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Abstract: High-throughput and large-scale measurements of chlorophyll a fluorescence (ChlF)
are of great interest to investigate the photosynthetic performance of plants in the field.
Here, we tested the capability to rapidly, precisely, and simultaneously estimate the number
of pulse-amplitude-modulation ChlF parameters commonly calculated from both dark- and
light-adapted leaves (an operation which usually takes tens of minutes) from the reflectance of
hyperspectral data collected on light-adapted leaves of date palm seedlings chronically exposed in
a FACE facility to three ozone (O3) concentrations (ambient air, AA; target 1.5 × AA O3, named as
moderate O3, MO; target 2 ×AA O3, named as elevated O3, EO) for 75 consecutive days. Leaf spectral
measurements were paired with reference measurements of ChlF, and predictive spectral models were
constructed using partial least squares regression. Most of the ChlF parameters were well predicted
by spectroscopic models (average model goodness-of-fit for validation, R2: 0.53–0.82). Furthermore,
comparing the full-range spectral profiles (i.e., 400–2400 nm), it was possible to distinguish with high
accuracy (81% of success) plants exposed to the different O3 concentrations, especially those exposed
to EO from those exposed to MO and AA. This was possible even in the absence of visible foliar injury
and using a moderately O3-susceptible species like the date palm. The latter view is confirmed by the
few variations of the ChlF parameters, that occurred only under EO. The results of the current study
could be applied in several scientific fields, such as precision agriculture and plant phenotyping.

Keywords: Fluorescence quenching; hyperspectral phenotyping; partial least squares regression;
photosystem II activity; pulse-amplitude-modulation fluorometry; saturation pulse method; spectral
signature; vegetation index; vegetation spectroscopy

1. Introduction

No investigation into the photosynthetic performance of plants seems complete without
chlorophyll a fluorescence (ChlF) data [1]. Thanks to the introduction of a number of highly user-friendly
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and portable chlorophyll fluorometers, ChlF—a non-invasive and relatively low-cost measurement of
photosystem II (PSII) activity—has become one of the most powerful and used techniques available
to plant physiologists and ecophysiologists in the last 30 years [1]. The sensitivity of PSII activity to
abiotic and biotic stressors has made this approach a key technique not only for understanding the
photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental
change, although its ineffectiveness has also been reported sometimes [2]. Among the available types
of chlorophyll fluorometers, the pulse-amplitude-modulation (PAM) fluorometry, in conjunction with
the saturation pulse method, remains the most utilized approach [2,3]. Briefly, this method consists of
adapting a leaf to the dark until all the reaction centers are open, and then expose the leaf to light. This
gives rise (usually for a few seconds) to a progressive closure of PSII reaction centers, resulting in an
increase in the yield of ChlF. Thereafter, the fluorescence level typically starts to fall again through a
phenomenon termed “fluorescence quenching”, and explained in two ways: (i) an increase in the rate
by which electrons are transported away from PSII due to the light-induced activation of enzymes
involved in carbon metabolism and the opening of stomata (i.e., ‘photochemical quenching’), and (ii) an
increase in the efficiency by which energy is converted to heat (i.e., ‘non-photochemical quenching’) [1].
A large number of coefficients have been calculated to quantify photochemical and non-photochemical
quenching, as reported in excellent reviews (e.g., [1,2,4]).

Collection of both dark- and light-adapted measurements to calculate all ChlF parameters may
take a minimum of 20 min for each dark-adapted leaf, and other several minutes or much longer
(e.g., >15 min) to achieve a light-adapted steady-state (starting from a dark-adapted state). As a
consequence, it is rarely possible to go through an entire quenching protocol, especially in the field
due to time and weather constraints [2]. For this reason, together with the great interest of field
physiologists in high-throughput and large-scale measurements of ChlF [2], new less time-consuming
techniques (e.g., imaging fluorescence, long-term monitoring fluorescence, remote sensing of ‘passive’
fluorescence) are under continual development, although substantial limitations remain in their use
(e.g., instrumentation reliability and data interpretation [5–7]).

