-Erk1/2, c-Jun, phospho-c-Jun, Akt1, phospho-Akt, phospho-SAPK/JNK
and Src rabbit mAbs, anti-phospho-Src, FAK, phospho-FAK, SAPK/JNK, and GAPDH pAbs (Cell Signaling,
Danvers, MA, USA); anti-FAK and Paxillin mouse mAbs (BD Biosciences, San Jose, CA, USA); anti-phospho
Paxillin pAb (Thermo-Fisher Scientific, Waltham, MA, USA); Alexa Fluor-488-conjugated phalloidin
and Alexa Fluor-555-labeled donkey-anti-mouse secondary antibody were obtained from Thermo-Fisher.
Horseradish peroxidase (HRP)-conjugated goat-anti-rabbit and anti-mouse secondary antibodies were
acquired from Bio-Rad Laboratories (Hercules, CA, USA). Human recombinant HGF was purchased from
R&D Systems, (Minneapolis, MN, USA); N-(2-Chloro-4-pyridyl)-N′-phenylurea (forchlorfenuron, FCF)
was purchased from Millipore-Sigma (St. Louis, MO, USA). All other reagents were of the highest grade
and obtained from either Thermo-Fisher or Millipore-Sigma.

2.2. Cell Culture

HT-29 cf8, a well-differentiated clone of HT-29 human colonic epithelial cells [42,43] was provided
by Dr. Judith M. Ball (College of Veterinary and Biomedical Sciences, Texas A&M University, College
Station, TX, USA). DU145 human prostate epithelial cells were obtained from American Type Culture
Collection (Manassas, VA, USA), and 293FT cells were obtained from Thermo-Fisher. HT-29 and 293FT
cells were grown in DMEM supplemented with 10% FBS, 15 mM HEPES, non-essential amino-acids,
and penicillin-streptomycin antibiotic. DU145 cells were grown in RPMI media supplemented with
10% FBS, 5 mM pyruvate, 15 mM HEPES, and penicillin-streptomycin antibiotic. Cells were grown and
propagated in T75 flasks and were plated on either 6-well plates, collagen-coated Transwell chambers
(Millipore-Sigma), or collagen-coated coverslips for biochemical and functional studies.

2.3. Generation of Septin 7 Knockout Lines Using CRISPR-Cas9 Gene Editing

Guide RNA sequences for CRISPR/Cas9 were designed with a CRISPR design web site
(http://crispr.mit.edu/), provided by the Feng Zhang Lab (Broad Institute of the Massachusetts
Institute of Technology and Harvard University, Boston, MA, USA). In order to construct plasmids
for CRISPR-mediated SEPT7 gene knockout, the lentiCRISPR v2 (Addgene: #52961) vector was used
as a backbone. The vector was digested with a BsmBI restriction endonuclease and hybridized
oligos were ligated to a single guide RNA (sgRNA). The following sgRNA sequences were
used in the study: SEPT7-sgRNA1: CACCGCAGCAACAGAAGAACCTTGA; SEPT7-sgRNA2:
CACCGCTGGAGAATACAAATCTGTG; control sgRNA: CACCGGACCGGAACGATCTCGCGTA.
Lentiviruses were produced in 293FT cells using helper plasmids pCD/NL-BH*DDD (Addgene: #17531)
and pLTR-G (Addgene: #17532) transfected with TransIT®-293 Transfection Reagent (Mirus Bio,
Madison, WI, USA). Stable SEPT7-depleted HT-29 cells were generated by transduction with the SEPT7
sgRNAs containing lentiviruses and subsequent puromycin selection (5 µg/mL) for 7 days.

2.4. RNA Interference

SEPT7 expression was transiently downregulated in DU145 cells using gene-specific small
interfering (si) RNAs, as previously described [44–46]. A siGENOME SEPT7 SmartPool (Horizon
Discovery, Cambridge, UK) was used to downregulate SEPT7 expression, whereas a non-targeting
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duplex #1 was used as a control. Cells were seeded in 6-well plates at approximately 60% confluence
and transfected with corresponding siRNAs using DharmaFect 1 transfection reagent [46,47]. The final
siRNA concentration in the final transfection mixture was either 50 nM or 100 nM. Cells were utilized
for experiments on days 3 and 4 post-transfection.

