
Journal of

Clinical Medicine

Review

Role of Imaging in the Evaluation of Minimal
Residual Disease in Multiple Myeloma Patients

Elena Zamagni * , Paola Tacchetti, Simona Barbato and Michele Cavo

Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Istituto di Ematologia “Seràgnoli”,
Università degli Studi, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
paola.tacchetti2@unibo.it (P.T.); simona.barbato3@unibo.it (S.B.); michele.cavo@unibo.it (M.C.)
* Correspondence: e.zamagni@unibo.it; Tel.: +39-051-2143831; Fax: +39-051-6364037

Received: 29 September 2020; Accepted: 29 October 2020; Published: 31 October 2020
����������
�������

Abstract: The International Myeloma Working Group (IMWG) recently introduced the evaluation of
minimal residual disease (MRD) within the multiple myeloma (MM) response criteria, and MRD
negativity assessed inside and outside the bone marrow is currently considered the most powerful
predictor of favorable long-term outcomes. However, MRD evaluation has thus far relied on
flow-cytometry or molecular-based methods, despite the limitations associated with the patchy
infiltration of bone marrow (BM) plasma cells and the presence of extra-medullary (EMD). On the
contrary, imaging-based sensitive response assessment through the use of functional rather than
morphological whole-body (WB) imaging techniques, such as positron emission tomography with
computed tomography (PET/CT) and magnetic resonance imaging (MRI), likely is a promising
strategy to overcome these limitations in evaluating response to therapy and in the assessment of
the MRD status in MM patients. However, despite the significant advances in the development and
availability of novel functional imaging techniques for MRD evaluation, a worldwide standardization
of imaging criteria for acquisition, interpretation, and reporting is yet to be determined and will be
object of future investigations.

Keywords: PET/CT; MRI; myeloma; prognosis; minimal residual disease

1. Imaging for Minimal Residual Disease (MRD) Evaluation

In 2016, the International Myeloma Working Group (IMWG) formally introduced the evaluation
of minimal residual disease (MRD) within the multiple myeloma (MM) response criteria [1].
MRD is usually assessed in the bone marrow (BM) by means of cellular-based (flow-cytometry)
or molecular-based (next-generation sequencing) methods. Since plenty of data correlate the depth of
response with long-term outcomes, information on MRD may represent a valid and early biomarker
for the efficacy of treatment [2]. However, BM plasma cell (BMPCs) infiltration is often irregular,
likely increasing the probability of a false-negative evaluation by using techniques relying on BM
specimens—by nature limited to a very small area of the body—with no identification of extra-medullary
(EMD) escape in case of metastasis [3]. This phenomenon is currently quite frequent, likely depending
on extended overall survival (OS) and the increasingly massive use of functional imaging techniques,
and usually culminates in a fatal clinical outcome, despite the progress made with novel therapeutic
approaches [3–6].

Besides the patchy infiltration of BMPCs and the presence of EMD, recent prospective studies
monitoring patients with serial functional imaging and focal lesion (FL) biopsies have demonstrated
that MM implies a great spatial heterogeneity which is proportional to the size of a FL, and different
disease clones with different genomic profiles may coexist in BM and FLs [7,8].
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For the longest time, imaging in myeloma was based on skeletal survey and limited at
staging or re-staging to determine myeloma bone disease. However, this technique is not very
sensitive, partly because the healing of bone is limited [9], but also because it is ineffective on
soft tissues/masses, being therefore unusable in assessing response to therapy. In such cases,
morphological whole-body (WB) imaging techniques should be replaced by functional evaluations,
such as positron emission tomography with computed tomography (PET/CT) and magnetic resonance
imaging (MRI), both providing a global representation of the tumor burden beyond osteolytic lesions
and showing further prognostic markers such as EMD [10]. Patients carrying soft plasmacytomas,
either extra-medullary (5–10% at diagnosis, higher percentage in the later phases of the disease) or
paramedullary (20–30%), more often display a discrepancy between the presence of EM sites of clonal
proliferating PCs upon BM MRD negativity [11].

