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Purpose: While there are no clear indications of whether central lymph node dissection

is necessary in patients with T1-T2, non-invasive, clinically uninvolved central neck lymph

nodes papillary thyroid carcinoma (PTC), this study seeks to develop and validate models

for predicting the risk of central lymph node metastasis (CLNM) in these patients based

on machine learning algorithms.

Methods: This is a retrospective study comprising 1,271 patients with T1-T2 stage,

non-invasive, and clinically node negative (cN0) PTC who underwent surgery at the

Department of Endocrine and Breast Surgery of The First Affiliated Hospital of Chongqing

Medical University from February 1, 2016, to December 31, 2018. We applied six

machine learning (ML) algorithms, including Logistic Regression (LR), Gradient Boosting

Machine (GBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Decision

Tree (DT), and Neural Network (NNET), coupled with preoperative clinical characteristics

and intraoperative information to develop prediction models for CLNM. Among all

the samples, 70% were randomly selected to train the models while the remaining

30% were used for validation. Indices like the area under the receiver operating

characteristic (AUROC), sensitivity, specificity, and accuracy were calculated to test the

models’ performance.

Results: The results showed that ∼51.3% (652 out of 1,271) of the patients had pN1

disease. In multivariate logistic regression analyses, gender, tumor size and location,

multifocality, age, and Delphian lymph node status were all independent predictors

of CLNM. In predicting CLNM, six ML algorithms posted AUROC of 0.70–0.75, with

the extreme gradient boosting (XGBoost) model standing out, registering 0.75. Thus,

we employed the best-performing ML algorithm model and uploaded the results to a
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self-made online risk calculator to estimate an individual’s probability of CLNM (https://

jin63.shinyapps.io/ML_CLNM/).

Conclusions: With the incorporation of preoperative and intraoperative risk factors, ML

algorithms can achieve acceptable prediction of CLNM with Xgboost model performing

the best. Our online risk calculator based on ML algorithm may help determine the

optimal extent of initial surgical treatment for patients with T1-T2 stage, non-invasive,

and clinically node negative PTC.

Keywords: papillary thyroid carcinoma, central lymph node metastasis, machine learning algorithms, lymph node

dissections, prediction model

INTRODUCTION

Papillary thyroid carcinoma (PTC) is one of the most common
type of endocrine malignancies with a favorable prognosis (1, 2).
Nevertheless, central lymph node metastasis (CLNM), the first
station of metastasis, occurs in 30–90% of patients following their
first surgery and is correlated with an increased risk of local
recurrence (3, 4).

The clinical community has reached a general consensus
that central lymph node dissection (CLND) for therapeutic
purposes is appropriate in PTC patients with suspected cervical
lymph node metastasis (LNM) (5). By contrast, however,
there is a growing controversy over the role of prophylactic
central lymph node dissection (pCLND) due to the lack of
randomized controlled data (6–8). Generally speaking, pCLND
is not recommended for a subset of patients with small (T1 or
T2), non-invasive, clinically node-negative (cN0) PTC according
to the 2015 American Thyroid Association (ATA) guidelines
(9), whereas the Japanese Society of Thyroid Surgery and the
Chinese Thyroid Association both strongly recommend routine
pCLND for cN0 PTC patients in order to stage disease and
prevent recurrence. While an incomplete nodal resection in
the first surgery may lead to disease recurrence and a second
operation (10), it is also important to avoid unnecessary CLND
in view of surgical complications such as hypoparathyroidism
and recurrent laryngeal nerve injury. Ideal treatment decision-
making should be based upon individual patients rather than
“one size fits all” approach recommended by guidelines. This
highlights the importance of accurate prediction of CLNM
occurrence with a more personalized therapeutical schedule.

Machine learning (ML), as a novel type of artificial intelligence
(AI), is starting to be widely applied to health-care data analysis
(11, 12). By capitalizing on the robust prediction ability of ML
algorithms, it may be possible to develop prediction tools which
in some cases outperform traditional statistical modeling, and
thus giving better prediction of CLNM status. Unfortunately, no
current studies have trained ML algorithms to predict CLNM in
this subset of PTC.

Hence, the purpose of this study is to develop ML-based
models using preoperative and intraoperative clinicopathological
characteristics to predict the likelihood of CLNM for
individualized treatment and to obtain the best ML algorithms
for online CLNM prediction in PTC.

