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Human embryonic stem cell (hESC) and reprogrammed/induced
pluripotent stem cell (iPSC) research is becoming the ‘‘flavor of
the month’’ for downstream applications such as drug screening,
disease modeling, and future regenerative medicine and cell thera-
pies [1–4]. Pluripotency (the ability to give rise to any cell type
of the three germ layers: mesoderm, ectoderm, and endoderm) is
the defining feature of hESCs and iPSCs [5]. In vivo teratoma
formation in immune-compromised mice is the ‘‘gold-standard’’
assay to define bona fide pluripotent stem cells capable of gener-
ating tumoral disorganized structures containing tissues repre-
senting the three germ layers [5, 6]. Despite the importance of
teratoma assay as an extended screen for the pluripotency of
hESCs and iPSCs and as in vivo assay to explore molecular and
cellular mechanisms underlying the biology of human teratomas
and their transition to teratocarcinomas, there are no standard
procedures for performing this assay [5–7]. Different studies on
hESCs have correlated the site of implantation with the effi-
ciency of teratoma formation and histology tissue composition
[6, 8]. However, limited data are available regarding the tera-
toma development latency. More importantly, no study so far
has compared side-by-side the efficiency, latency, and histologi-
cal tumor composition of hESCs- and iPSCs-derived teratomas.
In addition, a new generation of immunodeficient mice has been
developed: the NOD/SCID IL2Rc�/� mouse. This strain carries
a IL2Rc-chain deficiency that blocks signaling through multiple
cytokine receptors leading to many innate immune defects [9,
10]. The non obese diabetic/severe combined immune-deficient
(NOD/SCID) IL2Rc�/� strain facilitates engraftment and tumor
formation and does not develop thymic lymphoma, ensuring a
longer lifespan of inoculated mice.

Here, we followed the improved teratoma protocol previ-
ously developed by Prokhorova et al. [6, 11–13] to transplant
side-by-side as few as 1 � 106 of either fully characterized un-
differentiated hESCs or iPSCs in 6- to 8-week-old non obese di-
abetic/severe combined immune-deficient (NOD/SCID)
IL2Rc�/� mice [11, 13–15]. The following hESC lines were
used: H9, H1, AND1, AND2, AND3, HS181, and ECAT. The
following iPSC lines were used: MSHU-001, iAND4, CB-
CD34þ iPSC1, and CB-CD34þ iPSC2. These lines have been
fully characterized and deposited according to Spanish Legisla-
tion at The Spanish Stem Cell Bank (http://www.isciii.es/

htdocs/terapia/terapia_lineas.jsp) [16]. Briefly, cells were resus-
pended in phosphate buffered saline (PBS) supplemented with
30% matrigel (Becton Dickinson, San Jose, CA, http://
www.bd.com) [6] and transplanted subcutaneously (200 ll vol-
ume) or by intratesticular injection (60 ll volume). Figure 1A
depicts the experimental strategy used. We then analyzed effi-
ciency, latency, and histological tumor composition. In hESCs,
the rate of teratoma formation was 81% subcutaneously versus
94% intratesticularly (n ¼ 30 mice; Fig. 1B). However, the in-
tratesticular injection, despite showing higher efficiency of tera-
toma formation, displayed a slightly longer latency (66 vs. 59
days; p-value > 0.05). There were no site-specific differences
in the teratoma composition at the histological level (Fig. 1C).
Interestingly, when iPSCs were transplanted the rate of tera-
toma formation was 100% (n ¼ 16 mice), regardless the type of
injection. More importantly, iPSCs seem more aggressive in
vivo as the latency was shortened 52% (from 59 days to
31 days) upon subcutaneous injection and 26% (from 66 days
to 49 days) upon intratesticular injection. As with hESCs, no
differences in teratoma composition were observed either.

To the best of our knowledge, this is the first study compar-
ing side-by-side the efficiency, latency, and teratoma composi-
tion between hESCs and iPSCs. We found clear differences in
the efficiency and latency but not in the teratoma histological
composition. Further experiments are still demanded to gain
insights into the higher aggressiveness in vivo of iPSCs as com-
pared with hESCs. Ploidy, analyzed by conventional G-banding
karyotype, could not explained these differences because all but
two pluripotent stem cell lines were euploid: the aneuploid lines
were one hESC (AND1) and one iPSC (iAND4). It is worth
emphasizing, however, that karyotype analysis is not a high-re-
solution technique detecting fine genomic aberrations, with a
euploid karyotype not being therefore indicative of an overall
cellular genomic stability. Whether or not specific tiny genomic
insults (detectable by high-resolution methods such as compar-
ative genomic hybridazation (CGH)-arrays and single-nucleo-
tide polymorphism analysis) or epigenetic differences may
explain the higher aggressiveness in vivo of iPSCs still needs to
be elucidated. We envision that these data may be useful not
only for stem cells scientists addressing pluripotency issues and
studying mechanisms underlying specific germ-layer/tissue
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differentiation but also for cancer researchers developing in
vivo models for germ cell tumors.
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