Vegetation spectroscopy is a high-throughput sensor technology based on the optical properties
of living vegetation (e.g., leaf and canopy reflectance) that enables the rapid and non-destructive
assessment of plant status, along with a simultaneous estimate of several plant traits in the field on a
large number of plants over multiple time periods [8]. The prediction of these traits from leaf spectra
is based on the exploitation of the relationships of light with molecular organic bonds, mainly C-H,
N-H, and O-H, resulting in vibrational excitation at specific wavelengths through the visible (VIS:
400–700 nm), the near-infrared (NIR: 700–1100 nm) and the short-wave infrared (SWIR: 1100–2400 nm)
spectral regions [9]. Several simple vegetation indices (VIs) based on the ratio of reflected light at
different wavelengths have been developed because related to various plant traits (e.g., normalized
difference vegetation index, NDVI [10], or chlorophyll index, CI [11]). Another ever-expanding
approach regards the use of multivariate methods to directly model commonly used plant traits
as a function of the spectral profiles. Advances in the sensitivity and portability of hyperspectral
spectrometers, as well as in computational capacity and chemometric modeling (e.g., using partial least
squares regression, PLSR [12]), have enabled the use of this approach to estimate a variety of commonly
investigated plant traits and physiological processes based on foliar optical properties, including
morphological, physiological, and biochemical parameters (e.g., [13–17]). The model calibration is
accomplished by pairing leaf spectra, collected using a uniform and stable light source in a consistent
manner, with independent and reliable reference measurements. Subsequently, the model is validated
by comparing relationships between observed and predicted values collected on other independent
samples. This calibration model can then be used to predict the variable of interest in unknown samples
on the basis of their spectral signature alone [18]. Despite the similarities of vegetation spectroscopy
and ChlF measurements, and some attempts to evaluate relations between some VIs (i.e., using a few
wavelengths) and ChlF parameters (e.g., [19,20]), to the best of our knowledge, no study has examined
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the ability of reflectance profiles to directly estimate widely-used PAM ChlF parameters by using a
multivariate modeling approach on hyperspectral data (i.e., using many wavelengths).

Date palm (Phoenix dactilyfera L.) is among the first crops domesticated by early human civilization,
and over 100 million date palms live in the world. This perennial, dioecious plant of the Arecaceae
family, plays an important nutritional, social, environmental, cultural, and economic role for many
people living in arid and semiarid regions of North Africa and the middle east. Within the last
centuries, it has been introduced to Southeastern Asia, Southern Africa, Australia, South America,
Mexico, and the United States [21,22]. Date palm is exceptional in the sense that it can withstand
extreme temperatures and drought [23–26], as well as other harsh climatic conditions, such as episodes
of high tropospheric O3 concentration [27]. Actually, although there is a high interest in exploring the
responses of date palms to O3 exposure, this experiment and related papers on growth, physiological
and biochemical responses (e.g., [28]) is the first one to investigate the effects of chronic O3 exposure
on this species.

Tropospheric O3 is a major phytotoxic air pollutant produced photochemically by a variety of
precursors, such as nitrogen oxides and volatile organic compounds, with harmful effects also on biota,
including plant and animal health [29–31]. Levels of O3 are still elevated in many areas of the world
such as Europe, North America, and Southeastern Asia, and are predicted to raise further due to the
occurrence of climatic changes and to anthropogenic pressures [32], especially in hot-spot regions such
as the Arabian Peninsula and the Mediterranean area [27,33]. However, reductions in tropospheric
O3 concentrations have also been reported in some Mediterranean sites [34]. Excessive O3 uptake by
plants induces detrimental effects such as accelerated leaf senescence, reduction of photosynthesis and
growth, partial stomatal closure, cell dehydration, cell destruction by excessive excitation energy, and
appearance of chlorotic/necrotic leaf injuries, that overall result in the reduction of plant yield both in
terms of quantity and quality and huge economic losses [29,35].

The use of ChlF as a suitable method for studying the responses of plants to O3 (as well as to
other abiotic and biotic stress factors) has been reported for long (e.g., [36–38]). In this study, we tested
the capability to rapidly, precisely, and simultaneously estimate the number of PAM ChlF parameters
commonly calculated from both dark- and light-adapted leaves from reflectance hyperspectral data
collected on light-adapted leaves of date palm seedlings chronically exposed to three levels of O3

in an O3-Free Air Controlled Exposure (FACE) facility located in the Mediterranean environment
(i.e., Italy). Furthermore, since spectra themselves are a phenotypic expression of the aggregate
signals of chemical, morphological and physiological properties of leaves under specific environmental
conditions [8], we evaluated the potential of full-range (400–2400 nm) hyperspectral phenotyping to
pre-visually, and accurately detect and classify the environmental pressures induced by the gradient of
O3 concentrations on date palm, and whether these effects are in accordance with O3-induced variations
of ChlF parameters, and other VIs estimated from spectra, thus also investigating the response of this
species to chronic O3 pollution.

2. Results

2.1. Predictions of ChlF Parameters

Various spectral ranges (characterized by specific absorption features known in the literature that
we thought would directly or indirectly relate to specific traits), and number of components (Table S1)
were firstly investigated to get best prediction accuracy [i.e., highest model goodness-of-fit (R2) and
lowest bias, root mean square error (RMSE), and percent RMSE of the data range (%RMSE)] of the PLSR
models developed for the estimation of the ChlF parameters (i.e., F0, Fm, Fv/Fm, Fs, Fm’, F0

′, ΦPSII,
Fv’/Fm’, ETR, qP, qN, NPQ, qL, P, D; see Section 4.2 for parameter descriptions). Most of the final
models utilized the wavelength range 600–900 nm and included 6–8 components (i.e., F0, Fm, Fv/Fm,
F0
′

, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, D). The final Fs and Fm’ PLSR models utilized the 400–1200 nm
spectral region, including four and eight components, respectively. The full range 400–2400 nm was
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utilized in the final PLSR models for predictions of ETR and P, including 12 components for both of
them (Table 1).

