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Polymeric drug vectors have shown great potentials in cancer therapy. However,

intelligent controlled release of drugs has become a major challenge in nanomedicine

research. Hypoxia-responsive polymeric micelles have received widespread attention

in recent years due to the inherent hypoxic state of tumor tissue. In this study,

a novel diblock polymer consisting of polyethylene glycol and poly[glutamic

acid (3-(2-nitro-imidazolyl)-propyl)] was synthesized and self-assembled into

hypoxia-responsive polymeric micelles for the controlled release of doxorubicin

(DOX). The cell experiments demonstrated that DOX-loaded micelles had a stronger

killing capacity on tumor cells under hypoxic conditions, while the blank micelles

had good biocompatibility. All the experiments indicate that our hypoxia-responsive

polymeric micelles have a great potential for enhanced cancer treatment.
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INTRODUCTION

Cancer is a disease that endangers human life. About 9.6 million people died because of cancer in
2018 according to American Cancer Society (Bray et al., 2018). Therefore, the development of more
effective methods for the treatment of cancer is of great significance for promoting human health.
At present, the main treatments for cancer include chemotherapy, radiotherapy, and surgery.
Among them, surgery and radiation therapy are local treatments, which can only kill local tumor
cells. Chemotherapy is a whole-body treatment method, which can kill not only native tumor cells
but also metastatic cancer cells, and has a systemic therapeutic effect (Krishnan and Rajasekaran,
2014). However, most chemotherapeutic drugs such as DOX generally have shortcomings like large
toxic side effects and short drug effects, which seriously affect the clinical tumor treatment effect
(Feng et al., 2018; Pugazhendhi et al., 2018).

To solve these problems, researchers have developed many nanoscale drug delivery systems to
improve the anticancer efficacy of drugs (Li et al., 2014a,b; Li et al., 2016b; Chen et al., 2018; Gao
et al., 2019; Guo et al., 2020; Ma et al., 2020). Among many drug delivery vehicles, polymeric
micelles have attracted more and more researchers’ attention because of their low biological
toxicity, high stability, and high drug loading capacity (Li et al., 2016a; Huang et al., 2018; Li et al.,
2020a,b). Polymer micelles are usually composed of a hydrophilic shell and a hydrophobic core,
which are usually self-assembled from amphiphilic block polymers in water with a size varying from
10 to 200 nm. The above structure of the polymeric micelles gives them the following advantages:
(1) it can improve the water solubility of many hydrophobic drugs; (2) it can extend the circulation
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GRAPHICAL ABSTRACT | A hypoxia-responsive polymer micelle

encapsulated with DOX was developed for therapy of cancer. in vitro studies

demonstrated the enhanced anticancer effect of the nanomicelles.

time of the drugs in the body through reducing the clearance
of the drug by the kidney; (3) it can increase the concentration
of drugs in tumor tissues through enhanced penetration and
retention effects (EPR effect), also known as passive targeting
(Matsumura and Maeda, 1986; Danhier et al., 2010).

More and more researchers have concentrated on stimuli-
responsive polymeric nanocarriers because of their good
application prospects in drug delivery and intelligent controlled
release of drugs (Dong et al., 2016; Kamaly et al., 2016;
Gao and Dong, 2018; Hu et al., 2019; Song et al., 2019).
Among them, hypoxia-responsive polymeric nanocarriers are
a new class of stimulus-responsive carriers that have been
studied recently (Liu et al., 2015; Dong et al., 2020). Due
to the strong growth of the tumor tissue and the relatively
insufficient blood supply, the tumor tissues are usually in a
hypoxic state compared with the normal tissues. Researchers
have developed a variety of hypoxia-responsive carriers based
on the characteristics of tumor tissue hypoxia. The carriers can
disintegrate or deform to release drugs in hypoxic tumor tissues,
but will not disintegrate or deform in normal tissues, thereby
improving drug efficacy and reducing toxic side effects. Among
many compounds with hypoxia responsiveness, 2-nitroimidazole
has been mostly studied (Thambi et al., 2014). 2-Nitroimidazole
(NI) is hydrophobic, and it could be reduced to hydrophilic
aminoimidazole easily by enzymes in the body under hypoxic
conditions, which can be used as an important component of
hypoxia-responsive carriers.

