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Pathological classification through transmission electron microscopy (TEM) is essential for the diagnosis of certain nephropathy,
and the changes of thickness in glomerular basement membrane (GBM) and presence of immune complex deposits in GBM are
often used as diagnostic criteria. *e automatic segmentation of the GBM on TEM images by computerized technology can
provide clinicians with clear information about glomerular ultrastructural lesions.*e GBM region on the TEM image is not only
complicated and changeable in shape but also has a low contrast and wide distribution of grayscale. Consequently, extracting
image features and obtaining excellent segmentation results are difficult. To address this problem, we introduce a random forest-
(RF-) based machine learning method, namely, RF stacks (RFS), to realize automatic segmentation. Specifically, this work
proposes a two-level integrated RFS that is more complicated than a one-level integrated RF to improve accuracy and gen-
eralization performance. *e integrated strategies include training integration and testing integration. Training integration can
derive a full-view RFS1 by simultaneously sampling several images of different grayscale ranges in the train phase. Testing
integration can derive a zoom-view RFS2 by separately sampling the images of different grayscale ranges and integrating the
results in the test phase. Experimental results illustrate that the proposed RFS can be used to automatically segment different
morphologies and gray-level basement membranes. Future study on GBM thickness measurement and deposit identification will
be based on this work.

1. Introduction

Primary glomerular disease is the most common renal
disease in China [1].*e diagnosis of renal diseases is largely
dependent on renal biopsy, which is regarded as the gold
standard. Transmission electron microscopy (TEM) com-
bined with optical microscopy and immunofluorescence
examination constitutes a continuum of pathological di-
agnosis of renal diseases [2]. TEM allows the observation of
pathological changes in the microstructure of various glo-
merular cells that cannot be resolved under an optical
microscope. *us observations from light and immune
pathology can be verified at an ultrastructure level [3].
Studies have found that ultrastructural study provided
fundamental or important diagnostic information for 44.3%

of renal biopsies [4]. *erefore, TEM is essential for the
diagnosis of certain nephropathy. Considering the com-
plexity of the TEM image of the glomerulus and related
lesions, it is time consuming and labor intensive for a pa-
thologist to visually recognize subtle pathological changes,
resulting in a huge workload. Nevertheless, after the initial
screening of the computer, the diagnostic efficiency and
accuracy of glomerular diseases can be improved with the
help of automatic image-processing technology.

*e diagnosis of many renal diseases is closely related to
the glomerular basement membrane (GBM) [5]. *e
basement membrane, along with the lining of the endo-
theliocytes and the lining of the podocytes on the outside,
forms the filtration barrier, allowing the blood to filter out
and form the urine, as shown in Figure 1. *e changes of
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thickness in GBM and presence of immune complex de-
posits in GBM are often used as diagnostic criteria for
certain nephropathy, such as membranous nephropathy
with extensive membranous thickening and varying
amounts of immune complexes, Alport syndrome with
diffuse membranous thickening, and familial recurrent
hematuria syndrome (thin basement membrane ne-
phropathy) with diffuse thinning of GBM [6, 7]. Manual
measurement of the thickness of GBM is an early auxiliary
[8, 9], but the workload is very expensive. *en, some
semiautomatic software tools [10, 11] are used to obtain
the thickness of GBM more quickly and conveniently but
still need manual intervention. In terms of morphological
complexity, the autoidentification difficulty of deposits is
the same as or even greater than GBM and literatures
on this have not been found. In practicality, the thickness
measurement and deposit identification can be realized
subsequently and automatically on condition that
the GBM region is completely autorecognized or is
segmented.