2.5. Immunoblotting Analysis

Total cell lysates were obtained by homogenizing cells with RIPA cell lysis buffer (20 mM Tris, 150 mM
NaCl, 2 mM EDTA, 2 mM EGTA, 1% sodium deoxycholate, 0.1% SDS, 1% Triton X-100), supplemented
with phosphatase inhibitor cocktails 2 and 3 (1:200) and protease inhibitor cocktail (1:100) (Millipore-Sigma).
The homogenized samples were cleared by centrifugation, mixed with an equal volume of 2× SDS sample
buffer, and boiled. Total cell lysates were separated by SDS-polyacrylamide gel electrophoresis with
10–20 µg of protein loaded into each well. The separated proteins were then transferred by standard
electroblotting technique onto nitrocellulose membranes. After transfer, membranes were incubated with
primary and HRP-conjugated secondary antibodies, and the proteins were visualized using standard
enhanced chemiluminescence reagents and x-ray film. Protein expression was quantified by densitometry
using Epson Perfection V500 photo scanner (Epson America Inc. Long Beach, CA, USA) and ImageJ
software (National Institute of Health, Bethesda, MD, USA) of three immunoblot images, each representing
an independent experiment. Data are presented as normalized values assuming the expression level in
control sgRNA, or siRNA-treated groups as 1. Statistical analysis was performed with row densitometric
data using GraphPad Prism 6.01 (San Diego, CA, USA).

2.6. Immunofluorescence Labeling and Confocal Microscopy

Control and SEPT7-depleted epithelial cells cultured on collagen-coated coverslips were fixed in
4% paraformaldehyde and permeabilized with 0.5% Triton-X100 at room temperature. Fixed samples
were blocked for 60 min in HEPES-buffered Hanks’ balanced salt solution (HBSS) containing 1% bovine
serum albumin, followed by a 60-min incubation with anti-α-tubulin antibody. Samples were then
washed and incubated with Alexa-Fluor-488–conjugated phalloidin and Alexa-Fluor-555–conjugated
donkey anti-mouse secondary antibodies for 60 min, rinsed with blocking buffer, and mounted on
slides with ProLong Antifade mounting reagent (Thermo-Fisher). Immunolabeled cell monolayers
were imaged using a Leica SP8 confocal microscope (Wentzler, Germany). The Alexa Fluor 488 and 555
signals were acquired sequentially in frame-interlace mode, to eliminate cross talk between channels.
Images were processed using Adobe Photoshop. The images shown are representative of at least three
experiments, with multiple images taken per slide.

2.7. Scratch Wound Assay

Epithelial cells were plated in 6-well plates and grown for 5 days until confluency. A pipette tip
was used to make a thin scratch wound in the cell monolayer. The bottom of the well was marked to
define the initial position of the wound, and the monolayers were supplied with fresh cell culture media.
The images of a cell-free area at the marked region were acquired at the indicated times after wounding,
using a Leica DMi8 inverted bright field microscope equipped with a camera. The width of the wound
area, along the established marks, was measured using ImageJ software. For biochemical experiments,
multiple wounds were created in cell monolayers using a Cell Comb™ Scratch kit (Millipore-Sigma).

2.8. Measurement of Epithelial Barrier Permeability

Transepithelial electrical resistance (TEER) of cultured epithelial cell monolayers was measured
using an EVOMX volt-ohm meter (World Precision Instruments, Sarasota, FL, USA). The resistance
of cell-free collagen-coated filters was subtracted from each experimental point. An in vitro dextran
flux assay was performed, as previously described [43,47]. Briefly, control and SEPT7-deficient HT-29
cell monolayers differentiated on transwell filters were apically exposed to 1 mg/mL of fluorescein
isothiocyanate-dextran (4000 Da, Millipore-Sigma) in HBSS. After 4 h incubation, HBSS samples were
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collected from the lower chamber, and fluorescein isothiocyanate fluorescence intensity was measured
using a SpectraMax M2 Microplate Reader (Molecular Devices, San Jose, CA, USA) at excitation
and emission wavelengths of 485 and 544 nm, respectively. After subtracting the fluorescence of
dextran-free HBSS, relative intensity was calculated using GraphPad Prism 6.01.