METHODS

Study Population
We retrospectively retrieved the data of in-patients who
underwent thyroid surgery at the Department of Endocrine and
Breast Surgery of the First Affiliated Hospital of Chongqing
Medical University from December 2016 to December 2018.

Data Collection
Criteria for inclusion were to be a PTC patient with a
tumor size no larger than 40mm (T1-T2), a non-invasive
tumor, and no evidence for lymph nodes metastases (cN0)
based on ultrasound (US) data. Tumor size was classified
according to the 8th edition of American Joint Committee
on Cancer (AJCC) Staging Standards. Criteria for exclusion
were distant metastasis, previous thyroid surgery, or
incomplete information. This study was approved by the
local institutional ethics committee board. Demographic and
clinicopathological characteristics data were collected as follows:
gender, age, tumor size, tumor location, chronic lymphocytic
thyroiditis (CLT), multifocality, bilaterality, and the presence
of LNM.

Surgical Strategy
At our institution, it is customary to perform pCLND for
PTC patients and the detailed surgical procedures were
described in previous articles (13, 14). Soft tissues in
the prelaryngeal and pretracheal regions were removed
and marked as the Delphian (Figure 1) and pretracheal
LNs, respectively. Those two subgroups were sent for
intraoperative frozen section examination. Then, we
proceeded to perform the thyroid lobectomy and ipsilateral
paratracheal LN dissection and the paratracheal LN was
also sent for frozen section examination. Lastly, all surgical
specimens were sent for post-operative histopathologic
evaluation. The Delphian lymph node (DLN) was not taken
into account in the calculation of central compartment
lymph nodes.

Statistical Analyses
The Fisher’s exact test and Student’s t-test were used for discrete
and continuous parameters, respectively. For the independent
risk factors of CLNM, a multivariable logistic regression analysis
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FIGURE 1 | ROC curve analysis of machine learning algorithms for prediction

of CLNM patients with T1-T2 stage, non-invasive, and clinically node negative

PTC in the validation set. LR, Logistic regression; GBM, Gradient boosting

machine; RF, Random forest; DT, Decision tree; NNET, Neural network;

Xgboost, Extreme gradient boosting; ROC, receiver operating characteristic;

AUC, area under the curve.

with backward stepwise selection was used to calculate the odds
ratios (ORs) with 95% confidence intervals (CIs).

ML algorithm is characterized by its extraordinary
performance better than traditional regression approaches
in predicting outcomes within large data bases (15–17). In
this study, we randomly split our dataset into two groups,
namely the training sets (70%) for ML model development
and the validation sets (30%) for performance evaluation and
we repeated this random splitting until the patient data were
equally distributed in both sets (Supplementary Table 1).
We developed six types of ML algorithms to model our data:
Logistic regression (LR), Gradient boosting machine (GBM),
Extreme gradient boosting (XGBoost), Random forest (RF),
Decision tree (DT), and Neural network (NNET). In the training
process, tuning was considered for ML-based models to avoid
overfitting and the best hyper-parameter for ML models was
5-fold cross-validation. Then the ML algorithms were further
trained by using the R software to predict the risk of CLNM
and we evaluated the predictive ability of each ML classifier,
with the same hyper-parameter, in validation sets where the
area under the receiver operating characteristic (AUROC)
value, and the corresponding sensitivity, specificity, as well as
overall accuracy of ML algorithms were all calculated. In the
comparison of ML algorithms’ performance, the closer to 1
the AUC was, the better the classification model performed.
Afterwards, based on the best-performing model, we created
an online risk calculator that can make predictions with newly
entered PTC patient data, and thus making the risk of CLNM
in those patients easily accessible to clinicians. A total of 100
independent training simulation results were used to evaluate the
variable importance of each CLNM-predicting ML model. All
statistical analyses were performed by using R software, version
3.4.1 (R Foundation for Statistical Computing, Vienna, Austria).
The R packages “caret,” “e1071,” “random-forest,” “nnet,” “gbm,”
“rpart,” “GLM,” “pROC” were used for ML algorithms and

“shiny” package for web application. A two tailed P < 0.05 was
deemed statistically significant.

RESULTS

Demographics Features
The clinicopathological characteristics of 1,271 PTC patients
with T1-T2, non-invasive, clinically node-negative disease were
summarized (Table 1). Of the 1,271 eligible patients, the average
age was 42.15 ± 10.49 years (range 18–80 years). The ratio of
male to female patients was 1:2.7. The mean tumor size was
9.92mm (median = 8mm). Eight hundred and ninety seven
patients (70.6%) had papillary micro-carcinomas. Central lymph
node metastases were positive in 652 (51.3%) cases.