Early in 1993, Ong et al. [12] applied adaptive window-
based tracking to segment glomerular TEM images. Since
then, a few semiautomatic or fully automatic methods have
been proposed. Kamenetsky et al. [13] and Rangayyan et al.
[14] achieved GBM segmentation andmeasurement through
region division and dynamic contour modeling. Wu et al.
[15] and Wu and Dikman [16] also proposed two methods.
One is to obtain the center line of the GBM by interpolating
manual mark points and then autosegment GBM through
distance mapping and low-pass filtering [15]. Another
method involves the use of threshold and morphological
method with no manual mark [16]. Liu et al. not only
segmented the GBM but also measured its length and
counted the number of slits [17]. Most existing methods
mentioned above have made some contribution, but there
are still many problems unresolved. *ese methods either
require tedious manual initialization that involves extra
work for pathologists and introduces possible subjective
errors, or they can only be used to segment truncated GBM
fragments with increased contrast and single direction as
showed in their experimental results. *erefore, ensuring
segmentation quality for the whole complex GBM images
remains challenging.

Two common difficulties associated with GBM seg-
mentation are interimage shape variations and intraimage

grayscale inconsistency. Figure 1 shows that the low contrast
between the GBM segment and surrounding tissues, such as
endotheliocytes and podocytes, and variations in the form
and width of GBM segments cause difficulty in autoex-
tracting features. In addition to the complex structure of a
pathological section, the grayscale distribution of TEM
images is very wide because of the uncertainty of sample
prefabrication and the illumination inhomogeneity of
transmission imaging.

To address the first challenge of autoextracting fea-
tures, we employ a pixel-wise classifier, namely, random
forest (RF) [18], based on machine learning to avoid re-
lying on hand-crafted features. RF is a committee of weak
learners (e.g., decision tree) to solve classification and
regression problems without manually specifying some
features through the construction and combination of
multiple decision trees and random selection of attributes
[19, 20], which can be used to cope with the complex
structural characteristics of biological images. RF has been
widely explored from medical image-processing fields,
especially detection tasks, including early identification or
prediction of Alzheimer’s disease [21], adrenal gland ab-
normality detection [22], and automatic cardiac seg-
mentation [23].

An enhanced generalization effect based on a single RF
classifier is hardly obtained because of the grayscale in-
consistency intraimage. To address this second challenge,
we propose an RF stack (RFS) model based on a wider
grayscale range of images. After assigning TEM images to
different grayscale groups, we sample from all these
groups and train a full-view RF classifier as RFS1 and
multiple RF zoom-view classifiers as RFS2. In the seg-
mentation phase, each pixel of the new GBM image is
classified automatically through full-view and zoom-view
RFS and the candidate segment results are combined and
optimized. *us, the segmentation accuracy is improved
by using this two-level integrated machine learning
method.

*e remaining sections of this paper are organized
as follows. In Section 2, information regarding GBM
image selection and preprocessing is described and the
details of the proposed RFS model for GBM segmentation
is introduced. In Section 3, experimental results are re-
ported and discussed. In Section 4, the conclusion is
presented.

GV: 93-253GV: 11-165

Endotheliocyte

Podocyte

GBM

Figure 1: Interimage shape variations and intraimage grayscale inconsistency of GBM (GV: gray value).
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2. Materials and Methods

2.1. Data and Materials

2.1.1. Image Data. Renal biopsy specimens were immedi-
ately fixed with 2.5% cold glutaraldehyde with 0.1M
phosphate buffer at pH 7.3 for 4 h, washed with phosphate
buffer, postfixed with 1% osmium tetroxide in the same
buffer, dehydrated with a graded series of ethanol, and
embedded in Spurr resin. Ultrathin sections (70 nm) were
contrast enhanced with uranyl acetate and lead citrate and
examined using a Hitachi H-7500 electron microscope
(Tokyo, Japan) at 60 kV. All of the sections were imaged with
MORADA G3 (EMSIS Corporation of Japan) at 5000x
magnification. In the field of vision, a whole glomerulus,
including the glomerular capillaries and the basement
membrane, was selected. Continuous filming was conducted
using the attached digital imaging system and controlled by
the Pathological Image Workstation of the NanFang Hos-
pital in Guangzhou, China.

