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Abstract
Projection and back-projection are the most computationally intensive parts in Computed

Tomography (CT) reconstruction, and are essential to acceleration of CT reconstruction

algorithms. Compared to back-projection, parallelization efficiency in projection is highly lim-

ited by racing condition and thread unsynchronization. In this paper, a strategy of Fixed

Sampling Number Projection (FSNP) is proposed to ensure the operation synchronization

in the ray-driven projection with Graphical Processing Unit (GPU). Texture fetching is also

used utilized to further accelerate the interpolations in both projection and back-projection.

We validate the performance of this FSNP approach using both simulated and real cone-

beam CT data. Experimental results show that compare to the conventional approach, the

proposed FSNPmethod together with texture fetching is 10~16 times faster than the con-

ventional approach based on global memory, and thus leads to more efficient iterative algo-

rithm in CT reconstruction.

Introduction
Computed tomography (CT) has become one of the most widely used non-invasive medical
imaging systems. As the rapid development of multi-slice CT, 3-D CT has replaced the 2-D CT
in radiology routines by providing fast 3-D scanning. Recently, extensive studies have demon-
strated that iterative methods, based on an accurate system model, are capable of providing bet-
ter reconstruction quality than analytical methods, especially under low-dose CT scans [1–10].
However, due to the high computation cost in iterative reconstructions, FBP (Filtered Back-
projection) based analytical reconstructions still take the main horsepower in current clinical
reconstruction for 3-D CT [11].
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Projection and back-projection occupy the most computation consuming parts in CT
reconstruction. How to accelerate projection and back-projection is crucial to implementing
fast iterative CT reconstruction algorithms. In 2-D reconstruction, a preload system matrix can
be used as projection operator, which accelerates both projection and back-projection [12]. But
as to 3-D reconstruction, system matrix preload might not be feasible because the memory
requirement will greatly increase. In [13], we transformed the 3-D system matrix into the com-
bination of one single-view projection matrix and one 2-D rotation matrix, with an aim to save
storage for system matrix with limited projection views [13]. However, the feasibility of this
approach will be limited in the systems with large view number and large object size. For
instance, in the case of a cone-beam CT system with 512 × 512 × 512 object size, 1024 × 1024
projection resolution and 400 projection views, around 8Gb memory and 4Gb memory are
required to store the single sparse-view projection matrix and the corresponding rotation
matrix, respectively.

GPU based parallelization has been widely used to accelerate the projection and back-pro-
jection in CT in recent years. Flores et. al parallelized the multiplication of the pre-stored sys-
tem matrix by CUDA (Compute Unified Device Architecture) in 2-D iterative CT
reconstruction [14]. In [15], Gao accelerated the projection and back-projection for iterative
reconstructions by parallelizing the interpolation in Siddon’s ray-driven algorithm. But the
thread kernel function in [15] involves complex looping and geometry parameter calculations,
which often lowers the efficiency for CUDA parallelization. In [16], Zhao et.al applied GPU
parallelization in projection and back-projection for iterative reconstructions, in which zero-
value voxels were excluded to reduce computation cost [14]. Also, to accelerate TV (total varia-
tion) regularized iterative reconstruction, Jia et.al applied CUDA technique to accelerate ray-
driven based projection and back-projection [17].

Global memory is often used in the parallelization of CT reconstruction due to its large size
and direct accessibility by threads and blocks, but the applications are often compromised by
its low access speed. Shared memory and texture memory both allow higher access speed, and
can be considered to further enhance the parallelization efficiency. Shared memory can be
directly accessed by CUDA cores, and is often used to accelerate atomic operations with sum
reduction [18]. But the shared memory can only be accessed in single block, and is often too
small to store the whole object data. Texture memory, though with a lower access speed than
shared memory, provides faster access speed than global memory and allows efficient access to
floating coordinates via texture fetching operation. Besides, the large-sized texture memory in
GPU device can handle projections and scanning object, thus avoiding the frequent data
exchange. Pratx et.al proposed in [19] a GPU-based (using OpenGL) 3-D OSEM (ordered sub-
sets expectation maximization) algorithm for tomographic reconstruction in PET (positron
emission tomography), in which texture memory was used to store projection data. In [20],
Okistu et.al developed a CUDA framework to parallelize FDK (Feld-Davis-Kress) algorithm
for CT, in which texture fetching was directly applied to accelerate the interpolation in back-
projection from texture data. Also, FDK algorithm via texture fetching based parallelization
was also introduced in Noël’s and Wang’s work in [21] and [22]. However, up to now, there is
still no agreement on whether texture memory should be used in the parallelization of iterative
reconstructions. The reason is that the texture memory is read-only, therefore the costly texture
rebinding is required for data update in each iteration.