Herein, a novel diblock hypoxia-responsive polymer
consisting of polyethylene glycol(PEG) and poly(glutamic acid
(3-(2-nitro-imidazolyl)-propyl))(P(LGlu-NI)), abbreviated as
PEGN, is synthesized and self-assembled to hypoxia-responsive
micelles for the controlled release of DOX (Scheme 1). The
PEG block served as a hydrophilic shell, and the P(LGlu-NI)
block is used as a hypoxia-responsive hydrophobic core to
support DOX. Under hypoxic conditions, the hydrophobic
nitroimidazole could turn to the hydrophilic aminoimidazole,
which could make the micelle disintegrated or deformed, thereby

SCHEME 1 | Schematic of fabrication and hypoxia-sensitive drug

release process.

releasing DOX quickly. The anticancer activity of DOX-loaded
micelles was examined in human breast adenocarcinoma
MCF-7 cells.

EXPERIMENTAL

Materials
a-Methoxy-3-amino poly (ethylene glycol) (mPEG-NH2, Mn =

2 kDa) was purchased from Ponsure Biotech (Shanghai, China).
1-Chloro-3-hydroxypropane (Macklin, China), DL-glutamic
acid (Macklin, China), 2-nitroimidazole (Accela, China), and
doxorubicin hydrochloride (Melone Pharma, China) were used
as received. A dialysis bag (Mw cutoff: 3.5 kDa) was purchased
from Shanghai Green Bird Technology Development Co., Ltd.
(Shanghai, China). Anhydrous N, N-dimethylformamide (DMF)
was purchased from JK chemical (Beijing, China). Menthol,
diethyl ether, petroleum ether, and ethyl acetate were purchased
from Zhengzhou Yinfeng Reagent Co., Ltd. (Zhengzhou, China).
Petroleum ether and ethyl acetate were dried over CaH2 and then
distilled under ambient pressure.

MCF-7 cells were obtained from the Kunming cell library of
the Chinese Academy of Sciences. MEM medium was purchased
from HyClone (America). Phosphate-buffered saline (PBS) and
1% penicillin–streptomycin double antibody were purchased
from Solarbio (Shanghai, China). Fetal bovine serum (FBS) was
purchased from SeraPro (Germany). Trypsin–EDTA (0.25%)
solution was purchased from Gibco (America). Cell Counting
Kit-8 (CCK-8) was purchased from Dojindo.

Synthesis of Diblock Copolymers (PEGN)
Synthesis of Glutamic Acid (3-Chloropropyl) (LGlu-Cl)
11 g glutamic acid was dissolved in 100mL of 3-chloro-1-
propanol, and then 10mL trimethylchlorosilane was added into
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SCHEME 2 | The synthesis approach of copolymer PEGN.

the above system. The reaction was allowed to proceed at room
temperature for 5 days. After being transparent, the reaction
solution was precipitated into a large amount of diethyl ether,
filtered, washed three times with diethyl ether, and finally dried
for 24 h under vacuum.

Synthesis of N-Carboxyanhydride of Glutamic Acid

(3-Chloropropyl) (LGlu-Cl-NCA)
5.8 g LGlu-Cl was dissolved in 200mL of ethyl acetate, and
then the mixture was stirred at 70◦C. After the mixture
started to reflux, 3.2 g of triphosgene dissolved in 20mL
of ethyl acetate was added into the above mixture slowly.
The reaction was allowed to proceed at 70◦C for 4 h. After
being transparent, the reaction solution was cooled in a
refrigerator at −20◦C. The reaction solution was washed with
cold saturated Na2CO3 and NaCl solution and then dried
with anhydrous MgSO4. After being concentrated using a
rotary evaporator, the solution was precipitated into a large
amount of petroleum ether, filtered, and recrystallized with
petroleum ether and ethyl acetate for the subsequent ring-
opening polymerization reaction.