2.1.2. Preprocessing of TEM Images. *e pathologists col-
lected 351 images from the obtained glomerular TEM images
to build a GBM image database. Of these 351 images, 330
were used as a training set and divided into different groups
(N� 37) according to the range of GBM’s intensity. In the
test set, 21 images with different sizes and various basement
membrane types, such as stripe-, closed-, and compound-
type, were used. *e image pixels were divided into GBM
and background. Figure 2(a) shows the original TEM image,
and Figure 2(b) illustrates its corresponding GBM binary
mask manually labeled by the pathologist.

2.2. Method Overview

2.2.1. Workflow Diagram. RF is an ensemble machine
learning method, which can be applied to image segmen-
tation by classifying pixels into target or background. *e
proposed RFS is a RF-based multilevel integrated structure
that mainly involves two phases: hierarchical training and
refinement testing. *e implementation process of RFS is
shown in Figure 3.

Train phase: from the prebuilt GBM database, an image
is randomly selected from each image group with different
GBM grayscale ranges. Hence, N images, namely, Img1 to
ImgN, needed for one training session are ready. *e si-
multaneous sampling of N images and follow-up training
yield RFS1 called the full-view RFS. *en, N RF classifiers,
RFi(i � 1, . . . , N), are generated by sampling and training
each image individually, and RFS2, which is called zoom-
view RFS, covering different grayscale ranges is
constructed.

Test phase: each pixel of the test image is classified by
RFS1 and constitutes a candidate segmentation R1. Each
pixel of the test image is classified by each RFi in RFS2 and
got N coarse segmentation results, namely, CR1 to CRN.
*en, another candidate segmentation R2 is obtained after

an iterative refinement scheme. *e final segmentation is
selected from R1 and R2 by a human expert.

2.2.2. Software Tools. *e image-processing and analysis
software FIJI (ImageJ) is developed by the US National
Health Administration, and FIJI-based secondary develop-
ment is well known. In this paper, we selected a FIJI plug-in
named Trainable Weka Segmentation (TWS) (http://imagej.
net/Trainable_Weka_Segmentation) [24], which is based on
the free open-source software Weka [25]. TWS combines a
series of machine learning algorithms to perform pixel-
based image segmentation. Figure 4 shows that TWS is
modified and integrated with some image-processing
functions provided by Matlab to meet the needs of GBM
image segmentation.

2.3. Training

2.3.1. Random Forest. RF [23] is a common method for
ensemble learning whose training algorithm relies on
bagging integration and random attribute selection in the
construction of the decision tree. *e training of one RF is
shown in a blue arrow line in Figure 3. Bootstrap sampling
technology is used to generate T training subsets from the
original training set, and T decision tree models are
established to form one RF. An RF segmentation is illus-
trated in an orange arrow line in Figure 3. *e test image is
separately classified by the T decision trees in the RF, and
the result of each decision tree is aggregated to the final
output by voting. In this paper, we refer this to level 1
integration.

2.3.2. RFS Classifiers. Considering that the intensities of
GBM in various TEM images are significantly different, a
single RF classifier cannot extract different grayscale features
of all TEM images and the segmentation performance is

(a) (b)

Figure 2: TEM image (a) and the corresponding binary mask
image of GBM (b).
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unstable. For example, given an RF classifier sampled and
trained from Figure 2, the membrane illustrated in
Figure 5(a) can be well segmented as shown in Figure 5(b)
because of the similar grayscale of the GBM in Figure 5(a)
and the classifier. A poor result is obtained by using the same
classifier to segment the membrane in Figure 5(c), and the
entire membrane fragment is almost not segmented as
shown in Figure 5(d).