Univariate and Multivariate Logistic
Regression Analyses of CLNM
In univariable analysis, tumor size, gender, age, multifocality,
bilateral lesions, and DLN status were all significantly associated
with the occurrence of CLNM in overall population (P <

0.001), whereas there was no significant difference between
CLNM-positive and CLNM-negative patients in terms of their
tumor location or CLT status. In multivariable logistic regression
analysis (Table 2), all parameters (age, gender, CLT, DLN,
multifocality, bilaterality and tumor size, and location) were
included. The results showed that male gender (OR 1.534, 95%CI
1.158–2.030), larger tumor size (OR 1.080, 95% CI 1.053–1.107),
multifocality (OR 1.583, 95% CI 1.172–2.139), DLN metastasis
(OR 6.454, 95% CI 4.246–9.651), and tumor located in inferior
pole [vs. upper pole, (OR 1.507, 95% CI 1.080–2.103)] are
independent positive predictors of CLNM while older age (OR
0.975, 95% CI 0.964–0.986) was a negative predictor. Variables of
bilateral lesions and CLT were rejected by multivariable analysis.

Performance of Machine Learning
Algorithms
Comparisons of the performance of prediction among the sixML
algorithms models in validation sets are detailed in Table 3 and
Figure 1. It turned out that the XGBoost model demonstrated the
highest performance of predicting CLNM, whose AUROC was
0.750, sensitivity 0.667, specificity 0.674, and accuracy 0.670 in
validation sets. Accordingly, we chose the XGBoost model as the
final prediction model.

Relative Importance of Variables in
Machine Learning Algorithms
The relative importance of variables in each CLNM-predicting
ML algorithm is shown in Figure 2. We can see there are
general trends of evidence: although slight differences are shown
in the importance of variables among those ML algorithms,
factors including Delphian lymph node metastasis, tumor size,
age, gender, multifocality rank top five without fail. On the
contrary, variables like bilateral lesions, tumor location in
middle or isthmus pole and CLT make little contribution to
CLNM prediction. The importance of high-ranking variables
in the XGBoost model is arranged as follows in a descending
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TABLE 1 | Demographic and clinicopathologic variables of the whole cohort grouped by lymph node status.

Charteristics Total (N = 1,271) No (%) CLNM- (N = 619) CLNM+(N = 652) P-value

Gender <0.001

Male 339 (26.67) 132 (38.94) 207 (61.06)

Female 932 (73.33) 487 (52.25) 445 (47.75)

Age (years) 41.38 ± 11.09 43.18 ± 11.39 39.68 ± 10.51 <0.001

≤55 1,140 (89.69) 534 (46.84) 606 (53.16) <0.001

>55 131 (10.31) 85 (64.89) 46 (35.11)

Tumor size (mm) 9.92 ± 5.69 8.53 ± 4.27 11.24 ± 6.34 <0.001

≤10mm 897 (70.57) 491(54.74) 406 (45.26) <0.001

10–20mm 305 (24.00) 115 (37.70) 190 (62.30)

>20mm 69 (5.43) 13 (18.84) 56 (81.16)

Bilateral <0.001

No 1,071 (84.3) 544 (50.79) 527 (49.21)

Yes 200 (15.7) 75 (37.50) 125 (62.50)

Tumor location 0.127

Upper 304 (23.92) 152 (50.00) 152 (50.00)

Middle 545 (42.88) 280 (51.38) 265 (48.62)

Inferior 380 (29.90) 171 (45.00) 209 (55.00)

Isthmus 42 (3.30) 16 (38.10) 26 (61.90)

Multifocality <0.001

Absence 1,002 (78.77) 514 (51.30) 488 (48.70)

Presence 269 (21.23) 105 (39.03) 164 (60.97)

CLT 0.573

No 988 (77.73) 477 (48.28) 511 (51.72)

Yes 283 (22.27) 142 (50.18) 141 (49.82)

DLN status <0.001

Negative 1,051 (82.69) 589 (56.04) 462 (43.96)

Positive 220 (17.31) 30 (13.64) 190 (86.36)

Continuous data are shown as mean ± standard deviation.