In this paper, a strategy termed Parallelization with Fixed Sampling Number Projection
(FSNP) is devised to ensure the operation synchronization along projection lines in paralleliz-
ing ray-driven projection based on CUDA framework. The conventional cubic field of view
(FOV) is replaced by a rotational symmetric FOV to save computation cost in geometry
parameter calculation. The rest of this paper is organized as follows. In Section 2, previous
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works related to this study are reviewed. The proposed FSNP scheme is explained in detail in
section 3. The parallelization to normalized voxel-based back-projection operator is also dis-
cussed. In Section 4, the proposed approach is applied to a cone-beam CT system Perfor-
mances of different parallelization modes were compared in this section. Experiment results
show that, with well synchronized operation, the FSNP method is superior in terms of compu-
tation efficiency to the conventional sampling strategy with fixed sample intervals, and the uti-
lization of texture memory leads to further improved acceleration performance. This study also
shows that the FSNP method works well with voxel-driven back-projection operator to give
efficient iterative reconstruction. Table 1 lists the abbreviations used in this paper.

Method
Existing algorithms for projection and back-projection can be roughly classified into three
modes: ray-driven, voxel -driven and distance-driven. The ray-driven algorithm is well suited
for projection and the voxel-driven algorithm works well in back-projection. However, the ray-
driven back-projection tends to bring grid artifacts into image domain whereas voxel-driven
projection brings grid artifacts to the projections [23]. With a more accurate geometric model-
ing, the distance-driven methods often lead to better performance than ray-driven projection
and voxel-driven back-projection by mapping voxel and detector boundaries into the same
axis [24]. Nevertheless, parallelization of the distance-driven method is highly limited by the
intensive calculation of intersection areas along each ray.

Although ray-driven projector and pixel-driven back-projector are intrinsically unmatched,
Zeng pointed out in [25] that unmatched projection/back-projection pair is sometimes benefi-
cial to reconstructions, for example, a matched projection/back-projection pair with weighted
line lengths often produces ring artifacts, whereas an unmatched pair, in which the projector is
ray-driven with line-length-weighting but the back-projector is voxel-driven with bilinear
interpolation, can effectively remove ring artifacts. Based on this, in this study we choose ray-
driven projection in implementing the proposed FSNP strategy, and perform reconstructions
by combining it with voxel-driven back-projection operator.

2.1 Projection
As illustrated in Fig 1, the ray-driven algorithm works by tracing rays through scanning objects.
Each ray can be simplified to an ideal line connecting the source and the detector center. Pro-
jection values are obtained via integrating sampled values along each projection ray, which is
realized by a weighted intensity summation of the voxel intensities in each ray.

Table 1. Abbreviations.

FSNP Fixed Sampling Number Projection

FSIP Fixed Sampling Interval Projection

PRPT per ray per thread

PRPB per ray per block

CUDA Compute Unified Device Architecture

FDK Feld-Davis-Kress

OSEM Ordered Subsets Expectation-Maximization

RMSE Root Mean Square Error

SOD Source to Orientation Distance

SDD Source to Detector Distance

doi:10.1371/journal.pone.0142184.t001
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Different methods have been proposed to calculate the weights for voxels in projection. For
instance, one can use intersection length between line and voxels [26–27], or the interpolation
from neighboring voxels [27]. The classic intersection length summation based model is given
in Fig 1(a). In this mode, the ideal line indexed i passes through pixel j with intensity xj. With
the intersection length of line i and pixel j denoted by lij, the contribution of pixel j to the pro-
jection and the summed projection value can be quantified by xj×lij and the projection value yi
= ∑jxj×lij, respectively. To alleviate the intensive calculation for each intersection length lij in
this projection model, the line summation based model are often approximated by the linear
interpolation model given in Fig 1(b). In this model, pixels surrounding each sample point in
the ray are used to estimate the interpolated value Cpk

of point pk, with weights determined by

their spatial distances to the sample point. The projection value amounts to yi ¼
X

k
Cp

k
for

detector i. The outline of ray-driven based projection algorithm is given below.

