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Abstract: In this paper, we introduce an in-depth application of high-resolution disparity map
estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers
with different resolutions. The left Mastcam has three times lower resolution as that of the right.
The left Mastcam image’s resolution is first enhanced with three methods: Bicubic interpolation,
pansharpening-based method, and a deep learning super resolution method. The enhanced left
camera image and the right camera image are then used to estimate the disparity map. The impact of
the left camera image enhancement is examined. The comparative performance analyses showed that
the left camera enhancement results in getting more accurate disparity maps in comparison to using
the original left Mastcam images for disparity map estimation. The deep learning-based method
provided the best performance among the three for both image enhancement and disparity map
estimation accuracy. A high-resolution disparity map, which is the result of the left camera image
enhancement, is anticipated to improve the conducted science products in the Mastcam imagery such
as 3D scene reconstructions, depth maps, and anaglyph images.
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1. Introduction

Due to hardware limitation in data storage, scarce bandwidth in data downlink and cost of sensor,
different imagers have chosen to have different priorities with respect to image resolution. As an
example, onboard the Mars rover Curiosity, there are two mast cameras (Mastcam), which act as
eyes for the rover [1]. The Mastcams have different spatial resolutions and is a perfect example for
demonstrating the fusion of two images with different resolutions. The left Mastcam has three times
wider field of view than that of the right. However, the right Mastcam has three times better resolution.
Although the two cameras work independently, stereo images can still be formed from them for the
Mastcam image pairs that have overlapping views [2].

There are several research papers that discuss about using Mastcams for anomaly detection, rock
composition estimation, classification and finding interesting destinations for the rover. In [3], the right
and left Mastcam band images which have different wavelengths have been registered, and the stacked
and co-registered bands are used for anomaly detection. In [4], both the left and right Mastcams images
are used to generate a set of multispectral signatures for a few selected pixel locations, and these
multispectral signatures are used to investigate the composition and mineralogy of materials. There is
also a growing interest in adapting augmented and virtual reality tools to Mars rover missions [5–7].
As an example, NASA and Microsoft have developed a software called OnSight that enable scientists
to work virtually on Mars using wearable technology called the Microsoft HoloLens [8]. The OnSight
software uses imagery acquired by the Curiosity rover and creates a 3D model of the Mars terrain.
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This enables the users and scientists to explore the actual dunes and valleys explored by the rover
in 3D creating the feeling for scientists as if they are in the field. The 3D scene reconstruction using
rover imagery including Mastcam stereo images can thus have both an educational and scientific
impact for current and future Mars exploratory missions. The disparity maps are important since they
provide depth information from the 2D stereo images. In recent years, disparity map estimation using
monocular images was also studied in a number of works [9–11]. In these works, the objective is to
estimate the disparity map from a single-color image only using deep learning architectures. This is a
more challenging research problem in comparison to estimating disparity maps from stereo image
pairs since there is a single image instead of an image pair to estimate the disparity map. Disparity
maps are utilized in 3D reconstruction, robot navigation, obstacle avoidance, and target tracking. Due
to the differences in image resolutions of the Mastcam images, a generic disparity map estimation
using the original Mastcam images may not result in full utilization of the high-resolution image that is
available only in the right Mastcam but is dependent on the low-resolution left camera image. A more
accurate and detailed 3D scene reconstruction could be possible if a high-resolution disparity map
is available.

In this paper, we introduce an in-depth application of image resolution enhancement to the
low-resolution left camera image in the Mastcam image pair and evaluate the impact of the left camera
image enhancement on the disparity map estimation quantitatively. The motivation of this work is to
have a disparity map in higher resolution than before by enhancing the low-resolution image in the
image pair and estimating the disparity map using this enhanced left image and the high-resolution
right image. To the best of our knowledge, even though stereo images had been generated using the
Mastcam instruments [12], examining the impact of the image enhancement on the disparity map
estimations has not been studied and we consider this paper as a first along this direction.

For the low-resolution left camera image enhancement, we used the bicubic interpolation [13] as
the benchmark technique. A second investigated image enhancement method [2,12] is an adaptation of
the two-step image registration technique in [3] with pansharpening [14–18]. We will call this method
the pansharpening-based image enhancement method in this paper. Unlike bicubic interpolation, the
pansharpening-based image enhancement method requires the stereo image pair for enhancement.
In recent years, a significant amount of research work had been published using deep learning-based
image super resolution techniques [19–21]. For the third investigated enhancement method, we used a
deep-learning based method, which is known as enhanced deep super resolution (EDSR) [22]. After
the left camera image enhancements with these three methods, the disparity maps are estimated using
the enhanced left camera images and the impact of the left camera image enhancement on the disparity
map estimations are examined quantitatively.