To address this problem, we introduced level 2 in-
tegration. We first assigned all training images to N groups
according to the average intensity in the GBM regions.
*en, RFSs were constructed. Full-view and zoom-view

methods were proposed. *e full-view method simulta-
neously takes samples from N different grayscale range
images. As M pixels are sampled in each image, M × N

pixels are sampled at the same time for training and RFS1 is
obtained. RFS1 is a large file in the same logic form of an RF.
Due to the large number of sampled pixels and the limited
depth of the tree, we can assume that leaf nodes form
stacks.

*e zoom-view method separately takes samples from N

grayscale range images for training and obtains a series of
RFs ranging from RF1 to RFN, thereby forming RFS2. Since
the sampling points of each forest in RFS2 are well targeted
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Figure 3: Flowchart of the proposed RFS method.
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Figure 4: Software tools.
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to images with the similar range, the generalization per-
formance of a single forest is limited and the results need to
be integrated and refined at the test or segment phase.

2.3.3. Implementation Details. In the prebuilt GBM data-
base, the TEM images in the training set were divided into
N � 37 groups according to the average intensity of GBM.
*e average intensities of the GBM begin from about 73
Hounsfield units with an intensity step of 3 Hounsfield units.

TWS has 15 applicable features, and 14 of them were
selected as the inputs of the decision tree in this paper:
common grayscale features (mean, minimum, maximum,
median, and variance), boundary features (Sobel filter, Hes-
sian, and difference of Gaussians), texture features (Gaussian
blur, entropy, and Kuwahara filter), and other features
(membrane projections, Lipschitz filter, and neighbors).

Other RF training parameters include the number of
decision trees (T � 100), the depth of decision trees
(D � 9), and the number of sampling points per image
(M � 2000). *e selection of some parameters is discussed
in Section 4.

2.4. Segmentation. Given an image to be segmented or
tested, two candidate segmentation results can be separately
obtained by RFS1 and RFS2. Pixel-by-pixel classification
through full-view RFS1 yields a candidate segmentation R1.
*e process of getting candidate R2 is more complicated.
After the preparation of a series of coarse results, namely,
CR1 to CRN, dealt by zoom-view RFS2, the probability map
are reconstructed and the candidate R2 can be obtained after
postprocessing and iterative refinement is completed. Fi-
nally, R1 and R2 are evaluated by experts to determine an
enhanced segmentation.

2.4.1. Probability Map. For each image pixel to be seg-
mented, equation (1) is used to reconstruct the probability

map with the N coarse segmentation results, namely, CR1 to
CRN:

p(i, j) �
n(i.j)

N
, (1)

where N � 37 is the total number of coarse segmentation
results, n(i, j) is the frequency of the pixel of ith row, jth
column is marked as GBM by each CR, and p(i, j) is the
probability of the pixel (i, j) as GBM.

2.4.2. Postprocessing. In the probability map, a large gray
value of a pixel corresponds to a high probability to become
GBM. *erefore, by maximizing the similarity belonging to
the same category or avoiding it to reach the minimum, the
fuzzy C-means (FCM) [26] algorithm is utilized for post-
processing to divide the image into the GBM regions and the
background. *en, after some false positives are removed
through a morphological operation, the GBM regions can be
extracted.

2.4.3. Iterative Refinement. Not every coarse segmentation
results CRi(i � 1, . . . , N) obtained from RFS2 provides
useful information on the construction of the probability
graph. In some extreme cases, some coarse segmentation
results are counterproductive to the probability map.
*erefore, a refinement process is described in Algorithm 1.

Figure 6 shows the whole segmentation process of RFS2,
including (1) 37 RF classifiers, (2) probability map, (3)
postprocessing, and (4) iterative refinement.