2. 18F-FDG-PET/CT

One of the best imaging techniques by which to assess tumor metabolic activity and determine
treatment efficacy is 18Fluorine-fluoro-deoxyglucose (18F-FDG) PET/CT [12,13]. The wide use of this
tool mostly relies on its capability of distinguishing between active and inactive (e.g., fibrotic) disease
and by the fact that low-dose CT, typically associated with FDG-PET for localization, can precisely
map the sites of bone and extra-medullary disease [12].

2.1. Methods and Standardization

Largely used worldwide to evaluate and monitor metabolic response to therapy, the 18-FDG
PET/CT technique is quite standard. With 18F-FDG as the most used tracer, whose dose administration
slightly varies based on the system and on the patient’s weight, image acquisition and reconstruction
follow standard procedures, as well as patient preparation [12], with a total procedure time of
approximately 80–90 min. At least the skull, upper limbs, and femurs should be included in the
field of view (FOV) of 18F-FDG PET/CT, extended to the lower limbs under certain circumstances.
The attenuation, correction, and interpretation of the image are achieved by CT at low doses (120 kV,
80 mA). Hypermetabolic bone lesions, irrespective of underlying lytic lesions at CT, are identified with
a PET standard spatial resolution limit of approximately 5 mm, even in patients with kidney disease
and/or metallic bone implants. Multiplanar cuts are obtained through an ad hoc workstation upon
image reconstruction.

Image interpretation typically relies on the standardized uptake value (SUV) maximum (max),
especially to evaluate the efficacy of therapy after treatment. This is a semi-quantitative index,
traditionally indexed to the background on L1/L2, if healthy; the liver; the spleen; or the mediastinal
blood pool (MBP). However, there is as yet no standardization for scan evaluation in MM. Besides
this, some other parameters may be considered in MM, such as the Total Metabolic Tumor Volume,
with this parameter being an index of the total volume of active disease in the PET FOV, and the total
lesion glycolysis, reflecting the glycolytic phenotype of FLs.

To gain a PET negativity, according to the IMWG definition, each increase in tracer uptake at
baseline or at previous PETs/CTs should disappear, or become inferior to the SUV of the MBP or of the
surrounding normal tissue [1]. However, since many factors may influence the SUVmax (first of all
the uptake time), an attempt to standardize the cut-offs for positivity/negativity and achieve criteria
for metabolic response has been made [14]. In this sense, previous findings revealed that the value of
Deauville scores (DS), tested for the first time in MM [15], can be used for this purpose. Indeed, with
this value being representative of the outcomes of the various patients, it has been proposed to define
the PET complete metabolic response (CMR) after therapy, using the liver as a background (DS 4).
The proposed PET metabolic response criteria are listed in Table 1.
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Table 1. Proposed refinement of the PET response criteria after therapy.

Pet Response after Therapy Response Criteria

CMR (complete metabolic response) Uptake ≤liver activity in BM sites and FLs previously involved
(including extra-medullary and para-medullary disease) (DS1–3).

PMR (partial metabolic response) Decrease in the number and/or activity of BM/FLs present at baseline,
but persistence of lesion(s) with uptake >liver activity (DS 4 or 5).

SMD (stable metabolic disease) No significant change in BM/FLs compared to baseline.

PMD (progressive metabolic disease) New FLs compared to baseline consistent with myeloma.

Abbreviations: BM, bone marrow; DS, Deauville scale; FL(s), focal lesion(s).

When evaluating the 18F-FDG PET/CT imaging scans, false-positive/negative results may arise
and should be excluded from the analysis. In particular, patients lacking the hexokinase enzyme
(10–15%) may have no 18F-FDG-avid PCs, [16], since this enzyme mediates FDG trapping in the
cells; in such patients, FDG PET after treatment is not recommended [10,13], and an alternative tracer
and/or tool should be considered. Moreover, false-negative results can be obtained soon after the
use of high-dose steroids, due to the transient profound suppression of tumor metabolism and the
competitive inhibition of FDG uptake from plasma cells related to increased glucose levels. On the
contrary, the recent use of chemotherapy and/or growth factors, inducing bone marrow reconstitution,
may result in false-positive findings. For these reasons, when possible, PET/CT should be performed
at least one month after the use of all these agents.