Ray-driven based projection algorithm
Set point source position S;
Set sampling step length d;
Set number of detectors I;
For each detector Di (1�i�I)

Compute the line equation for
*
SDi, and note the unit direction vector as

*
ni;

Compute the sampling point number mi for Di;
End For;
For each detector Di(1�i�I)

Set first sampling point P0 to S, and set k to 0;
Set projection value yi to 0;
Do

Pkþ1 ¼ Pk þ*
ni;

yi ¼ yi þ Cpk
;

While j !SPkþ1 j < j !
SDi j

End For

In ray-driven model, each projection value is calculated by integrating the sample intensities
along each projection ray. Calculation of all the ray-driven projection values can be accelerated
via CUDA based parallelization. Generally, the parallelization of ray-driven projection includes
two options: per ray per thread (PRPT) mode and per ray per block (PRPB) mode. In PRPT
mode, each projection value is independently calculated inside one single thread, which allows
easy and straight parallelization. But the acceleration efficiency of PRPT mode tends to be low-
ered by the looping integration in each kernel function. As to the PRPB mode, each projection

Fig 1. 2-D illustration of ray-driven projection. (a): line summation mode; (b): linear interpolation mode.

doi:10.1371/journal.pone.0142184.g001
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value is calculated within one block, and each thread in the block calculates the value for one
sampling point along this projection ray. The intensive atomic operations for the intensity
summing operation in PRPB mode can be effectively accelerated by sum reduction with the
shared memory. So, it is generally believed that the PRPB mode is more efficient than the
PRPT mode in projection parallelization [28].

The sampling point numbers along different projection lines are not identical due to the
varying intersection lengths for different projection lines. The varying sampling numbers will
lead to unsynchronized operations in threads or blocks for PRPT or PRPB modes, which result
in lowered parallelization efficiency. In this paper, a method of Fixed Sampling Number Pro-
jection (FSNP) is proposed to overcome this. As illustrated by Fig 2, this FSNP approach
assumes that the X-ray attenuation is negligible outside a pre-specified field of view (FOV). We
fix the sampling number along each ray and perform uniform sampling on the line segments
inside the FOV, thus allows an easy synchronization for both the PRPT and PRPB modes.

In this FSNP strategy, to save computation cost, the parameters for each projection line
(including intersection length, coordinates of intersection points and line direction) should be
calculated and stored in memory before the projection operation. However, when the conven-
tional cubic FOV (shown in Fig 2(a)) is used, we have to store these parameters for each

Fig 2. Non-uniform distributed samples points in projection geometry. (a) cubic FOV, (b) cylinder FOV, (c) sphere FOV

doi:10.1371/journal.pone.0142184.g002
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projection view respectively. For a CT system with 512×512 detector plane and 360 angles, it
takes about 2.5Gb memory to store the parameters for all projection views, which imposes a
large saving burden for many GPU devices. To solve this, we define the FOV in cylinder and
sphere shapes (as shown in Fig 2(b) and 2(c)) for long object and short object scans, respec-
tively. In this way, for one specific detector, the intersection length keeps the same for different
views, and the coordinates of intersection points and line direction can be easily calculated
according to the rotational symmetry of FOV. Hence we only have to store the parameters for
one view. Furthermore, in order to avoid unnecessary computation on those rays with too
short intersections with the FOV, only the rays with longer intersection (with the FOV length)
than one preset threshold rT are considered. Normally the FOV should be large enough to
ensure that no object data is removed by excluding those rays with small intersection lengths.
The pseudo code for the proposed FSNP algorithm is given as follows for both the PRPT and
PRPMmodes:

The proposed FSNP algorithm with PRPT mode
//Pre-computation part: set FOV and calculate the intersection information
for start view
Set the point source position S;
Set the sampling number on each projection line to M;
Set the field of view as FOV;
Set the detector number I = Drow×Dcol; //Drow and Dcol are row and column indexes
of detector plane;
Set threshold rT for intersection length;
For each detector Di (1�i�I), do

Compute the line equation for
*
SDi;

Compute the intersection points (Ai, Bi) between
*
SDi and the FOV;

Compute ri = |AiBi|
If (ri>rT)
Set step length di = ri/(M−1);

else
Set step length di = 0 //this ray is not considered in the projection part;

End For

// Projection Part: Calculate projection for each view
Bind the 3-D object data in texture memory // If texture memory is used;
Update intersection information according to view angle using rotation
symmetry;
Set block count Drow to the number of detector rows;
For j = 1 to Drow,

Calculate projection for each detector row in block j;
Set thread count Dcol to the number of detector columns;
For k = 1 to Dcol, calculate current projection yi in thread k (i = j × Dcol +

k);
Set the current projection value yi = 0;
If (step length di>0)

For m = 1 to M

Calculate the location of sampling points pm on
*
AiBi;

Calculate the value Cpm
for point pm using linear interpolation;

yi ¼ yi þ Cpm
;

End For
End If

End For
Thread Synchronize;
Normalization: yi = yi × ri/M;

End For

CUDA Parallelization of Projection in Iterative CT
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The proposed FSNP algorithm with PRPB mode
//Pre-computation part: set FOV and calculate the intersection information
for start view
Set the point source position S;
Set the sampling number on each projection line to M;
Set the field of view as FOV;
Set number of detectors I;
Set threshold rT for intersection length;
For each detector Di (1�i�I), do

Compute the line equation for
*
SDi;

Compute the intersection points (Ai, Bi) between
*
SDi and the FOV;

Compute ri = |AiBi|;
If (ri>rT)
Set step length di = ri/(M−1);

else
Set step length di = 0 //this ray is not considered in the projection part;

End For

// Projection Part: Calculate projection for each view
Bind the 3-D object data in texture memory; // If texture memory is used
Modify intersection information according to view angle using rotation
symmetry;
Set block count I to detector numbers;
For i = 1 to I, calculate projection for each detector Di in block I;

If (step length di>0)
Set the projection value yi = 0;
Set thread count M for each block;
For m = 1 to M, calculate each sampling value in thread m;

Calculate the location parameters of sampling points pm on
*
AiBi;

Calculate the value Cpm
for point pm using linear interpolation;

Atomic add (yi, Cpm
) (accelerated via shared memory with sum reduction);

End For
End If
Thread Synchronize;
Normalization: yi = yi × ri/M;

End For

2.2 Back-projection
As illustrated in the 2-D schematic diagram of the pixel-driven back-projection (Fig 3), a line
(ray) connecting the radiation source and voxel center intersects with the detector plane for
each pixel. Routinely, the linear interpolation or kernel function convolution can be used to
estimate the back-projected value with respect to intersection locations [23–28]. Fig 3 also
shows that the back-projection operator is in fact a linear interpolation: xj = (p1l2 + p2l1)/(l1 +
l2), where l1 + l2 is the distance between the two neighboring detector centers, and p1 and p2 are
the corresponding projection values for the neighboring detectors. The outline of the voxel-
driven based back-projection algorithm is also given below.