2.9. Statistics

All data are expressed as means ± standard error (SE) from three biological replicates. Statistical
analysis was performed using a one-way ANOVA to compare obtained numerical values in the control
and two experimental groups (knockout with two different SEPT7 sgRNAs). If the ANOVA test showed
significant differences, a post-hoc t-test was used to compare the difference between the control and
each SEPT7-depleted group. p values < 0.05 were considered statistically significant.

3. Results

3.1. FCF Attenuated Spontaneous, and Stimulated, Migration of Human Epithelial Cells

The effects of FCF in human epithelial cells were examined using both spontaneous and
HGF-stimulated cell migration as major functional readouts, since inhibition of cell motility with
either FCF treatment, or genetic depletion of different septins, has been previously reported [27,30,31].
Well-differentiated HT-29 cf8 human colonic epithelial cells and DU145 human prostate epithelial
cells were used in this study; their spontaneous and HGF-induced migration was investigated using
a classical scratch wound healing assay. Our pilot experiments demonstrated different velocities
of wound healing for these two cell lines, with HT-29 cells migrating much slower, compared to
DU145 cells. Thus, the motility of HT-29 and DU145 cell monolayers was examined over different
time intervals, up to 24 h and 8 h, respectively, to allow for substantial wound closure. FCF was
added at a final concentration of 50 µM, which is at the lowest end of the already established effective
concentration range for this compound (50–500 µM). Epithelial cell monolayers were pre-incubated
for 2 h with either FCF or vehicle (DMSO), wounded, and allowed to migrate in the presence of
either FCF or vehicle for the indicated times. In HT-29 cell monolayers, FCF significantly attenuated
spontaneous cell migration (Figure 1). Furthermore, this compound completely blocked the increase in
cell migration caused by HGF (Figure 1). By contrast, FCF treatment did not affect spontaneous wound
healing in DU145 cell monolayers but significantly attenuated their HGF-induced motility (Figure 2).

3.2. Downregulation of Septin 7 Expression Triggered the Loss of Other Septin Proteins in Epithelial Cells

Next, we sought to investigate whether or not the observed inhibition of cell migration caused by
FCF treatment is mediated by dysfunction of the septin cytoskeleton. This question was addressed by
comparing the effects of FCF on control epithelial cells and cells with genetic disruption of the septin
cytoskeleton. The septin cytoskeleton was disrupted via downregulation of septin 7 (SEPT7) expression,
which is known to destabilize many other septin proteins and trigger their degradation [48,49]. Two
different approaches were used for SEPT7 downregulation: a stable CRISPR/Cas9 dependent knockout
of this protein in HT-29 cells, and transient, siRNA-mediated knockdown of SEPT7 in DU-145 cells.
A side-by-side comparison of different techniques for SEPT7 depletion helps to minimize possible
influences of distinct non-specific cellular responses to gene knockout and knockdown procedures.
Both CRISPR/Cas9-mediated knockout and siRNA-mediated knockdown resulted in a marked decrease
in SEPT7 protein levels (Figure 3). Consistent with our expectations, loss of SEPT7 resulted in dramatic
expressional downregulation of other major septins (SEPTs 2, 6, 8, 9, 11) in both HT-29 and DU145
cells (Figure 3). These results indicate a global disruption of the septin cytoskeleton in SEPT7-depleted
epithelial cells.
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Figure 1. Forchlorfenuron attenuates the spontaneous and hepatocyte growth factor-induced migration
of colonic epithelial cells. Confluent HT-29 cell monolayers were pretreated for 2 h with either
forchlorfenuron (FCF, 50 µM), or vehicle (DMSO), and wounded. Spontaneous and hepatocyte growth
factor (HGF, 25 ng/mL)-induced wound closure with, or without, FCF was examined at the indicated
time points. (A) Representative images of wounded HT-29 cell monolayers. (B) Quantitation of wound
closure during 12 and 24 h of cell migration. Data are presented as a mean ± SE (n = 5); ** p < 0.01, *** p
< 0.001. Scale bar, 100 µm.
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Figure 2. Forchlorfenuron attenuates hepatocyte growth factor-induced migration of prostate epithelial
cells. Confluent DU145 cell monolayers were pretreated for 2 h with either FCF (50 µM), or vehicle
(DMSO), and wounded. Spontaneous and HGF (25 ng/mL)-induced wound closure with, or without,
FCF was examined at the indicated time points. (A) Representative images of wounded DU145 cell
monolayers. (B) Quantitation of wound closure during 4 and 8 h of cell migration. Data are presented
as a mean ± SE (n = 5); *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar, 100 µm.
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Figure 3. Either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of SEPT7, markedly
decreases the expression of other septin proteins in epithelial cells. SEPT7 was either knocked out in
HT-29 cells using CRISPR/Cas9 mediated gene editing using two different single guide RNAs (sgRNA1
and sgRNA2, A,B) or knocked down in DU145 cells using a siRNA SmartPool (C,D). Representative
immunoblots (A,C) and densitometric quantification of septin expression (B,D) are shown. Data are
presented as a mean ± SE (n = 3); ***p < 0.001.