Beyond 18F-FDG, preliminary investigations [17] have been carried out to test the sensitivity
and specificity of new PET/CT tracers, targeting alternative metabolic pathways or different PC
receptors that might prove to be valid molecular imaging biomarkers. PET imaging targeted to
CXCR4 [18,19] and CD38 [20,21] has advanced into translational clinical trials, bringing us closer to
powerful imaging options for myeloma. Antigenic-expressing tumor cells may be visualized through
the use of radiolabelled antibodies, independently of metabolic processes, to obtain early and more
accurate response assessments. For example, all MM cells express CD38, making them an excellent
focus for targeted imaging and therapy. Daratumumab is an FDA-approved monoclonal antibody
therapy for multiple myeloma that targets CD38. Conjugating daratumumab with the positron emitting
radio-isotopes Copper-64 (64Cu) and Zirconium-89 (89Zr) has allowed the creation of immunoPET
tracers for myeloma imaging [22,23]. 89Zr-daratumumab has demonstrated the ability to detect
multiple myeloma in early clinical trials [22] which was overlooked by FDG PET/CT and other clinically
standard imaging methods. Copper-64-daratumumab has been demonstrated as well to provide a safe
whole-body imaging of MM [23], and the comparison with FDG is currently on-going. More advanced
clinical trials for these immunoPET agents are planned. At the moment, however, it is not possible
to gain any definitive conclusion, since the availability of these new tracers is still limited and no
prognostic data and/or standard reporting have been gathered, not to mention the high heterogeneity
of tumors among patients in specific targets.

2.2. Clinical Studies

PET-positive lesions after therapy have been largely linked to unfavorable prognosis. Indeed,
a number of studies reported that, in the case of complete remission (CR), patients with FDG-PET/CT
negativity after ASCT had a lower risk of progression or death with respect to those with metabolically
active sites of the disease [23–29]. Moreover, in patients achieving MRD negativity by flow cytometry
(10−5 sensitivity), imaging—either by PET/CT or whole body-diffusion weighted imaging-magnetic
resonance (WB-DWI-MRI)—was positive in 12% of the cases, attributing to these patients a worse
prognosis in terms of progression-free survival (PFS) [30]. On the other hand, patients reaching CR
with MRD negativity during salvage therapy often displayed FLs (50%). Additionally, it has recently
been shown that patients obtaining PET FL normalization upon therapy have a comparable prognosis
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to those with no boosted metabolism at baseline, stressing the importance of prolonging the treatment
until glucose metabolism is suppressed [28].

The complementarity between imaging (either FDG-PET/CT or WB-DWI-MRI) and BM techniques
in defining the prognosis of patients was demonstrated by two prospective trials, applying flow
cytometry as a BM technique with a sensitivity threshold of 10−4 [25] and 10−5 [30]. Moreover,
very recently, the DS criteria to define PET/CT complete metabolic response have proven to be valid
and applicable in newly diagnosed transplant-eligible MM (NDTEMM) patients, also confirming the
complementarity with BM techniques [31].

On such a premise, 18F-FDG PET/CT currently is listed as the best imaging technique to evaluate
and monitor metabolic response to therapy [12,13].

3. Magnetic Resonance Imaging (MRI)

The best tool to define the degree of BMPC infiltration, even prior to bone destruction, currently is
the MRI, since this technique can visualize large volumes of BM and has a high sensitivity. As a result,
this imaging technique is very useful in case of low tumor burden (e.g., in early stages or upon systemic
therapy) [10,13,32]. Variations in MRI patterns may be attributable to the effects of therapy and may
therefore be used to determine the efficacy of anti-myeloma treatment. In this sense, particular attention
is given to MRI functional approaches, considered as the best option to evaluate disease after therapy,
such as dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) [33].