Voxel-driven based back-projection algorithm
Set point source position S;
Compute the coordinates of each detector center;
For j = 1 to J (J is the number of voxels)

Compute the geometrical line equation that connects S and the voxel j,
noted as linej;

Compute the intersection point of line linej and the detector array, noted
as yj;

CUDA Parallelization of Projection in Iterative CT
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Compute the back-projection value xj according to the position of yj via
interpolation or convolution;
End For

As can be seen in above algorithm outlines, the back-projection algorithm allows a straight
parallelization because the calculation related to each back-projected voxel is independent and
can be easily handled by thread based parallelization. We should note that the back-projection
operator in iterative reconstructions is normalized to match the projection operator by dividing
the projection value by a pre-computed intersection length. The pseudo code for the paralle-
lized back-projection is given as follows:

Parallelized voxel-driven back-projection algorithm
//Pre-computation
Set point source position S;
Set number of detectors I = Drow × Dcol, //Drow and Dcol are row and column
indexes of detector plane;
Denote y the projection value;
Projection normalization: ~yi ¼ yi=ri, // ri is intersection length, computed
in the projection part;

// Calculation of the back-projected value for each voxel
Bind the normalized 2-D projection data ~y in texture memory, // If texture
memory is used;
Set block number to L × H;
For p = 1 to L × H for each block

Set thread number for each block to W;
For q = 1 to W, calculate the back-projection for voxel xp×W+q in each

thread;
Calculate the line equation for lp,q that connects the S and voxel xp×W+q;

Calculate the intersection point ~i between the detector plane and line lp,
q;

Use linear interpolation to calculate the normalized projection on posi-

tion ~i as y~i;

Calculate the back-projection value xp×W+q from y~i;
End For
Thread Synchronize;

End For

Fig 3. Calculation of pixel driven back-projection with linear interpolation in 2-D case.

doi:10.1371/journal.pone.0142184.g003
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Experiments and Results

3.1 Experiment Configuration
Experiments with a simulated cone beam CT system were performed with configurations listed
in Table 2. The involved abbreviations are listed in Table 2. A 3-D Shepp-Logan phantom is
used. The experiments were conducted for low resolution mode and high resolution mode. In
low resolution mode, the projection size is 512×512, and the scanning object size is
256×256×256; in high resolution mode, the projection size is 1024×1024, and the scanning
object size is 512×512×512. We use sphere FOV shown in Fig 2(c) in the experiment. The
implementation runs under a mobile workstation with Intel Core™ 2.40GHz (Quad-Core),
24Gb RAM, NVIDIA GTX780M graphic card (4Gb global memory), and the developing envi-
ronment is Microsoft Visual Studio 2008 with CUDA version 5.5.

3.2 Computation Cost
We evaluated the efficiency of the proposed FSNP method for projection computation in this
section. Both PRPB and PRPT modes were implemented. For each mode, both global memory
and texture memory versions are considered. The computation time is listed in Table 3 in the
unit of millisecond (ms). We can see in Table 3 that the PRPB mode is faster than the PRPT
mode in the case when global memory is used, but the projection with PRPT mode becomes
more efficient when texture memory is used for interpolation. We can also see that in global
memory version, the time cost increases linearly as the sampling point number increases. But
for the texture memory version, increasing sampling point number did not result in a linear
increment of computation cost. The computational time increases little when sampling point
number was doubled for texture based PRPT mode (around 10% for low resolution mode and
7% for high resolution mode). This means that developing projection model with higher reso-
lution is allowed without much extra computation cost for the proposed FSNP approach when
using PRPT mode with texture memory.

Table 2. Parameters of the simulated cone beam system.

Configuration of the simulated cone beam system Low Resolution High Resolution

SOD 720mm 720mm

SDD 1440mm 1440mm

Scanning Object Size 2563 5123

Object Voxel Size 0.42mm3 0.21mm3

Projection Size 5122 10242

Projection Pixel Size 0.42mm2 0.21mm2

doi:10.1371/journal.pone.0142184.t002

Table 3. Computational time (in ms) for the FSNP apprach with different modes

Low Resolution High Resolution

256 samples 512 samples 512 samples 1024 samples

Global PRPB 57.34 103.75 311.92 563.99

Global PRPT 117.95 219.30 1432.1 2176.4

Texture PRPB 32.65 53.59 205.12 297.28

Texture PRPT 17.09 18.95 132.29 141.31

FSIP PRPT 27.77 36.53 197.55 288.28

doi:10.1371/journal.pone.0142184.t003
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We also compared the computation time of the FSNP method with the conventional FSIP
(Fixed Sampling Interval Projection) method in PRPT mode in Table 3. For the FSNP method,
the threshold rT is set to 30mm. As to the FSIP method, we adjusted the sampling density to
ensure that the average sampling point number is close to the fixed sample number in FSNP
method. We can see that the proposed FSNP method is faster than the FSIP method due to the
better synchronization.