This work demonstrates that a high-resolution disparity map estimation is possible for stereo
image pairs with different camera resolutions such as the case in Mars Curiosity rover’s Mastcams.
This is the main contribution of this work. It is shown that this can be achieved by enhancing the
low-resolution left camera image. The right camera image content is utilized for enhancement with the
pansharpening-based method and EDSR. For the demonstrations, 20 Mastcam stereo image pairs and
a stereo image pair from the Middlebury dataset were used. Among the three investigated methods,
overall, the deep learning-based method, EDSR, is found to perform better than others in the image
enhancement and in accurate disparity map estimation performance. The extensive comparison study
using actual Mastcam imagery in this paper is considered as another contribution of this work.

In Section 2, a brief information is provided about the Mastcam instruments of the Curiosity rover
and the different resolutions of the left and right Mastcams. In Section 3, we introduce the three image
enhancement methods. In Section 4, the disparity map estimation processing steps applied in this
work are outlined. Section 5 summarizes the low-resolution image enhancement and disparity map
estimation results and observations for a Middlebury stereo image pair [23]. Section 6 corresponds to
the results and analyses when 20 Mastcam image pairs from the Mars Curiosity rover were used for
the left camera image enhancement and disparity estimation using the enhanced left camera images.



Sensors 2019, 19, 3526 3 of 26

A total of six different image quality measures and an average absolute error measure for disparity map
assessment are used in the performance comparisons of the three methods. Some practical issues such
as the impact of image registration on the disparity map estimates of the pansharpening-based method
are discussed in this section as well. Finally, some concluding remarks are highlighted in Section 7.

2. Mastcam Imagery for High Resolution Stereo Image and Disparity Map Generation

The two Mastcams of Curiosity are shown in Figure 1. There are several other imagers for
navigation, landing (MARDI), obstacle avoidance (Hazcams and Navcams), chemical composition
analysis (Chemcam). The left Mastcam imager has three times lower resolution than that of the
right. The left is usually used for long range image acquisition and the right camera is for near field
data collection.

Figure 1. Mars rover Curiosity and its onboard cameras [24]. Mastcam imagers act as eyes of the rover
for rock sample selection and rover guidance.

The Mastcams are multispectral imagers with nine bands in each. Here, we only focus on the
use of the RGB bands for stereo image and disparity map generations. The left and right cameras of
the Mastcam imager have different resolutions. Moreover, the cameras are not calibrated for stereo
image formation, as they normally work independent of each other. To generate stereo images from
these two cameras with different resolutions, a common practice is to downsample the high-resolution
right camera image to the same as the lower one. After that, the stereo images are formed by
following some standard procedures. It is well known that the downsampling of the high-resolution
camera image is more economical but less effective, as the resulting stereo images will have lower
resolution. The resulting disparity map derived from the resulting stereo images also has a low
resolution. The motivation of this work is to improve the disparity map estimation by enhancing the
low-resolution image and then estimating the disparity map using the enhanced left camera image
and the right camera image.

3. Image Enhancement Methods

We briefly introduce the three image enhancement methods applied to enhance the low-resolution
left camera image in this work. These three methods are:

• Bicubic interpolation [13];
• Pansharpening-based method [2,12];
• EDSR (Deep-learning based image super resolution method) [22].
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3.1. Bicubic Interpolation

Bicubic interpolation is provided as an image resizing tool in image editing programs like
Photoshop [25]. In image resizing with bicubic interpolation, the color information of the to-be inserted
pixels is approximated using the values of the surrounding pixels, which is the 4x4 neighborhood
of the pixel. In the approximation, closer pixels are given a higher weighting. Even though bicubic
interpolation preserves fine detail and sharpness better than the bilinear interpolation algorithm,
it might create image artifacts like blurring or zigzag on edges [26]. Bicubic interpolation is used as the
benchmark method in this paper. One can refer to [13] for other technical details of bicubic interpolation.

3.2. Pansharpening-Based Image Enhancement Method

The pansharpening-based image enhancement method [2,12], of which its block diagram can be
seen in Figure 2, is the adaptation of the two-step image registration technique [3] with pansharpening.
Pansharpening is the common name given to the process of merging high-resolution panchromatic and
lower resolution color images to create a high-resolution color image. In the pansharpening-based image
enhancement method, the right camera image is aligned to the upsampled left camera image using
the two-step image registration technique [3]. The block diagram of the two-step image registration
technique can be seen in Figure 3. The first step of the two-step image registration technique is a coarse
alignment of the right camera image to the upsampled left camera image using the RANSAC (Random
Sample Consensus) technique [27] with speeded up robust features (SURF) [28] extracted from the
stereo image pair. SURF features are scale and rotation invariant interest points and extensively used
to find correspondences in image pairs with the same scene [28]. The second step of the two-step
image registration technique [3], which is known as diffeomorphic registration, fine-tunes the first
step’s coarse registration.

Figure 2. Block diagram of the pansharpening-based image enhancement method.
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Figure 3. Block diagram of the two-step image registration technique [3].