3.1. Methods and Standardization

MRI examines the water and fat content within tissue and is the most sensitive tool to detect
the infiltration of BM in MM, with no radiation exposure [32,33]. An MM typical MRI pattern is
the following: hypo-intensity in T1-weighted, hyper-intensity in T2-weighted with fat suppression
in opposed phase imaging, and increased contrast-enhancement in T1-weighted sequences. Signal
intensity is usually compared to the intervertebral disk as a reference. At least a 5 mm diameter is
required to define a FL, also depending on the thickness of the MRI slice. The marrow involvement in
MM may be classified into five different patterns: normal, focal, diffuse, combined focal, and diffuse
and variegated or “salt and pepper” or variegate. The minimal FOV in MM is the axial skeleton
(spine and pelvis), but more and more space is nowadays given to the whole-body protocol (WB-MRI).
This technique is based on T1, T1 non-fat-saturated, and STIR sequences, usually not requiring contrast
infusion; the total scan time for a whole-body image is generally less than 20 min. Although contrast
agents are not always necessary, thanks to the high resolution of non-enhanced MRI for the BM,
they are usually based on gadolinium, which is relatively inert, except in case of renal failure, where it
can cause a nephrogenic systemic fibrosis. As a further extension of MRI, DWI measures the movement
of water molecules in the tissue, without the need for a contrast medium. Limited movements indicate
high cellularity; on the contrary, an increase in movement reflects low cellularity and/or increased
microcirculation. Semi-quantitative parameters, such as the apparent diffusion coefficient (ADC),
correlate with a higher or lower cellularity [34], with the correlation between ADC and histological
infiltration by BMPCs being clearly demonstrated.

The process of acquisition, interpretation, and reporting of WB-MRI is very important,
thus allowing the use of this technique to assess response to therapy; an attempt in this regard
has very recently been proposed [35].

3.2. Clinical Studies

Conventional MRI without contrast agents has been used to assess response after therapy in several
clinical trials as addition to serological and BM-derived parameters. Two studies using MRI of the
spine and pelvis and whole-body MRI in a total of 711 patients treated with high-dose chemotherapy
protocols showed that residual lesions after completion of the most aggressive part of treatment
had a significant adverse prognostic significance [36,37]. A later study comparing again axial MRI
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(including spine and pelvis) in 134 patients with multiple myeloma with PET/CT in the same patients
treated in a multi-center trial showed that PET/CT was superior to MRI with regard to prognostic
significance after therapy. The most likely explanation for this has been already examined in the first
study of this kind, showing that the treatment response in MRI appears delayed, with focal lesions of
myeloma disappearing slower because MRI is not able to differentiate between vital and necrotic tissue
within preexisting osteolytic lesions [36]. Interestingly, a change in lesions into a more liquid or cystic
appearance was associated with a higher rate of complete remissions but also with a higher proliferation
index in gene expression profiling [38]. A further development of MRI is the DWI approach [34]
that allows us to assess cellularity and microcirculation in the BM [39]. Recent studies suggest that
whole-body DWI might be equivalent or even slightly superior to PET/CT in the assessment of the
residual disease of multiple myeloma [40–46]. However, thus far, the assessment of metabolic response
by means of DWIMRI is yet limited by the absence of a uniform interpretation of the results because of
the differences in microenvironment and cellularity, which are associated both with age and necrosis,
the latter being caused by ongoing treatments. Additionally, the best timing to assess response is still a
matter of debate. An interdisciplinary group of clinicians and radiologists is currently working on this
aspect to overcome this limitation [35].

3.3. Choice of Imaging Technique for MRD Evaluation

Thusfar, theevaluationand monitoringof response to therapyin MMisentrustedto FDG-PET/CT, which
is considered the best imaging technique for correlating post-treatment findings with outcomes [1,10,12,13].
PET/CT is highly recommended in all patients that need to be tested for MRD after therapy. Indeed,
this technique is capable of distinguishing cellular tissue from necrosis, which is crucial in these cases.