From Table 3, we can see that, in the texture memory version with PRPT mode, the compu-
tational time remains at same level when the sampling point number doubles for both FSNP
and FSIP modes. Thus the blob based projection can be used to give better suppression of
streak artifacts and artifacts [29–30]. Based on [31], the kernel function of blobs is constructed
using generalized Kaiser-Bessel (KB) window bn,a,α:

bn;a;aðrÞ ¼
1

InðaÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðr=aÞ2

q
ÞnInða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðr=aÞ2

q
Þ ; 0 � r � a ð1Þ

where r is the radial distance to the origin. In is the modified Bessel function with order m, α is
a parameter controls the shape of the blob, a is the radius. Within our experiment, the parame-
ters were set as follows: n = 2, α = 10.4, a = 0.84 mm (two voxels). In the current CUDA ver-
sion, only nearest neighbor and linear interpolation modes are supported by texture fetching.
Both modes can be applied for the computation of kernel computation. If linear interpolation
mode is considered, for each sampling point, the contribution of each nearby voxels is deter-
mined by the distances between the voxel centers and the sampling points. The computation of
the distances has to be implemented serially in threads with PRPT mode, which implies low-
ered computation efficiency. We use nearest neighbor instead. A set of discrete blob kernel
functions were pre-stored in global memory (1003 in our experiment), each of the kernel func-
tion are with a different translation from the origin. The translation
fkx; ky; kzg 2 �1

2;
1

2= Þ; �1
2;

1
2= Þ; �1

2;
1

2= Þg=ð=ð=ðf . For each sampling point, the closest blob

kernel function is chosen for the interpolation. The computation cost with blob based kernel
function in Table 4 indicates that the blob based projection can be accelerated by the proposed
PRPT method with texture memory. Table 4 also shows that, similar to the linear interpolation
based FSNP, the increment of computational time is around 14% to 30% when the sampling
number is doubled for the blob based FSNP with PRPT mode.

The above result indicates that even with the costly operation of texture binding, texture
memory can be used to improve efficiency in projection parallelization. Table 5 compares the
computational cost for back-projection of parallelized voxel-driven algorithm using global and
texture memories. Results in Table 5 confirm that the texture memory can also be used to
accelerate back-projection.

Table 4. Comparison of computational time for linear interpolation based FSNP and blob based FSNP (in ms)

Sampling Points Low Resolution High Resolution

256 samples 512 samples 512 samples 1024 samples

Global PRPB Linear 57.34 103.75 311.92 563.99

Global PRPB Blob 431.92 798.15 2088.1 3808.0

Texture PRPT Linear 17.09 18.95 132.29 141.31

Texture PRPT Blob 117.55 134.96 706.42 921.35

doi:10.1371/journal.pone.0142184.t004
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3.3 Projection and Reconstructions
In this section, we perform CT reconstructions with proposed FSNP. Conventional ray-driven
and distance driven methods are also considered in the reconstruction for comparison. Root
mean square error (RMSE) defined in Eq (2) was used to quantify the difference between the
reconstructed 3-D images and original phantom 3-D images:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf̂ � f k2

2

kf̂ k2

2

s
ð2Þ

where f̂ is the phantom image as ground truth, and f denotes the reconstructed image. kf̂ k
denotes the L2 norm calculation.

We performed FDK reconstruction with Ram-Lak filter. 3-D Shepp-Logan phantom was
used with the system configuration in Table 2 (low resolution mode), and the phantom data was
projected into 360 angles. The results are shown in Fig 4. We do not provide the result for the
voxel-driven projections because the grid artifacts in such projection mode often results in
severe artifacts in FDK reconstruction [26]. With respect to the phantom images in Fig 4(A),
obvious streak artifacts can be observed in Fig 4(B), 4(C), 4(D) and 4(E); the combination of lin-
ear interpolation based FSNP and voxel-driven back-projection operator can provide better
results than the classic ray-driven projector and back-projector pair. We can also see in Fig 4(F)
that the blob based FSNP leads to the reconstructions with effective artifact suppression and the
lowest MSE values, but at the cost of blurred edges. This is because the simulated projections
generated by blob based FSNP are blurred by the weighted summation of neighboring voxels.