3.3. FCF Attenuated Migration and Impaired Barrier Properties of Epithelial Cell Monolayers Lacking the
Septin Cytoskeleton

Next, we determined if the disruption of the septin cytoskeleton affects cellular responses to FCF.
Surprisingly, FCF treatment significantly attenuated both spontaneous wound healing (Figure 4A–C)
and HGF-stimulated migration of septin-depleted HT-29 cells (Figure 4D–F). Interestingly, the
magnitude of FCF-dependent inhibition of wound healing appears to be similar to, or even higher,
in septin-depleted HT-29 cells, compared to their controls. Consistently, FCF exposure inhibited
HGF-induced migration of SEPT7-depleted and control DU145 cells, with similar efficiency (Figure 5).
In order to expand upon the biological relevance of our findings, we sought to examine the effects
of FCF on another important epithelial function. Specifically, we focused on the integrity of the
paracellular barrier because it is one of the most characteristic features of differentiated epithelial
cells that is known to be regulated in a septin-dependent fashion [32]. Since DU145 cell monolayers
did not develop a robust barrier (data not shown), these experiments were performed only in HT-29
cells. Confluent, well-differentiated HT-29 cell monolayers were treated with FCF for different time
intervals (up to 24 h), and their paracellular permeability was determined by measuring TEER and
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trans-monolayer flux of FITC-conjugated dextran. FCF treatment of control cell monolayers resulted in
decreased TEER and increased dextran flux, thereby indicating enhanced permeability to small ions
and large uncharged molecules, respectively (Figure 6A,B). SEPT7-depleted HT-29 cell monolayers
displayed increased paracellular permeability even without drug treatment. However, FCF treatment
further decreased TEER and markedly increased dextran flux in septin-depleted cells (Figure 6A,B).
The magnitude of FCF-induced increase in dextran flux was higher in cell monolayers with disrupted
septin cytoskeleton, compared to control epithelial cells (Figure 6B).
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Figure 4. Forchlorfenuron inhibits spontaneous and hepatocyte growth factor-induced migration of
control and septin-deficient colonic epithelial cells. HT-29 cells with stable CRISPR/Cas9 mediated
knockout of SEPT7 and control cell monolayers were subjected to either spontaneous or HGF-induced
wound healing assay with, and without, FCF, as described in the Figure 1 legend. (A,D) Representative
images of wounded HT-29 cell monolayers. (B,C,E,F) Quantitation of wound closure during 12 and 24
h of cell migration. Data are presented as a mean ± SE (n = 5); ***p < 0.001. Scale bars, 100 µm.
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Figure 5. Forchlorfenuron inhibits hepatocyte growth factor-induced migration of control and
septin-depleted prostate epithelial cells. Control and SEPT7-depleted DU145 cells were subjected to
either spontaneous or HGF-induced wound healing assay with, and without, FCF, as described in the
Figure 2 legend. (A) Representative images of wounded DU145 cell monolayers. (B,C) Quantitation of
wound closure during 4 and 8 h of cell migration. Data are presented as a mean ± SE (n = 5); **p < 0.01,
***p < 0.001. Scale bar, 100 µm.