2.4.4. Manual Interaction for Final Decision. For a test
image, the candidate segmentation results R1 and R2 are
compared with a gold standard labeled by a pathologist. For
new images without gold standard, a user can compare R1
with R2 and make the final decision based on the following
aspects:

(a) (b)

(c) (d)

Figure 5: Segmentation results of TEM images with different grayscale ranges by using the same RF classifier.
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(1) Whether the foot process of the epithelial cell or the
cytoplasm of the endothelial cell is inappropriately
contained in the region of the basement membrane
because its electron density is similar to that of the
basement membrane

(2) Whether the subepithelial immune deposit is erro-
neously excluded from the basement membrane
because its electron density is higher than that of
basement membrane

(3) *e continuity of the basement membrane should be
cautiously analyzed because pathological fracture
defects of the basement membrane are few

2.5. Evaluation Metrics. *e accuracy of the proposed
method is evaluated by Jaccard coefficient, which is widely
utilized to evaluate the performance of segmentation
methods [27–29]. It is a measure of geometric similarity
defined by

Jaccard(A, B) �
A∩B

A∪B
, (2)

where A and B are the results of manual segmentation by
human experts and the proposed method. *e range of
Jaccard value is [0, 1]. A large coefficient value corresponds
to an accurate segmentation result.

3. Experiments and Results

In this study, 21 TEM images with different grayscale ranges,
sizes, and basement membrane morphologies are used for
evaluation. *ese images are manually segmented by pa-
thologists as the gold standard.

3.1. Validation. *e RFS method provides robust segmen-
tation results of GBMs with different morphologies and
grayscale ranges. RFS1 and RFS2 are trained with M � 2000
and N � 37. Figure 7 shows the segmented images obtained
from the strip-, closed-, and compound-type basement
membranes by using the RFS method. *e top line shows
original images, and the bottom line shows the corresponding
segmentation results. As can be seen from the figure, although
the orientation, width, and other morphologies of the GBM
vary greatly, the results of the segmentation are relatively
accurate. For the three test images shown, the Jaccard values
are higher than 0.75.

Figure 8 shows the segmented images from different
grayscale range basement membranes. It can be seen that
most of the GBM is accurately segmented. Compared with
RF, the segmentation results of RFS are better. For example,
the original TEM image shown in Figure 5(c) fails with RF
segmentation, but it can be well segmented by RFS, as shown
in column 1 of Figure 8.

As shown in Figures 7 and 8, although the morphology
and grayscale range of the basement membrane vary greatly,
the results of the RFS segmentation are stable, indicating a
good generalization performance of the RFS method. Future
study on GBM thickness measurement and deposit iden-
tification will be based on this.

3.2. Influence of the RF Classifiers of Different Grayscale
Ranges. Amultilevel integrated RFS classifier is constructed
to address the generalization problem of GBM segmenta-
tion.*is is based on the hypothesis that, for an RF classifier,
the closer the grayscale range of the image to be segmented is
to the training image, the better the segmentation effect will
be. *e experimental results from the heat map in Figure 9

(1) Coarse segmentation results with an obvious error GBM area are eliminated on the basis of the preset threshold w1.
(2) *e remaining K1 coarse segmentation results CRi(i � 1, . . . , K1) are used to obtain the probability map P1 and the binary mask

B1 as shown in Sections 2.4.1 and 2.4.2.
(3) *e Jaccard similarity Si(i � 1, . . . , K1) of B1 and each CRi(i � 1, . . . , K1) are calculated. If the similarity Si is less than a preset

threshold w2, the corresponding CRi is abandoned. *e remaining K2 segmentation results are used to obtain a new probability
map P2 and the binary mask B2.

(4) *e Jaccard similarity (J) of B1 and B2 is calculated. If J≤ 98%, let P1 � P2 and B1 � B2, and step (3) is repeated until J> 98%
before they exit the loop.

(5) After the loop ends, the candidate result R2 equal to B2 is obtained.

ALGORITHM 1

CR1
Classifier

1-37

CR3

Postprocessing
Iterative

refinementp (i, j) = n (i, j)/N
. . .

. . .