We then evaluated the performance of FSNP in iterative reconstruction algorithm. The
OSEM (Ordered Subsets Expectation-Maximization) algorithm with 30 subsets and 100 itera-
tions was chosen as the iterative algorithm. Results in Figs 5 and 6 show that the linear interpo-
lation based FSNP together with voxel-driven back-projector can provide results similar to the
matched distance-driven pair, both visually and quantitatively. Although the measurements
are assumed to be independent form each other in ideal projection model, they are in fact
somehow correlated, due to the imperfect collimation and scatter effect. The blob-based kernel
takes such correlation into consideration, and thus leads to a more realistic model in character-
izing the residual between observed measurements and image projections, especially for differ-
ences near the edges. As a result, we may see that different from the results in Fig 4(F), the
reconstructed images in Fig 5(D) indicate that the blob based FSNP also leads to a good preser-
vation of edges in addition to artifact suppression. Fig 6 plots the line profile (the vertical blue
line in the left image in Fig 5(A)) of the reconstructions in Fig 5, from which we can see that
the reconstruction with blob based FSNP results in a smoother profile with a better match of
the reference profile than others (zoom 1); the distance driven projection provides blurred
edges (zoom 2); and the blob based FSNP has the best performance in recovering peak value
(with the best matched profile with phantom data in zoom 3).

The proposed projection methods are also validated by real scan data from a micro CT system.
A rat was scanned under 40kV tube voltage and 200mA tube current. The projection sequence
contains 360 projections over 360°. The projection image size is 922×748 with pixel size 0.1mm2;

Table 5. Computational time for back-projection operators, in ms.

Sampling Points Low Resolution High Resolution

Global Memory 28.91 225.94

Texture Memory 19.84 157.57

doi:10.1371/journal.pone.0142184.t005
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Fig 4. FDK reconstructions of Shepp-Logan phantom. From left to right are cross-section, sagittal view
and coronal view, respectively. Row (A): phantom images; Row (B): the reconstruction with ray-driven
projection and ray-driven back-projector (RMSE = 7.11%); Row (C) reconstruction with distance-driven
projection and distance-driven back-projector (RMSE = 5.06%); Row (D): the reconstruction with linear
interpolation based FSNP (256 sampling points per ray) and voxel-driven back-projector (RMSE = 5.30%);
Row (E): the reconstruction with linear interpolation based FSNP (512 sampling points per ray) and voxel-
driven back-projector (RMSE = 5.22%); Row (F): the reconstruction with blob based FSNP (256 sampling
points per ray) and voxel-driven back-projector (RMSE = 2.98%).

doi:10.1371/journal.pone.0142184.g004
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Fig 5. OSEM reconstructed results using different projection and back-projection operators.Columns from left to right are the illustrations of cross
section, coronal section and sagittal section, respectively. Row (A): phantom images; Row (B): reconstruction with linear interpolation based FSNP and
voxel-based back-projection (RMSE = 2.58%); Row (C): reconstruction with distance-driven projection and back-projection pairs (RMSE = 2.34%); Row (D):
reconstruction with blob based FSNP and voxel-based back-projection (RMSE = 1.96%).

doi:10.1371/journal.pone.0142184.g005
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the reconstruction volume size is 512×512×512 with voxel size 0.085mm2, SOD = 83.65mm,
SDD = 167.3mm. The FDK algorithm with Ram-Lak filter and the OSEM algorithm with 30 sub-
sets and 100 iterations were performed. All the methods listed are with voxel-driven back-projec-
tor. Different from the observation in Fig 5, the reconstruction results Fig 7 indicates that,
compared to the linear interpolation based FSNP, the blob based FSNP provides results with bet-
ter edge preservation (see the arrows). Nevertheless, we can also see that the improved edge pres-
ervation is also accompanied with amplified noise in the reconstructed images.