Synthesis of PEG-b-P(LGlu-Cl)
0.7 g of PEG-NH2 was dissolved into 20mL of
anhydrous DMF. Then, 2.6 g (LGlu-Cl)-NCA was
added into the above solution under the protection
of nitrogen, and the reaction was allowed to proceed
at 40◦C for 3 days. The above system was transferred
to a dialysis bag (Mw cutoff: 3.5 kDa) and dialyzed
against pure water for 3 d and lyophilized to obtain

a white powder, which was the target product (Mn
= 4.9 kDa, calculated from the 1H NMR spectrum,
mPEG45-b-P (LGlu-Cl)14).

Synthesis of PEG-b-P(LGlu-NI) (PEGN)
294.9mg NI and 352.7mg K2CO3 were dissolved in 10mL of
DMF and stirred for 10min at room temperature. 711mg PEG-
b-P(LGlu-Cl) and 60mg NaI were dissolved in 10mL of DMF
and then slowly added into the above solution. The reaction
was allowed to proceed for 72 h at 80◦C. The above system was
dialyzed against deionized water for 3 days and lyophilized to
obtain PEGN.

Preparation of the Micelles
30.0mg of PEGN and 3.0mg DOX·HCl were dissolved in 3mL
DMSO, then 5 µL of triethylamine was added to the above
mixture to turn hydrophilic DOX·HCl into hydrophobic DOX.
The above solution was added dropwise to 30mL of deionized
water under ultrasonic conditions. Then, the above solution was
transferred into a dialysis bag and dialyzed for 1 days in deionized
water to remove DMSO and unencapsulated DOX. After the
dialysis, the solution was filtered with a 450-nm filter to remove
large particles, and the solution was concentrated and washed
three times using an ultrafiltration tube (MWCO = 100,000
Da) with physiological saline to obtain DOX-loaded micelles
(PEGN/DOX). The preparation of blank micelles (PEGN bm) is
the same as that of DOX-loaded micelles, except that DOX is not
added during the preparation process.
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Characterization of the Polymers and
Nanoparticles
1H NMR spectra of the monomer and polymers were obtained
on a Bruker AVANCE II 400-MHz spectrometer using DMSO-
d6 as the solvent. Fourier transform infrared (FTIR) spectral
studies were carried out using an IS10 670 FTIR spectrometer,
and all the samples were compressed into pellets with KBr
before being tested. The hydrodynamic sizes of the micelles
were determined using a Nano ZS90 dynamic light scattering
(DLS) equipment. The data was collected on an auto-correlator
with a detection angle of scattered light at 90◦. Each sample
was measured three times, and the results were obtained by
the average of the collected data. UV absorption of blank
micelles under normal and hypoxic conditions was detected by
an ultraviolet-visible spectrophotometer.

Loading Content of DOX
A UV-Vis spectrophotometer was used to determine the drug
loading content of DOX. Firstly, the DOX-loaded PEGN micelle
solution was lyophilized, weighed, and dissolved in DMSO.
Then, the DOX concentration was quantified by measuring the
absorbance of DOX at 480 nm according to a standard curve we
established in advance.

FIGURE 1 | 1H-NMR spectra of (A) LGlu-Cl and (B) PEG-b-P(LGlu-Cl) and (C) PEGN; (D) FTIR spectra of PEGN and its precursors.

Confocal Laser Scanning Microscopy
(CLSM)
The cellular uptake of micelles in MCF-7 cells for different
groups was analyzed on a confocal laser scanning microscope
(Nikon C1si, Japanese). For the normoxic group, MCF-7 cells
were incubated overnight in 6-well plates at 37◦C and then
incubated with PEGN/DOX micelles for 2 h. The cells were
washed with PBS twice, and the nuclei were stained with
Hoechst 33342 solution for 10min. Finally, MCF-7 cells were
analyzed and observed under CLSM. The excitation and emission
wavelengths of DOX and Hoechst are 488 nm and 590 nm,
350 nm, and 460 nm, respectively. Except that the MEMmedium
containing 100µM CoCl2 was used to simulate the in vivo
hypoxic environment, the experimental steps for the hypoxic
group were the same as the above steps.