–, negative; +, positive; CLNM, central lymph node metastasis; CLT, chronic lymphocytic thyroiditis; DLN, Delphian lymph node.

TABLE 2 | Univariate and multivariate logistic regression analysis of variables in predicting CLNM in whole cohort.

Variables Univariate analysis Multivariate analysis

OR (95%CI) P OR (95%CI) P

Multifocality (+/–) 1.645 (1.250–2.165) <0.001 1.583 (1.172–2.139) 0.003

Age 0.971 (0.961–0.981) <0.001 0.975 (0.964–0.986) <0.001

Gender (Male/Female) 1.716 (1.332–2.221) <0.001 1.534 (1.158–2.030) 0.003

DLN status (+/–) 8.074 (5.392–12.092) <0.001 6.454 (4.246–9.651) <0.001

Tumor size (mm) 1.103 (1.077–1.130) <0.001 1.080 (1.053–1.107) <0.001

Tumor location 0.127 0.043

Upper Reference Reference

Middle 0.946 (0.715–1.253) 0.701 1.059 (0.887–1.447) 0.719

Inferior 1.222 (0.903–1.654) 0.193 1.507 (1.080–2.103) 0.016

Isthmus 1.625 (0.838–3.151) 0.151 1.445 (0.692–3.018) 0.327

Bilateral (+/–) 1.720 (1.261–2.346) 0.001

CLT (+/–) 0.927 (0.712–1.207) 0.573

DLN, Delphian lymph node; CLT, chronic lymphocytic thyroiditis; CLNM, central lymph node metastasis; –, negative; +, positive.
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TABLE 3 | Predictive performance comparison of the six types of machine learning algorithms in the validation sets.

Methods AUROC Sensitivity Specificity Accuracy

LR 0.739 0.693 0.648 0.670

GBM 0.748 0.661 0.663 0.662

RF 0.695 0.741 0.596 0.668

DT 0.701 0.603 0.622 0.613

NNET 0.745 0.693 0.663 0.678

XGBoost 0.750 0.667 0.674 0.670

LR, Logistic regression; GBM, Gradient boosting machine; RF, Random forest; DT, Decision tree; NNET, Neural network; XGBoost, Extreme gradient boosting.

FIGURE 2 | Relative importance ranking of each input variable for predition of CLNM in the machine learning algorithms. (A) Logistic regression. (B) Decision tree. (C)

Gradient boosting machine. (D) Neural network. (E) Random forest. (F) Extreme gradient boosting.

order: Delphian lymph node metastasis, tumor size, age, gender,
multifocality and tumor location.

Web-Based Calculator
An online calculator based on the best-performing model was
established for clinicians to predict patients’ risk of developing
CLNM by simply inputing readily available preoperative
and intraoperative clinicopathological variables (https://jin63.
shinyapps.io/ML_CLNM/) (Figure 3).

DISCUSSION

In this study, we developed and validated multiple popular
machine learning algorithms to predict CLNM in patients
with T1-T2, non-invasive, cN0 PTC. A comparison of ML
algorithms identified that the XGBoost model gave the greatest
performance. To make the application of this model available,
we further established an online calculator for estimating
the individual probability of CLNM in this subset patients
with PTC. This ML-based model may potentially guide
intraoperative decision-making.

It is noteworthy that the 2015 ATA guidelines (9) asserted
that “thyroidectomy without pCLND is adequate for small (T1
or T2), non-invasive, clinically node-negative PTC.” Yet, the risk
of metastatic lymph nodes among this subgroup is unequal and
a “one-size fits all” approach may raise concerns that in the
long run it would bring potentially disastrous consequences for
patients exempted from pCLND. Our data demonstrate that up
to 51% of patients with T1-T2, non-invasive, cN0 PTC harbored
central lymph node metastases. Such a high incidence of regional
lymph node involvement is similar to other findings (18–20)
and indicates that thyroid cancer is predisposed to LNM and
that preoperative ultrasound currently fails to detect a massive
number of patients with clinically significant lymph nodal disease
(21, 22). Therefore, an accurate diagnosis of lymph node status
carries much weight in helping clinicians determine the precise
treatment for patients as well as informing the patients of
prognoses and we advocate a selective approach to pCLND,
particularly for cases with a high risk of CLNM.