The aligned right camera image from the diffeomorphic registration step of the two-step image
registration technique becomes the high-resolution panchromatic (pan) image and it is used to
enhance the low-resolution left camera image using the Gram–Schmidt Adaptive (GSA) pansharpening
technique [29]. Different from [2,12], in this work, a histogram matching processing step [30] is
incorporated to the pansharpening-based image enhancement method to match the histogram of the
pansharpened left camera image to the histogram of the low-resolution left camera image as can be
seen in the block diagram in Figure 2. It is observed that this step improves the scores of some of the
image quality measures such as peak signal to noise ratio (PSNR) and root mean Square error (RMSE).

3.3. EDSR (Deep Learning-Based Super Resolution Method)

In recent years, image super resolution using deep neural networks, also known as deep learning,
has gained a lot of attention [19–22]. Through extensive training with many images, deep learning
can achieve good performance. One advantage of deep learning methods is that, once the model is
learned, it can be used to enhance a given low resolution image without a panchromatic band. EDSR is
one of these deep-learning methods which gained reputation by winning the 2017 super resolution
challenge [22]. The deep learning network architecture in EDSR has similarities with the conventional
ResNet architecture. However, some common ResNet architecture modules, which are deemed as
unnecessary by the authors, are removed from the EDSR architecture [22]. The EDSR architecture
(single scale baseline) can be seen in Figure 4a. The body of the EDSR architecture consists of several
residual blocks (ResBlock). A single residual block architecture can be seen in Figure 4b.

Figure 4. Single scale EDSR architecture and a residual block in EDSR [22].
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The single-scale baseline EDSR architecture is used in this work. The components of the EDSR
baseline architecture and the parameters for these components can be seen in detail in Table 1. A total
of 16 residual blocks and 64 feature maps are used in the baseline EDSR architecture.

Table 1. Components of the single-scale baseline EDSR architecture.

Head: Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

)
Body: 16 x ResBlock
ResBlock(

(body): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

)
)
Tail: Sequential(

(0): Upsampler ( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): PixelShuffle(upscale_factor=2))

(1): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

When training an EDSR model for Mastcam images, the corresponding high-resolution right
camera images of the test images (low-resolution left camera images) are used in the training dataset.
The down-sampled high-resolution right camera images at the image resolution scale of interest, which
is two (×2), are used in training a model as well. Once the EDSR model is trained, the testing is
straightforward by feeding the test low-resolution left camera image into the deep learning network
with the trained EDSR model. The simplified block diagram of the processing steps of EDSR is shown
in Figure 5.

Figure 5. Processing steps of EDSR (training and testing).

4. Disparity Map Estimation

In this section, we outline the processing steps to estimate the disparity map using the enhanced
left camera image and the right camera image. A block diagram of the disparity map estimation
processing steps can be seen in Figure 6. A disparity map, which is used for depth detection, consists
of the distance information between the matched points in the stereo image pair. Overall, the disparity
map can be thought of an intensity image with brighter pixels in the map denoting lesser depth and
greater distance (or motion) between the matched points with respect to the brighter pixel area in
the stereo image pair. Darker pixels in the disparity map correspond to greater depth and smaller
distance (or motion) between the matched points with respect to the darker pixels area. In the disparity
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map estimation, for each point in the left image, the corresponding point in the right image is found.
This is a challenging task and known as the correspondence problem [31]. In this work, to estimate the
disparity map, an image rectification process is applied on the enhanced left camera image and the
right camera image. Matching between the points can be done more efficiently in accurately rectified
image pair since the matching becomes a one-dimensional search after rectification [31]. The image
rectification process consists of a number of processing steps, one of which is the fundamental matrix
estimation. The fundamental matrix is necessary for the rectification transformations. For fundamental
matrix estimation, SURF features [28] are extracted from the stereo image pair and the extracted SURF
features from each image are matched. The SURF feature pairs that do not meet the epipolar constraint
are removed from the fundamental matrix estimation. In a stereo image pair, for each point in one of
the stereo images, there is a corresponding epipolar line in the other image. Suppose x is a point in
the stereo image of the first camera, for this point, the epipolar line in the second stereo image can be
considered as the projection of the ray from point x to the center of the first camera to the second camera
image. Any point x’ in the second stereo image that matches to the first camera image must be on this
epipolar line [32] and this is the epipolar constraint. The mapping from points in one stereo image
to the epipolar lines in the second stereo image is represented by the fundamental matrix [32]. After
transformation with the fundamental matrix, the resultant rectified left and right camera images are
used to the estimate the disparity map. In the disparity map estimation, the semi-global block matching
method [33] is applied to the rectified image pair. This method computes disparity by comparing the
sum of absolute differences (SAD) of each block of pixels in the image while also checking similar
disparity on the neighboring blocks [33].

Figure 6. Processing steps of the disparity map estimation.