Overall, this data strongly suggests that FCF inhibits migration and disrupts barrier properties of
epithelial cell monolayers via mechanisms independent of the septin cytoskeleton.

3.4. FCF Treatment Inhibited Intracellular Signaling Events

Finally, we sought to elucidate the mechanisms by which FCF affects the migration and permeability
of epithelial cell monolayers. One possibility would involve alterations to the actin or microtubule
cytoskeleton, which are known to be essential for epithelial wound healing and barrier assembly [50–53].
However, immunofluorescence labeling and confocal microscopy did not show significant changes to
the organization of actin filaments and microtubules at the migrating edge of HT-29 cell monolayers
treated with either FCF or vehicle (Figure 7). Similar results were obtained after fluorescence labeling of
vehicle and FCF-treated SEPT7-depleted HT-29 cell monolayers (data not shown). We also performed
an extensive immunoblotting analysis to examine the activation status of crucial promigratory signaling
pathways. Interestingly, our data demonstrated that FCF inhibited expression and activation of the
c-Jun transcription factor and attenuated activation (phosphorylation) of a mitogen-induced kinase,
ERK in migrating HT-29 cells (Figure 8A–D).
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epithelial cells. Control and SEPT7-depleted HT-29 cell monolayers were wounded and allowed to
migrate for 12 h. Cells were fixed and subjected to dual fluorescence labeling for F-actin (green) and
α-tubulin (red). Scale bar, 20 µm.
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Figure 8. Forchlorfenuron treatment affects different signaling events in migrating colonic epithelial
cells. Control and SEPT7-depleted HT-29 cell monolayers were subjected to multiple wounding and
allowed to migrate for 12 h in the presence of either FCF (50 µM) or vehicle. Total cell lysates were used
for immunoblotting analysis to evaluate the activation of different signaling pathways. Representative
immunoblots (A) and densitomentic quantification of protein expression (B–E) are shown. Data are
presented as a mean ± SE (n = 3); *p < 0.05, **p < 0.01, ***p < 0.001.

The described effects of FCF on promigratory signaling pathways were detected in both control
and septin deficient cell monolayers (Figure 8). Furthermore, loss of the septin cytoskeleton resulted
in increased Src phosphorylation that was not mimicked or affected by FCF treatment (Figure 8A,E).
Overall, this data indicates that FCF can modulate different signaling cascades in epithelial cells in a
septin-independent fashion.

4. Discussion

The septin cytoskeleton, which is the fourth cytoskeletal element of eukaryotic cells, has a
number of homeostatic and specialized functions in different tissues [1,24–26]. In contrast to the
extensive toolbox for probing the structure and dynamics of either actin cytoskeleton or microtubules,
experimental tools to probe septin functions are limited. For example, only one small molecular
compound, FCF, has been developed to interrogate septin filament functions in different experimental
systems. Data obtained by probing the septin cytoskeleton with FCF were used to develop several
hypotheses regarding the cellular/physiological functions of septins. These hypotheses include: roles of
the septin cytoskeleton in regulating cancer cell migration and proliferation [27,30,31], neurotransmitter
release in motor neuron endings [36–38], mediating osteoclastic bone resorption [39], and controlling
calcium channel activity [34,35]. Convincing evidence demonstrates the potent effects of FCF on septin
filament organization in vitro and in vivo. In cell-free systems, concentrations in the micromolar range
of this compound stimulated the lateral association and aggregation of purified septin filaments [27]
and induced polymerization of septin complexes isolated from Schistosoma mansoni [54]. FCF added
to Saccharomyces cerevisiae and filamentous fungus Ashbya gossypil caused the reversible formation
of abnormal and mislocalized long septin fibers [28,55]. Finally, in mammalian epithelial cells, FCF
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increased the length and thickness of different septin structures [27,38]. This data firmly established
the ability of FCF to modulate the structure and function of the septin cytoskeleton. The question
remains as to whether the septin cytoskeleton is the only or even the primary target for FCF?