Cell Viability Assay
MCF-7 cells were seeded in 96-well plates with MEM medium
containing 100µM CoCl2 and incubated at 37◦C under 5%
CO2 atmosphere for 24 h. Then, the cells were separately
incubated with blank and DOX-loaded micelles at various
concentrations for 48 h. After the medium in each well
was replaced with 100 µL fresh medium containing 10 µL
CCK-8 solutions, the cells were incubated for another 4 h.
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FIGURE 2 | (A) Mean particle size of blank micelles with prolonged hypoxic treatment time; (B) UV absorption of PEGN bm at hypoxic and normoxic conditions.

FIGURE 3 | Cellular uptake of PEGN/DOX after being cultured with MCF-7 cells for 2 h under hypoxic conditions and normoxic conditions.

After vibration for 10min, the absorbance at 450 nm was
analyzed with an Enzyme Labeler (PerkinElmer EnVision).
Cell viability was calculated by comparing absorbance
with the negative control. All experiments were conducted
in triplicate.

Cell Apoptosis by TUNEL
The cell apoptosis rates with PEGN/DOX in normoxic and
hypoxic groups were detected by TUNEL assay. For the normoxic
group, MCF-7 cells were seeded into 6-well plates and cultured
overnight. Then, the cells were incubated with PEGN/DOX
for 24 h. Then, the cells were fixed with 4% paraformaldehyde
(200 µL) for 20min and then washed three times with PBS.

Furthermore, the cells were treated with 100 µL of 1% Triton
X-100 for 5min and then washed three times with PBS. After
adding 50 µL of TdT enzyme solution to each sample, the
samples were washed three times with PBS. Then, the samples
were treated with 50 µL of streptavidin–fluorescein solution
for 30min and washed three times with PBS. Then, the nuclei
were stained with Hoechst 33342 solution for 10min and
washed with PBS for three times. At last, the samples were
observed with a fluorescence microscope (Nikon ECLIPSE 80i,
Japan). Except that the MEMmedium containing 100µMCoCl2
was used to simulate the hypoxic environment in vivo, the
experimental steps for the hypoxic group were the same as the
above steps.
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FIGURE 4 | Cytotoxicity of (A) PEGN bm and (B) PEGN/DOX.

FIGURE 5 | Cell apoptosis of PEGN/DOX under normoxic and hypoxic conditions. Scale bars are all 10µm.

RESULTS AND DISCUSSION

Polymer Synthesis and Characterization
The synthetic approach of PEG-b-P(LGlu-NI) is illustrated in

Scheme 2. Moreover, the chemical structure of monomer and

polymer was verified by 1H NMR and FTIR analyses (Figure 1).

Figure 1A shows the 1H NMR spectra of LGlu-Cl. The peaks

are assigned as follows: 4.19 ppm (ClCH2CH2CH2O–), 4.00

ppm (NH2 (–CH2-)CH–CO–), 3.60 ppm (ClCH2CH2CH2-),

2.56 ppm (–COCH2CH2-), 2.09–2.21 ppm (–COCH2CH2-), and
2.02 ppm (ClCH2CH2CH2-), indicating the successful synthesis
of the target product. The 1HNMR spectra of PEG-b-P(LGlu-Cl)
and PEG-b-P(LGlu-NI) are shown in Figures 1B,C. The proton
chemical shifts in the 1H NMR spectrum of PEG-b-P(LGlu-Cl)
are 3.50 ppm (–OCH2CH2–), 3.28 ppm (CH3-OCH2CH2-), 4.28

ppm (–NH(–CH2-)CH–CO–), 4.10 ppm (ClCH2CH2CH2O–),
3.66 ppm (ClCH2CH2CH2-), 2.34 ppm (–COCH2CH2-), 2.02
ppm (ClCH2CH2CH2-), and 1.75–1.91 ppm (–NH(–CH2-)CH–
CO–). According to the ratio of integral values of glutamic acid
block signals to the PEG block signals, the polymerization degree
of LGlu-Cl moiety is 14. After the ammonolysis reaction, the
appearance of the two characteristic signals of nitroimidazole at
7.65 ppm (–NCHCHN–) and 7.20 ppm (–NCHCHN–) indicate
the successful synthesis of the final product PEGN (Figure 1C).
Figure 1D shows the FTIR spectrum of products; the appearance
of a characteristic peak of nitroimidazole around 1,375 cm−1