5. Results and Analyses for a Middlebury Stereo Image Pair

The low-resolution camera image enhancement and disparity map estimation are first
demonstrated using an image section from the motorcycle image pair in the Middlebury stereo
dataset [23]. The technical specifications of the cameras used for capturing of the motorcycle image
pair can be found in [23]. This image pair is used to show that a high-resolution disparity map can be
estimated for a hypothetical case in which one of the stereo camera images has lower resolution than
the other camera image in the pair.
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5.1. Low-Resolution Left Camera Image Enhancements

To imitate the different resolution stereo image pair scenario in the Middlebury motorcycle stereo
image pair, the original left camera image is intentionally down-sampled four times (×4) and this
down-sampled image is used for image enhancement with the three methods. It is worth mentioning
that since the left and right camera images in the Middlebury stereo image pair are already rectified, no
rectification process is applied and the disparity map is estimated directly from the stereo image pair.
For the EDSR model training, no custom EDSR model is trained and the authors’ baseline training
model for a scale of four (×4) [22] is used.

The high resolution left and right camera images of the motorcycle image pair are shown in
Figure 7a,b, respectively. Figure 7c shows the hypothetical low-resolution left camera image (which is
the four times down-sampled version of the original high-resolution left camera image). An expanded
right camera image is shown in Figure 7d which is used by the pansharpening-based image enhancement
method when aligning the right camera image to the left camera image. Figure 7e–g show the resultant
left camera image enhancements with the three methods. According to the results in Figure 7, the
enhanced left camera image by EDSR is found to be visually quite appealing. For assessing the image
quality of the enhanced left camera images with the three methods, we applied five image quality
measures. These are root mean square error (RMSE), structural similarity index measure (SSIM) [34],
peak signal to noise ratio (PSNR), human visual system (HVS) [35] and human visual system with
contrast sensitivity function and noise masking (HVSm) [36].

Figure 7. Cont.
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Figure 7. A section of the motorcycle stereo image pair and the enhanced left camera images with the
three methods.

When computing the image quality measures, we used the original high-resolution left camera
image as the reference (ground truth) image. The grayscale versions of the images are used when
computing SSIM and RMSE scores. Table 2 summarizes the resultant five measures for the three
methods. It is worth mentioning that higher values in SSIM, PSNR, HVS, and HVSm, and lower values
in RMSE correspond to better image quality. The results in Table 2 clearly show that EDSR provides
the best enhancement performance in all five measures followed by the pansharpening-based method.
Bicubic interpolation performs the worst among the three.

Table 2. Performance metrics for the enhanced left camera images with the ground truth left camera
image as the reference image (the grayscale versions of the images are used in computing SSIM and
RMSE). Bold format indicates the method providing better results.

Method SSIM RMSE PSNR HVS HVSm

Bicubic interpolation 0.8844 9.3966 28.6328 23.2014 24.6190

Pansharpening-based method 0.9215 7.7628 30.2594 25.9768 27.0790

EDSR (Deep learning-based) 0.9443 5.8523 32.6983 28.2295 30.5052

5.2. Disparity Map Estimation

After generating the enhanced left camera images with the three methods, the disparity maps
are estimated using the enhanced left camera images and the original right camera image. Figure 8a
corresponds to the disparity map obtained by using the original left camera image. We use this
disparity map as the ground truth disparity map when conducting performance assessments.
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Figure 8. Disparity map estimations with the three methods and the mask for computing average
absolute error.

For comparing the disparity map estimation performances, an “average absolute error” measure
is used to compare the accuracy of the estimated disparity maps of the three methods with respect to
the ground truth disparity map. The ground truth disparity map is obtained using the original left and
right camera images. Suppose

{
g1, g2, . . . , gN

}
is the set of ground truth disparity map pixel values that

are used for performance assessment of the three methods where N is the total number of pixels in
D. The location of the pixels in

{
g1, g2, . . . , gN

}
correspond to the overlapping area of the compared

disparity maps from the three different image enhancement methods. Suppose {b1, b2, . . . , bN} is the set
of the corresponding N disparity map pixel estimates for the applied method B. The "average absolute

error” for method B is computed as:
(

N∑
i=1

abs(gi − bi)

)
/N.
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Figure 8b–d show the resultant disparity maps for the three methods. Additionally, in Figure 8e
the mask used for computing the average absolute error in the disparity maps is shown. Only the
pixels highlighted in this mask are used in the average absolute error computation. Since the left and
right camera images have different views, the overlapping scene from the left and right camera images,
thus the disparity map, is smaller than the original size of the enhanced left camera image. When the
disparity maps from the three methods are visually examined, it can be noticed that the bottom part of
the pansharpening-based method’s estimation quite differs from the ground truth disparity map.