CR2

CR15 CR17CR16

CR35 CR37CR36

Figure 6: Segmentation process of RFS2.
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confirm this hypothesis. *e horizontal axis from low to
high represents 37 RF classifiers corresponding to 37
grayscale ranges of the training images. *e range of the 1st
grayscale is [73.5, 75.5], and the range of the 37th grayscale is
[145.5, 147.5]. *e vertical axis represents the grayscale
mean value of the GBM of the 21 test images. *e grayscale
mean value of test image 1 is 78, which is close to the
grayscale range of levels 1 and 2. *e 21st test image has an
average grayscale of 145, which is higher than the grayscale
range of level 37.

In this experiment, each test image is separately seg-
mented by these 37 RF classifiers of different grayscale
ranges, and the corresponding Jaccard value is shown in
different colors. An accurate segmentation result corre-
sponds to a high Jaccard value, and its color turns to bright
yellow. It can be seen from the color distribution in Figure 9
that most RF classifiers are only sensitive to test images with
a close grayscale range. However, as shown in Figures 7 and
8, the RFS can accurately segment test images with different
grayscale ranges that means the generalization performance
of RF is not good as proposed RFS.

3.3.DifferencesbetweenFull-ViewRFS1 andZoom-ViewRFS2.
*emultilevel RFS is constructed in full view and zoom view
as shown in Figure 3. *e refinement details of zoom-view

RFS2 are given in Algorithm1, involving the setting of
thresholds w1 and w2. *e Jaccard values of the segmen-
tation result for each test image (the pink dots) by using
RFS2 with three different parameter combinations are shown
in columns 1, 2, and 3 of Figure 10, where w1 � 1 indicates
that all N � 37 coarse segmentation results are included in
the steps of iterative optimization without filtering. *e
Jaccard values of the segmentation result by using full-view
RFS1 are shown in column 4 of Figure 10.

Figure 10 shows that the full-view RFS1 is more robust
than the zoom-view RFS2. Regardless of how thresholds w1
and w2 are set, the mean value of RFS2 is lower than RFS1.
However, when w2 � 0.3, the segmentation result of some
test images of RFS2 is better than that of RFS1. In the ex-
perimental data, the maximum segmentation accuracy is
0.85 but the minimum value is almost 0 and all these values
are obtained through RFS2.

*e stability of RFS1 is mainly caused by a large sample
training of the classifier, involving 2000 × 37 sample points.
However, the disadvantage of this method is its high-
intensity computation. Some low accuracy of RFS2 is
caused by the effect of N course segmentation results on
refinement process. If the similarity of most results with the
gold standard is insufficient, a poor optimized image is
obtained. Otherwise, the result is enhanced or even exceed
that of RFS1.*erefore, the final step of this method involves

(a) (b) (c)

Figure 7: Segmentation results of RFS with different morphologies of GBM. (a) Strip type: size, 217∗307; Jaccard, 0.75. (b) Close type: size,
150∗206; Jaccard, 0.84. (c) Compound type: size, 282∗367; Jaccard, 0.76.
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the selection between the two candidate segmentation re-
sults of RFS1 and RFS2.

3.4. Effects of Postprocessing and Refinement. *e following
methods are adopted to validate the effect of postprocessing
and iterative refinement on RFS2: (1) voting method (V), (2)
additional postprocessing with FCM on the voting result
(V+ F), (3) additional iterative refinement on the voting result
(V+ I), and (4) additional iterative refinement on method 2
(V+ F+ I), namely, RFS2. Figure 11 shows the mean and

variance of methods (1)–(4), full-view RFS1 (5), and the final
result (6). *e mean accuracy of V is the lowest among them.
V increases after FCM postprocessing and further improves
after iterative refinement is completed. *e final result in-
cludes the maximum mean and a relatively small variance.