Discussion
CUDA technology provides a well-established software platform for developers to design par-
allelized workflow with C-style code, with direct access to the virtual instruction set and GPU
memories. In this paper, a strategy termed Fixed Sampling Number Projection (FSNP) is
devised to ensure the operation synchronization along projection lines in parallelizing ray-

Fig 6. Profiles of the reconstructed images in Fig 5. The profile is marked in blue line in Fig 5(A), 5(B), 5(C) and 5(D) are the zoomed regions in marked as
“zoom 1”, “zoom 2” and “zoom 3” respectively.

doi:10.1371/journal.pone.0142184.g006
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driven projection based on CUDA framework. The conventional cubic FOV is replaced by a
rotational symmetric FOV to save computation cost in geometry parameter calculation. Back-
projection parallelization is relatively simple because the computation involved in each kernel
for each back-projected voxel is independent to the computation in other threads. But as to
projection operator, which calculates projection values via line integration of sample intensi-
ties, the involved accumulation operation often results in racing condition that limits the com-
putation speed. Such problem can be alleviated by memory management and synchronization
optimization.

Although there is a common view that PRPB mode is more efficient than PRPT mode in
parallelizing CT projection using CUDA, experiment results have shown that with texture
fetching, the computation time for PRPT mode is 43%~67% less than that of the PRPB mode.
This advantage is brought by the locality property of texture memory when fixed sampling
number is used for each ray. It is also found that the cost in texture binding occupies a large
part in the whole computation. For instance, as to the PRPT mode with linear interpolation, in
which the computational time for each projection in FSNP was respectively 17.09ms and
18.95ms for the cases with 256 and 512 sampling points per ray, there is 14ms cost for texture
binding. For high resolution mode, the texture binding for 512×512×512 objects took about
104ms. Compared to the case with projection operator, the texture binding for back-projection
requires less computation time due to the smaller 2-D data size (about 0.9ms and 2.8ms for
512×512 and 1024×1024 projection images, respectively). Despite this, the utilization of texture
memory allows building a more accurate model by increasing the sampling points, without sig-
nificantly increasing computational load.

Although fixing the sampling number in each line leads to more effective parallelization, it
also results in inconsistent sampling density for projection rays, due to the different intersec-
tion lengths for projection rays within the FOV. For instance, the centered projection ray is
often with a higher sampling density for cubic FOV; yet it is with a lower sampling density in
the cases of cylinder or sphere FOVs. In the proposed approach, the sampling number is set

Fig 7. One 2D slice reconstructed from one rat data scanned from amicro CT. (A): FDK with Ram-Lak
Filter; (B): OSEMwith linear interpolation based FSNP; (C): OSEMwith blob based FSNP. (D), (E) and (F)
are the zoomed regions from (A), (B) and (C), respectively.

doi:10.1371/journal.pone.0142184.g007
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based on the projection ray with the longest intersection length within the FOV, which defines
the limit of the sampling intervals. Results in Fig 4 show that the MSE varies little when
increasing the sampling number from 256 to 512.

Conclusion
This paper proposes an effective parallelization scheme FSNP for the projection in iterative CT
reconstruction algorithms. In this FSNP method, the sampling point number on each projec-
tion ray is fixed to ensure the synchronization of parallel computing. Texture memory is also
used in the FSNP approach to further improve the computation efficiency. Experiment results
show that the proposed approach with texture memory is 10~16 times faster than the global
memory version in iterative reconstruction. Although it is widely accepted that the PRPB
mode is suitable for the parallelization of the projection operator, this study indicates that the
PRPT mode is about twice faster than PRPB mode with the proposed approach. We also found
that the proposed ray-driven base FSNP method works well with voxel based back-projection
operator in reconstructions. By introducing blob based kernel functions into the FSNP method,
better reconstruction results than the distance-driven projection and back-projection pair can
be obtained by the proposed approach. Better performance in noise suppression can be
expected to be obtained by incorporating the noise property into kernel building.
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