Table 3 shows the resultant average absolute error values for the disparity map estimations with
the three methods. The average absolute error is found to be the lowest for EDSR. It is noticed that
the average absolute error for the pansharpening-based method is significantly high (meaning it is
worse) when compared to the other two methods. This was also visually noticed from the disparity
map estimation plot in Figure 8c.

Table 3. Average absolute error on disparity maps for motorcycle image section (pixels that have
negative values in the ground truth disparity map are excluded from the analysis, pixels with negative
values in the estimated disparity maps are set to zero). Bold format indicates the method providing
better results.

Average Absolute Error

Bicubic interpolation 8.7456

Pansharpening-based method 17.5770

EDSR (Deep learning-based method) 5.1492

To better visualize the differences in the estimated disparity maps of the three methods with
respect to the ground truth disparity map and see how the errors relate to the scene, we generated
four plots as shown in Figure 9. Figure 9a shows the left camera image for the considered overlapping
disparity map pixels. Figure 9b–d show the absolute disparity map difference between the ground
truth disparity map and the disparity map obtained with using any of the three investigated methods.
When the ground truth disparity map and the disparity map estimated by the pansharpening-based
method are compared (Figure 9b vs Figure 9c), some significant differences can be observed in the
bottom part. When the motorcycle image section that corresponds to the disparity map area, which can
be seen in Figure 9a, is examined, it can be seen that the bottom part corresponds to the background
section of the image. Due to camera view differences in the left and right images for the background
area, the pixel registration performance of the two-step image registration technique used within
the pansharpening-based method is poor for the background section and is relatively better in the
foreground section of the image. We repeated the image quality score and average absolute error for
disparity map estimation computations for the foreground part of the image only. This image part
can be seen in Figure 10. Table 4 shows the five image quality measure values and Table 5 shows
the average absolute error values for the disparity map estimation with the three methods for the
foreground image section. As can be seen in Table 5, the average absolute error for the disparity map
estimation with the pansharpening-based method is quite low for the foreground image section. Even
though the pansharpening-based method still cannot outperform EDSR, it performs better than the
bicubic interpolation both in the left camera image enhancement scores and also in the disparity map
estimation when the foreground image is used only.
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Figure 9. Absolute disparity map differences between the ground truth disparity map and the disparity
maps obtained with the three methods and the corresponding left camera image for the overlapping
disparity map area.
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Figure 10. Foreground image section of the motorcycle image.

Table 4. Image quality measures for the foreground image part of the enhanced left camera images.
Bold format indicates the method providing better results.

Method SSIM RMSE PSNR HVS HVSm

Bicubic interpolation 0.8600 10.6346 27.5653 22.1325 23.5467

Pansharpening-based method 0.9332 7.5230 30.5221 26.2792 27.7185

EDSR (Deep learning-based) 0.9343 6.6221 31.6408 27.1654 29.4234

Table 5. Average absolute error on disparity maps for the foreground image part of the motorcycle
image section. Bold format indicates the method providing better results.

Method Average Absolute Error

Bicubic interpolation 6.0159

Pansharpening-based method 3.2810

EDSR (Deep learning-based method) 3.2040

6. Results and Analyses for Mastcam Stereo Image Pairs

6.1. Original Left Mastcam Image Enhancements

We enhanced the 20 original low resolution (LR) left camera images with the three methods.
The list of the Mastcam image pairs used in this study can be seen in Table 6. These Mastcam image
pairs can be downloaded from the website in [37] and the Mastcam specifications used for capturing
these images can be found in [38].

For EDSR, a custom EDSR baseline model (×2 scale) with 16 residual blocks was trained for
300 epochs. The 20 training images included in the training data set correspond to the high-resolution
right camera images of the 20 low-resolution left camera images that are going to be enhanced. The loss
plot from the EDSR training can be seen in Figure 11.
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Table 6. List of 20 Mastcam image pairs used.

Mastcam Image Pair no Left Camera Image Filename Right Camera Image Filename

1 0013ML0000120000100169E01_DRCX_0PCT.png 0013MR0000120000100039E01_DRCX_0PCT.png

2 0013ML0000120070100176E01_DRCX_0PCT.png 0013MR0000120070100046E01_DRCX_0PCT.png

3 0023ML0001140700100703C00_DRCX_0PCT.png 0023MR0001140700100600C00_DRCX_0PCT.png

4 0150ML0008420000104432E01_DRCX_0PCT.png 0150MR0008420000201218E01_DRCX_0PCT.png

5 0172ML0009240020104881E01_DRCX_0PCT.png 0172MR0009240020201683E01_DRCX_0PCT.png

6 0174ML0009350000105177E01_DRCX_0PCT.png 0174MR0009350070201948E01_DRCX_0PCT.png

7 0183ML0009930000105284E01_DRCX_0PCT.png 0183MR0009930070202041E01_DRCX_0PCT.png

8 0184ML0009250350105335E01_DRCX_0PCT.png 0184MR0009250350202097E01_DRCX_0PCT.png