Interestingly, previous studies in non-mammalian systems did suggest possible off-target effects of
FCF. For example, this synthetic plant cytokinin has been extensively used in agriculture to increase fruit
size in higher plants not expressing septins. In plants, FCF actions have been explained as inhibiting
cytokinin oxidase/dehydrogenase [56]. In budding yeasts, low concentrations of FCF significantly
attenuated cell growth without altering the organization of septin filaments, whereas in fission yeasts,
the inhibitory effects of FCF on cell morphology and proliferation were not phenocopied by septin
mutants [40,41]. In these systems, FCF addition resulted in mitochondrial fragmentation, which could
reflect the stimulation of a general stress response [40].

The present study shows that FCF could inhibit two important functions of human epithelial cell
monolayers: collective cell migration, and maintenance of the epithelial barrier even under conditions
of global downregulation of the septin cytoskeleton (Figures 3–6). Our results, demonstrating
good agreement with the aforementioned yeast studies, strongly suggest that the described FCF
activities represent off-target effects of this compound. Interestingly, FCF treatment either mimicked or
exaggerated the effects of genetic disruption of the septin cytoskeleton, or exerted functional activity
that was not recapitulated by septin depletion. For example, disruption of the septin cytoskeleton
by CRISPR/Cas9-mediated knockout of SEPT7 resulted in the impairment of the epithelial barrier,
exaggerated by FCF treatment (Figure 6). By contrast, genetic disruption of the septin cytoskeleton did
not affect either spontaneous or HGF-induced epithelial wound healing, while FCF treatment inhibited
these processes (Figures 4 and 5). While we did not intend to fully dissect the molecular mechanisms
that underline the observed off-target effects of FCF in human epithelial cells, our data suggest that
this compound could affect crucial cellular signaling pathways. One such pathway involves the c-Jun
transcriptional factor. Indeed, under our experimental conditions, FCF consistently decreased the
expression and phosphorylation of c-Jun protein in a septin-independent fashion (Figure 8). Since
c-Jun is a component of key AP-1 transcriptional factor, controlling many vital cellular functions [57],
its downregulation could explain the observed inhibitory effects of FCF on epithelial cell migration and
barrier assembly. This is not the first reported case of FCF affecting protein expression. Previous studies
observed that this compound blocked the expression and transcriptional activity of hypoxia-induced
factor-1α in human prostate cancer cells [30] and inhibited expression of Gata7 and Sox9 transcription
factors in rat cardiomyocytes [58]. Such FCF effects were not validated with genetic manipulation of
septin expression, and it remains unclear if they are mediated by the septin cytoskeleton. Another
possible septin-independent target of FCF involves inhibition of ERK signaling (Figure 8). ERK is
known to be essential for cell migration [59], and inhibition of ERK is likely to contribute to the
attenuated wound healing observed in FCF-treated epithelial cell monolayers.

In conclusion, our study demonstrates that a widely used pharmacological modulator of the
septin cytoskeleton, FCF, potently inhibits migration and impairs the barrier properties of human
epithelial cells in a septin cytoskeleton-independent fashion. This is the first evidence of non-septin
(i.e., off-target) effects of FCF in mammalian cells. The described off-target effects neither preclude
the ability of FCF to disrupt the septin cytoskeleton, nor do they suggest discontinuing the use of this
compound as a pharmacological tool to probe septin function. However, our results discourage the use
of FCF alone and suggest that data obtained using this compound should be interpreted with caution
and, thus, should be verified using more specific genetic approaches to interfere with septin expression
and functions.
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