confirms the formation of PEGN. The presence of characteristic
peaks of ester and amide bonds at 1,740 and 1,650 cm−1 indicates
that the polymer structure is complete before and after the
reaction, and there was no degradation.
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Preparation and Characterization of
Micelles
The size of micelles was evaluated using DLS. The mean diameter
of the blank micelle and DOX-loaded micelle is 155 and 168 nm,
respectively. The reason for the change of particle size may be
that the loading of DOX increases the volume of the hydrophobic
core, which increases the overall particle size of the micelles.
Figure 2A shows the change of the average particle size of
blank micelles with prolonged hypoxic treatment time. Under
hypoxic conditions, the mean diameter of blankmicelles changed
from 155 to 203 nm, probably because nitroimidazole was
converted to aminoimidazole under hypoxic conditions, which
reduced the hydrophobicity of the hydrophobic core and led
to internal aggregation force weakening, thereby increasing the
volume of the micelles. By calculation with previously established
calibration curves, the drug loading content of the micelles was
3.99% (encapsulation efficiency of 41.57%). Figure 2B is the UV
absorption curve of a blank micelle under hypoxic and normal
conditions. Under normal conditions, there is only very weak
UV absorption at 327 nm, but a strong UV absorption peak
appears at 290 nm under hypoxic conditions, indicating that
the nitroimidazole group was converted into aminoimidazole
under hypoxic conditions, which is consistent with the reported
literature (Thambi et al., 2014).

Cell Uptake and Intracellular Distribution
Cell uptake and intracellular distribution of the DOX-loaded
micelles were evaluated with CLSM. The results were obtained
in MCF-7 cells. The red fluorescence indicates the position of
DOX, and the blue fluorescence indicates the position of the
nucleus stained with Hoechst, and the purple fluorescence is
obtained by the merge of red and blue fluorescence. Figure 3
shows the situation of DOX delivered into cancer cells under
hypoxic conditions and normoxic conditions. After incubation
with themicelles for 2 h under hypoxic conditions, intense purple
fluorescence was observed in the nucleus, indicating that most
of the DOX were delivered into the nucleus. However, after
incubation with the micelles for 2 h under normoxic conditions,
DOX was still mainly distributed in the cytoplasm. These results
show that micelles can respond to hypoxia conditions and
deliver drugs into the nucleus of tumor cells more quickly under
hypoxic conditions.

Cytotoxicity
The cytotoxicity of micelles was determined in MCF-7 cells by
CCK-8 assay. Figure 4A shows the cytotoxicity of blank micelles
under hypoxic conditions. With the increase in the blank micelle
concentration, the cell survival rate did not change much (all
remained above 90%), indicating that the carrier has very good
biological safety. Figure 4B shows the cytotoxicity of DOX-
loaded micelles under hypoxic conditions. As the concentration

of drug-loaded micelles increased, the survival rate of tumor
cells decreased rapidly. When the concentration of DOX reaches
20µg/mL, the cell survival rate under hypoxic conditions drops
to 64.5 ± 0.6%. These results demonstrate that the DOX-loaded
micelles have a strong killing capacity for breast cancer cells
under hypoxic conditions.

Cell Apoptosis
Finally, the cell apoptosis of micelles was determined in MCF-7
cells by TUNEL assay.

As shown in Figure 5, the nuclei of the apoptotic cells were
stained green. After being incubated with PEGN/DOX for 24 h,
the apoptosis rate of MCF-7 cells at the hypoxic condition was
74.57%, and no significant apoptosis of MCF-7 cells was detected
in normoxic conditions, indicating that the DOX-loadedmicelles
could kill cancer cells more efficiently under hypoxic conditions,
which is consistent with the cell uptake experiment.

CONCLUSIONS

In conclusion, a hypoxia-responsive copolymer PEG-b-P(LGlu-
NI) was successfully synthesized and self-assembled into micelles
with DOX encapsulated in the hydrophobic core. The DLS results
confirmed that the particle size of micelles was around 150 nm.
Cell experiments show that DOX-loaded micelles have a stronger
killing effect on tumor cells under hypoxic conditions, while
the carriers have good biocompatibility. These results show that
polymeric micelles have good potential of application in hypoxia-
responsive drug release for enhancing cancer treatment.
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