9 0192ML0010170000105681E01_DRCX_0PCT.png 0192MR0010170000202484E01_DRCX_0PCT.png

10 0269ML0011810000106129E01_DRCX_0PCT.png 0269MR0011810000203215E01_DRCX_0PCT.png

11 0275ML0011960010106210E01_DRCX_0PCT.png 0275MR0011960010203447E01_DRCX_0PCT.png

12 0290ML0012250030106375E01_DRCX_0PCT.png 0290MR0012250030203531E01_DRCX_0PCT.png

13 0300ML0012410000106432E01_DRCX_0PCT.png 0300MR0012410000203739E01_DRCX_0PCT.png

14 0301ML0012530020106447E01_DRCX_0PCT.png 0301MR0012530020203760E01_DRCX_0PCT.png

15 0303ML0012610000106474E01_DRCX_0PCT.png 0303MR0012610000203818E01_DRCX_0PCT.png

16 0308ML0012730400106645E01_DRCX_0PCT.png 0308MR0012730400204006E01_DRCX_0PCT.png

17 0508ML0020000260202787E01_DRCX_0PCT.png 0508MR0020000260303151E01_DRCX_0PCT.png

18 0514ML0020280000202963E01_DRCX_0PCT.png 0514MR0020280000303241E01_DRCX_0PCT.png

19 0803ML0035130050400877E01_DRCX_0PCT.png 0803MR0035130050500252E01_DRCX_0PCT.png

20 0813ML0035700050401024E01_DRCX_0PCT.png 0813MR0035700050500419E01_DRCX_0PCT.png
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Figure 11. The loss plot of the training for 300 epochs.

Figures 12–14 show some cropped sections of three of the 20 left camera images (low resolution)
and the resultant bicubic-enhanced, pansharpening-enhanced and EDSR-enhanced left camera images
for the same image sections. Considerable improvements in the image quality can be noticed with the
EDSR and especially with the pansharpening-based method when examined closely.

Figure 12. Image enhancements on 0174ML0009350000105177E01_DRCX_0PCT.png.
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Figure 13. Image enhancements on 0803ML0035130050400877E01_DRCX_0PCT.png.

Figure 14. Cont.
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Figure 14. Image enhancements on 0183ML0009930000105284E01_DRCX_0PCT.png.

Since the original left camera images in the 20 Mastcam image pairs are enhanced, there are no
ground truth images to assess these enhanced images by the three methods. For this reason, a blind
image quality assessment, natural image quality evaluator (NIQE) [39] is used instead. It should be
noted that the lower the NIQE metric, the better the image quality is. Figure 15 shows the resultant
NIQE values of the three investigated methods for the 20 enhanced original Mastcam left camera
images. Additionally, in Figure 15, the NIQE scores of the original left camera images are included
as well as a basis. According to the NIQE results in Figure 15, the pansharpening-based method
outperforms the two methods and EDSR performs better than the bicubic interpolation. Moreover,
the enhanced original left camera images by the pansharpening-based method yield significantly
better NIQE scores than the original left camera images. This can also be visually noticed from the
cropped image sections in the three image pairs in Figures 12–14. The pansharpening-based method
generates visually more appealing images than the other methods. The third image in the plot in
Figure 15 is quite interesting in the sense that the NIQE score difference between the original left
camera image and the enhanced original left camera image by the pansharpening-based method is
the largest. Figure 16 corresponds to a small section of this third image and its enhanced versions by
the three methods. It can be seen that some small rocks which cannot be even noticed in the original
left camera image can be easily seen in the enhanced left camera image by the pansharpening-based
method. The pansharpening-based method in a way brings new information to the enhanced image
since it exploits the aligned high-resolution right camera image in its enhancement. This explains why
the NIQE scores are extremely good with the pansharpening-based method.
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Figure 15. Natural image quality evaluator (NIQE) metric results for enhanced “original left
Mastcam images” (scale: ×2) by the bicubic interpolation, pansharpening-based method, and EDSR
(nresblocks = 16).
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It is however worth mentioning that even though the pansharpening-based method provides the
lowest NIQE values (best performance) and provides visually very appealing enhanced images, it is
noticed that some pixel regions in the enhanced images do not seem to be registered in the sub-pixel
level. Since the NIQE metric does not take into consideration issues related to registration in its
assessment, it clearly favors the pansharpening-based method over others.
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6.2. Disparity Map Estimation Using Enhanced Downsampled Left Mastcam Images

Similar to the investigation with the motorcycle image pair, the left camera images in the 20
Mastcam image pairs are intentionally down-sampled by two times (×2) and the down-sampled left
camera images are enhanced with the three methods and the disparity maps are estimated using the
enhanced left camera images and right camera images. This enabled assessing the image enhancement
performances with image quality measures such as PSNR, RMSE since the original left camera images
are used as the ground truth image. Moreover, the disparity map estimation performances are also
evaluated since the disparity map which is estimated using the original left camera image is considered
as the ground truth disparity map.