Preoperative variables including larger tumors, younger age,
male, multifocality, and tumor location in inferior portion
are identified as the most important contributing predictors
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FIGURE 3 | The web-based calculator for predcting central lymph node metastasis in patients with T1-T2 stage, non-invasive, and clinically node negative PTC.

of CLNM-positive status by ML algorithms. The finding that
younger age is highly predictive of CLNM in our research is
similar to previous studies (23, 24). In addition, multifocal PTCs
have been shown to be prone to CLNM and our results are
consistent with previous reports, suggesting that multifocality is
a positive predictor of CLNM (25, 26). It has been previously
demonstrated by Thompson et al. (27) and Yang et al. (28) that
larger tumors are significantly associated with an increased risk
of nodal spread while we have found that rates of lymph node
involvement surge in tumor sizes> 20mm, compared with those
in tumor sizes of 10–20mm and < 10mm (81.2 vs. 62.3 and
45.3%). Bilateral lesions are related with CLNM in the univariate
analysis, but show insignificance in multivariate analyses after
adjustment of confounders. All results have been confirmed in
ML algorithms. Our study suggests that males are frequently
found to be more susceptible to CLNM, which is supported by
findings of previous studies (12, 29).

Nevertheless, the aforementioned factors in previous studies
are mainly based on preoperative information and are still
insufficient to achieve a reliable prediction. Besides, few studies
have evaluated the predictive values of intraoperative factors.
At our institution, lymph nodes in central compartment
are classified as DLN, pretracheal and paratracheal nodes,
respectively, and then routinely sent for frozen section
examination separately. It was revealed in our previous study
that the status of DLN based on frozen section examination
was an independent predictor of CLNM and associated with
poor prognostic features (14). And our findings of the present
study further proves it, showing that 86.3% of DLN-positive

patients have CLMN, compared with 43.9% of DLN-negative
patients. The DLN status, in particular, is the strongest predictor
in nearly all analytical approaches. Thus, we recommend
routine intraoperative frozen section examination of DLN not
only because the dissection of DLN can be performed safely
without additional complications, but more importantly, it is
a critical variable predicting further nodal metastases and aids
in determining the extent of LN dissection. As intraoperative
frozen section examination plays an essential role in immediate
assessment of nodal status during an operation (30–32), it
appears to be more promising in accurately predicting risks of
LNM in subregion of central compartment when compared with
preoperative evaluations alone.

Compared with studies attempting to predict the risk of
central compartment lymph node metastases in PTC (12, 27,
28, 33, 34), our work has several strengths. First, few studies
have ever focused on the subgroup of patients who suffer from
clinically low-risk PTC. In fact, we found that a massive number
of patients harbor clinically significant lymph node metastases
which have not been detected by pre-oprative ultrasound.
Furthermore, while ML approaches have shown unparalleled
diagnostic performance in differentiating between benign and
malignant thyroid nodules in recent reports (35, 36), there is,
however, little research in the available literature on applying ML
algorithms to lymph node metastases in PTC. To the best of our
knowledge, this is the very first study to develop a prediction
model using ML algorithms for real-time risk evaluation of
CLNM with easy-to-use clinical data and fortunately, our model
shows a great predictive power, which distinguishes itself from
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linear models adopted by previous researches. Finally, in order to
make this ML-based model easy to use, we established an online
application based on it, which is now available for clinicians to
facilitate individualized surgical treatment by calculating the risk
for each patient: (https://jin63.shinyapps.io/ML_CLNM/). For
instance, if a patient is identified to have a high probability of
CLNM during surgery, then pCLND may be considered despite
contradiction to the current ATA guidelines.

This study, however, also has limitations. First, the nature
of a retrospective study might have resulted in selection bias.
Second, the ML algorithm model we established, to some extent,
was confined to one single institution, which might restrict
its generalizability pending further validation in real-world
scenarios. Third, predictve value was not high enough because
the information in our current clinical database is to a certain
degree limited.

CONCLUSIONS

We developed and validated ML algorithms for individualized
prediction of CLNM in T1-T2 stage, non-invasive, and
clinically node negative PTC patients by utilizing readily
available preoperative variables and intraoperative frozen section
examination. The ML-based prediction model can accurately
identify whether patients are at high-risk of CLNM and its
accompanying online risk calculator can serve as an easy-to-
use tool for clinicians to make precise surgical decisions. In
the future, our goal is to further integrate imaging, molecular
and genetic data to improve our model performance in the
realm of personalized medicine and more studies covering wider
populations are also warranted for further validation.
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