4. Discussion

4.1.Methods forConstructingEnsembles. Ensemble methods
construct a set of classifiers and then classify new data

(a) (b) (c)

Figure 8: Segmentation results of RFS with various grayscale ranges of GBM (RoGV: range of gray value). (a) RoGV: 54–255; size: 282∗274;
Jaccard: 0.70. (b) RoGV: 43–187; size: 168∗308; Jaccard: 0.71. (c) RoGV: 12–167; size: 297∗408; Jaccard: 0.65.
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points by taking a weighted vote of their predictions.
Dietterich [30] assumed that five general purpose ensemble
methods exist: enumeration of hypotheses, manipulation of
training examples, manipulation of input features, ma-
nipulation of output targets, and injection of randomness.
We adopted two of them and developed their corre-
sponding RFS methods. Full-view RFS2 manipulates the
training examples to generate multiple hypotheses. Con-
sidering the complicated GBM images, we sample multiple
grayscale images to further increase the diversity of the
hypotheses. Zoom-view RFS1 manipulates the output
probability graph to achieve integration. *e iterative re-
finement step is addressed to reduce the adverse effect of
the rough segmentation result, further improving the ac-
curacy of segmentation.

4.2. Selection of the Parameters. *e number of decision
trees is among the most important parameter in the ap-
plication of RF algorithm in medical image segmentation
[31]. *eoretically, with the increasing number of decision
trees, the classification accuracy of the algorithm gradually
increases as computational cost rapidly increases. *e
optimal number of trees should obtain a good balance
between evaluation metric, processing time, and memory

usage. In this study, the number of decision trees is ex-
perimentally set to 100.

*e number of sampling points is another critical pa-
rameter in the RFS method. In our experiment, as the
number of sampling points increases from 200 to 2000 per
training image, the accuracy rate of the RFS classifier in-
creases by approximately 10%, whereas the accuracy is not
improved greatly if the number of sampling points con-
tinuously increases. *us, the total sampling point is set to
74,000, where M � 2000 and N � 37, to obtain the best
result.

In TWS, 15 available image feature attributes are pro-
vided in the decision tree construction. In our experiment,
the application of most features can improve the accuracy of
segmentation, but entropy (E) and anisotropic diffusion (A)
are time consuming. Let 13F indicates 13 other features aside
from E andA; Figure 12 shows that the application of feature
A not only costs more time but also reduces the accuracy of
segmentation whether by using classifier RFS1 or RFS2.
*erefore, only 14 features other than anisotropic diffusion
are used to construct the decision tree in the proposed RFS
method.

4.3. Limitations of the Proposed Method. Our experiment
results reveal that the proposed RFS method obtains poor
performance for some cases. For example, for a low-
contrast image, the accuracy rate of voting is almost 0.
Only the accuracy rate of V + I reaches 23%, whereas the
accuracy rates of the other methods are below 20%, even
that of RFS1. Such bad results greatly reduce the average
accuracy of the RFS method. RF can be combined with
other pattern recognition methods for better performance.
Lu et al. [32] applied incomplete RF with a robust vector
machine for the early identification of mild cognitive
impairment. *is method outperforms two other semi-
supervised learning methods. *erefore, to improve the
segmentation accuracy of low-contrast GBM images, the
combination of RF methods with other methods will be our
future work.

5. Conclusion

*e segmentation of the whole GBM region in TEM
pathological images can provide more rapid and intui-
tionistic observation for the morphological change and can
reduce the tedious and expensive manual workload of the
pathologist. *is work proposed a two-level integrated RFS
method involving training integration and testing in-
tegration to autosegment a GBM image. A total of 351
clinical images were included in the experiment. *e ac-
curacy and generalization ability of the RFS method were
validated. Experimental results illustrated that the pro-
posed method could be used for the automatic segmen-
tation of GBM with different morphological characteristics
and grayscale ranges. Further study is underway to im-
prove segmentation accuracy of the automated CAD
system and to implement GBM thickness measurement
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and deposit autorecognition for auxiliary pathological
diagnosis.
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