Regarding the EDSR method in this investigation, we fine-tuned its architecture with respect to
the number of residual blocks to see which EDSR architecture would perform better. We considered
the number of residual blocks for fine-tuning since the residual blocks make the most crucial parts in
EDSR’s architecture. We trained three other EDSR models with four, eight and 32 residual blocks for
scale two (×2). We used the same 20 high resolution right Mastcam images in training these EDSR
models for 300 epochs. With the previously trained EDSR model of 16 residual blocks, there is a total
of four different EDSR models. We enhanced the “down-sampled (×2) left camera images” with these
four EDSR models. We then applied five image quality measures to the 20 enhanced images from
four EDSR models. Table 7 shows the average of the image quality measures for the 20 enhanced
“down-sampled (×2) left” camera images with the four EDSR models. It can be seen from Table 7 that
among the four EDSR models, the one with eight residual blocks performs better than the other three
EDSR models. For this reason, we used the model with eight residual blocks when using EDSR for
enhancing the down-sampled left camera images.

Table 7. Average of image quality measures for 20 enhanced “down-sampled (×2) left” camera images
with four EDSR models. Bold format indicates the method providing better results.

EDSR Model
(n_resblocks = 4)

EDSR Model
(n_resblocks = 8)

EDSR Model
(n_resblocks = 16)

EDSR Model
(n_resblocks = 32)

SSIM 0.90674 0.908093 0.902667 0.901051

RMSE 5.670515 5.632352 5.842843 5.898821

PSNR 32.75032 32.79714 32.51517 32.42496

HVS 35.16401 35.21195 34.80805 34.75265

HVSm 42.06746 42.14309 41.29008 41.22219

In the disparity map estimation investigation, we first used the 20 original left camera images to
generate ground truth disparity maps that will be used in performance comparisons with the average
absolute error measure. We then intentionally down-sampled the original left camera images by a
scale of two (×2) and applied the bicubic interpolation, pansharpening-based method, and EDSR
(nresblock = 8) to enhance these downsampled left camera images. We then estimated the disparity
maps using these enhanced downsampled left camera images and the right camera images.

The rectification process in the disparity map estimation changes the view of the rectified
stereo images and each rectification by the three methods could have a slightly different geometric
transformation. The view of the rectified images could thus vary for each of the three investigated
methods and the groundtruth case. As a result of of registration issues in the pansharpening-based
method, the variation in the view of the rectified images is even greater in the pansharpening-based
method with respect to the other two methods. In order to have a fixed view that align the estimated
disparity maps and also allow to conduct performance comparisons, the estimated disparity maps
using the rectified images are warped to the left camera image view using the inverse rectification
transformation matrix that was initially applied in the rectification process. The overlapping sections
in the warped disparity maps (from the three methods and the groundtruth) to the left camera image
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view are considered as a mask and the pixels in this mask are used only to compute the average
absolute error measure for the disparity map.

Since the two-step image registration in the pansharpening-based method utilizes the random
sample consensus (RANSAC) algorithm [27], each simulation run with the pansharpening-based
method could generate slightly different results. To reduce the effects of this slight variation when
assessing the applied measures, for each of the 20 Mastcam image pairs, we repeated the simulations
10 times and averaged the image quality scores and the average absolute errors (disparity map) with
the pansharpening-based method. As a demonstration of the enhancements with the three methods,
Figure 17a,b show the original left and right Mastcam images for one of the 20 investigated image pairs
(Mastcam image pair 6). Figure 17c corresponds to the test image (down-sampled left camera image)
which is going to be enhanced with the three methods and Figure 17d–f correspond to the enhanced
left camera images with the three methods.

Figure 17. Mastcam image pair 6 (Sol 174) and the left camera image enhancements with the
three methods.
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SSIM, RMSE, PSNR, HVS and HVSm values are computed for measuring the image quality of
the enhanced “down-sampled left Mastcam images” with respect to the ground truth left camera
image. Additionally, the NIQE measure is also applied. The plots of the six image quality values
for 20 enhanced “downsampled Mastcam left camera images” can be seen in Figure 18. Overall,
EDSR performs better than the other two methods in five of the six measures with the exception of
NIQE. One interesting observation is that with SSIM, there are three image pairs (out of 20) where the
pansharpening-based method performed better than EDSR. As was earlier noticed in the motorcycle
image pair, the pansharpening-based method’s performance is affected due to some image pixel sections
not aligned well with the two-step registration technique. We also notice this from the low scores in the
HVS and HVSm measures. Other than the registration issues with the pansharpening-based method
that affect some of these image quality measures negatively (except NIQE), it is also worth mentioning
that because the original left camera images are used as the ground truth when computing the image
quality measures and that the pansharpening-based method contains more detailed information in its
enhanced left camera images which cannot be even visually noticed in the ground truth image (original
left camera image), some of the applied image quality scores (except NIQE) for the pansharpening-based
method look generally poor. Yet, in several of the image pairs, the RMSE and PSNR scores of the
pansharpening-based method are still slightly better than the bicubic interpolation. With respect to the
NIQE measure, the pansharpening-based method outperforms the other two significantly. This was
predictable since the enhanced left camera images with the pansharpening-based method are more
appealing to the eye with sharper details when compared to the EDSR and bicubic interpolation.
This can be seen from the example images in Figures 12–14, and also in Figure 16.