However, the FDG-based technique has some limitations, as discussed, and no homogeneous and
prospective data are available on a comparison between FDG PRT/CT and WB-DWMRI in evaluating
response to treatments. In case of negative imaging evaluation after therapy, serial evaluation until
relapse can be recommended in patients with extra or para-medullary disease at diagnosis or in more
advanced phases of the disease, when the risk of exclusive imaging-progression is higher. On the
contrary, in patients with residual lesions, an annual follow-up can be recommended because of the
high risk of early progression [29]; in such cases, functional imaging may be undoubtedly advantageous
(Table 2).

Table 2. PET/CT and MRI in the evaluation of response to therapy.

PET/CT Functional MRI

Available studies Large prospective independent studies.
Several heterogeneous retrospective studies, in an
independent small series of patients, in different
disease phases.

Results

• Predicts high risk of early progression for
patients with residual FLs.

• Refines the prognosis of patients in
conventionally defined CR.

• Defines the imaging MRD-negative
response category.

• Is complementary to BM cellular or
molecular-based techniques.

• Contributes to defining the sustained
MRD-negative response category, associated
with the best patient outcomes.

• Carries the higher reliability for diffuse
BM infiltration.

• Demonstrated early changes during treatment.
• Apparently more sensitive than PET with FDG.

Abbreviations: PET/CT, positron emission tomography/computed tomography; MRI, magnetic resonance imaging;
CR, complete remission; MRD, minimal residual disease; BM = bone marrow; FLs, focal lesions.
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4. Open Issues and Future Steps

Significant advances in MRD evaluation are based on the availability of novel functional imaging
techniques, although many issues still need to be further investigated [47] (Table 3). Among these,
it is an absolutely priority to achieve a complete standardization of guidelines for the acquisition,
interpretation, and reporting of these imaging techniques, an attempt which is currently ongoing for
both FDG PET/CT and WBMRI. Moreover, further investigation should be dedicated to the newer PET
tracers and to DWIMRI, both needing to be correlated with clinical outcomes. DWIMRI images and
PET/CT scans should also be prospectively compared, before and after therapy, to determine which
technique is optimal for different patients and subgroups, and for different stages of disease both during
and after treatment. Additionally and noteworthily, the concordance between complete metabolic
response and flow or sequencing MRD negativity at the BM level need to be further explored, with
different sensitivity thresholds (10−5–10−6), as well as the complementary role of imaging techniques
in detecting MRD, within or outside the BM, with either cellular or molecular-based tools. Similarly,
the role of imaging techniques in determining a sustained MRD, or its loss, remains to be clearly
defined, along with the identification of the optimal time points at which to achieve such an assessment.
Finally, the impact of MRD-driven treatment strategies has not been defined yet. Upcoming prospective
trials that apply these new techniques extensively and evaluate MRD both inside and outside the BM
will finally address these open issues and optimize the use of imaging in daily clinical practice.

Table 3. Validated points and issues to be addressed by on-going trials for imaging-MRD evaluation.

Validated Points

• Functional imaging techniques are the suggested tools for the assessment of imaging response.
• FDG-PET/CT is currently recommended by the IMWG to evaluate MRD after therapy.
• MRD by NGS or NGF and PET/CT are complementary.
• Process of the standardization of PET/CT and functional MRI currently ongoing.

Open issues

• Optimization of the use of new PET tracers and their correlation with survival outcomes.
• Correlation of DWIMRI with survival outcomes.
• Prospective comparison of PET/CT and functional MRI after therapy.
• Optimal timing of PET/CT and DWIMRI for the evaluation of response and during follow-up.
• Concordance between imaging and NGS/NGF MRD negativity, at different sensitivity thresholds.
• Contribution of imaging to the definition and loss of sustained MRD negativity.
• Impact of MRD assessment on treatment strategies.

Abbreviations: WBLDCT, whole-body low-dose computed tomography; PET/CT, positron emission
tomography/computed tomography; MRI, magnetic resonance imaging; SMM, smoldering multiple myeloma; MM,
multiple myeloma; SP, solitary plasmocytoma; EMD, extramedullary disease; BM, bone marrow; MRD, minimal
residual disease; DWI, diffusion-weighted imaging; NGS, next-generation sequencing; NGF, next-generation flow
cytometry; PFS, progression-free survival; OS, overall survival; IMWG, international myeloma working group.
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