Figure 18. Cont.
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Figure 18. Enhancement comparisons with six image quality measures for the 20 Mastcam image pairs.

Figure 19 demonstrates the disparity map estimations with the three methods for one of the 20
Mastcam image pairs (Image pair 6). Figure 19a corresponds to the estimated disparity map obtained
with using the original left camera image which is considered as the ground truth disparity map in the
first iteration. Figure 19b–d show the resultant disparity maps with the three methods. Figure 19e
corresponds to the mask used when computing the average absolute error values. In order to give an
idea about the number of matched SURF features in Figure 19, Table 8 shows the number of matched
SURF features used in the disparity map estimation for this image pair.

Figure 19. Cont.
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Figure 19. Disparity map estimations with the three methods and the mask for computing average
absolute error.

Table 8. Number of matching SURF features used in the disparity map estimation.

Mastcam Image
Pair no Groundtruth Bicubic

Interpolation Pansharpening-Based EDSR
(nresblocks = 8)

1 49 46 44 36

2 201 154 177 134

3 79 58 69 44

4 117 107 114 102

5 200 162 197 159

6 90 70 86 73

7 80 71 82 33

8 223 177 204 176

9 155 119 159 117

10 89 71 81 61

11 97 81 88 68

12 76 75 77 54

13 229 165 188 172

14 176 142 173 139

15 238 179 215 165

16 134 115 126 100

17 344 269 327 277

18 188 147 176 140

19 114 104 114 109

20 116 108 114 98

Figure 20 shows the average absolute error value plots for the disparity map estimates of the 20
Mastcam image pairs with the three methods. Among the three methods, the average absolute error
value is lowest for the EDSR and the average absolute error values were found considerably higher for
the pansharpening-based method. In only one image pair (out of 20) the pansharpening-based method
provided the lowest average absolute error value. It can be seen that overall EDSR improves the left
camera image quality better than the other two methods and the disparity map estimations using the
EDSR enhanced left camera images are also better according to the average absolute error measure (in
19 of 20 Mastcam image pair EDSR performed better than the other two methods). EDSR works better
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than the other two methods since it does not have registration issues that the pansharpening method
has and also does not have the blurring issues that the bicubic interpolation method has. From the
viewpoint of its architecture, it is also based on ResNet with residual blocks in its architecture. Deep
learning architectures with residual blocks when compared to other architectures are found to show
better generalization and better efficiency [40]. All these attributes of EDSR positively affect the SURF
feature extraction process in the disparity map estimation and enables finding SURF features in the
enhanced left camera image that match better to the SURF features extracted in the right camera images.
However, it is our thinking that if the pansharpening-based method had sub-pixel level registration
for the whole image, it was highly likely that it would have performed better than EDSR since the
enhanced left camera images by the pansharpening-based method look visually superior to the EDSR
enhanced images.

Figure 20. Average absolute errors for 20 Mastcam image pairs.

7. Conclusions

This paper introduced an in-depth study for the high-resolution disparity map estimation using
the stereo Mastcam images with different resolutions acquired from the right and left Mastcam imagers
of the Mars Curiosity rover. Among the three investigated methods, it is observed that the deep
learning-based method, EDSR, had a better image resolution enhancement performance than the
pansharpening-based method and bicubic interpolation. The impact of the low-resolution image
enhancement on the disparity map estimation is examined and it is found out that a high resolution
thus a more accurate disparity map estimation could be obtained after enhancing the low-resolution left
camera image with EDSR. The pansharpening-based method, which is an adaptation of the two-step
image registration technique, is observed to provide visually very appealing images as this was
also confirmed quantitatively from the resultant NIQE measures. However, the performance of the
pansharpening-based method heavily depends on the registration accuracy of the stereo images, which
can be difficult when the image scene in the stereo image pair has varying depth of field. Other than
improving the quality of the stereo products and 3D scene reconstruction in the Mastcam imagery,
this work can also benefit to cellphones with dual cameras. Enhancing the low-resolution camera
image in a dual camera cellphone setup can certainly result in better quality 3D cell phone imagery
while reducing the cost of the cellphone. That is, instead of using two sophisticated cellphone cameras,
the cellphone manufacturers can use only one high-resolution camera while enhancing the cheaper
low-resolution cellphone camera via image enhancement.
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