Table 1. Range of wavelengths, number of components (Com), model goodness-of-fit (R2), root mean
square error (RMSE), and percent RMSE of the data range (%RMSE) for calibration (Cal) and validation
(Val) data generated using 500 random permutations of the data with 80% used for Cal and 20% used
for the Val for the PLSR models predicting chlorophyll a fluorescence parameters from spectra of date
palm leaves. Bias outputs are not shown as they were always lower than 0.01 for both Cal and Val.
Data are shown as mean ± standard deviation. Parameters: F0, minimum fluorescence yield in the
dark-adapted state; Fm, maximum fluorescence yield in the dark-adapted state; Fv/Fm, maximum
quantum efficiency of PSII photochemistry; Fs, steady state fluorescence intensity in light-adapted state;
Fm’, maximum fluorescence intensity in the light-adapted state; F0

′, minimum fluorescence intensity in
the light-adapted state; ΦPSII, PSII operating efficiency in light conditions; Fv’/Fm’, maximum efficiency
of PSII in light conditions; ETR, electron transport rate (µmol m−2 s−1); qP, photochemical quenching;
qN, non-photochemical quenching calculated as (Fm − Fm’)/(Fm − F0

′); NPQ, non-photochemical
quenching calculated as (Fm − Fm’)/Fm’; qL, fraction of open PSII centers; P, fraction of light absorbed
in PSII antennae that is utilized in PSII photochemistry; D, fraction of light absorbed in PSII antennae
that is dissipated thermally. See Section 4.2 for parameter calculations.

Parameter
Range
(nm) Com

Cal Val

R2 RMSE %RMSE R2 RMSE %RMSE

F0 600–900 8 0.69 ± 0.03 0.01 ± 0.00 13 0.53 ± 0.14 0.01 ± 0.00 17
Fm 600–900 7 0.74 ± 0.03 0.04 ± 0.00 12 0.60 ± 0.15 0.05 ± 0.01 15

Fv/Fm 600–900 8 0.85 ± 0.02 0.04 ± 0.00 11 0.77 ± 0.08 0.04 ± 0.01 11
Fs 400–1200 4 0.46 ± 0.04 0.01 ± 0.00 17 0.39 ± 0.18 0.02 ± 0.00 18

Fm’ 400–1200 8 0.80 ± 0.03 0.03 ± 0.00 9 0.65 ± 0.14 0.04 ± 0.01 12
F0
′ 600–900 7 0.47 ± 0.05 0.01 ± 0.00 17 0.21 ± 0.19 0.01 ± 0.00 21

ΦPSII 600–900 10 0.87 ± 0.03 0.03 ± 0.00 8 0.73 ± 0.12 0.04 ± 0.01 11
Fv’/Fm’ 600–900 7 0.84 ± 0.02 0.04 ± 0.00 9 0.75 ± 0.10 0.04 ± 0.01 11

ETR 400–2400 12 0.93 ± 0.01 2.63 ± 0.15 6 0.82 ± 0.08 4.31 ± 0.68 10
qP 600–900 11 0.87 ± 0.02 0.02 ± 0.00 9 0.68 ± 0.14 0.04 ± 0.01 14
qN 600–900 7 0.70 ± 0.04 0.05 ± 0.00 12 0.53 ± 0.17 0.06 ± 0.01 15

NPQ 600–900 6 0.40 ± 0.05 0.11 ± 0.00 16 0.26 ± 0.19 0.12 ± 0.02 18
qL 600–900 8 0.86 ± 0.02 0.04 ± 0.00 8 0.76 ± 0.12 0.05 ± 0.01 11
P 400–2400 12 0.93 ± 0.01 0.02 ± 0.00 6 0.81 ± 0.08 0.04 ± 0.01 10
D 600–900 7 0.84 ± 0.02 0.04 ± 0.00 7 0.76 ± 0.11 0.04 ± 0.01 10

PLSR models very accurately characterized Fv/Fm, ΦPSII, Fv’/Fm’, ETR, qP, qL, P, and D (R2 and
%RMSE for validation: 0.77 and 11%, 0.73 and 11%, 0.75 and 11%, 0.82 and 10%, 0.68 and 14%, 0.76
and 11%, 0.81 and 10%, 0.76 and 10%, respectively). High prediction performance was also found for
F0, Fm, Fm’, and qN (R2 and %RMSE for validation: 0.53 and 17%, 0.60 and 12%, 0.65 and 12%, 0.53
and 15%), whereas low prediction accuracy was found for Fs, F0

′

, and NPQ (Table 1 and Figure 1).
For both calibration and validation, bias was always lower than 0.01. Among the PLSR models with
good prediction accuracy, fit statistics for external validations were consistent with those registered for
the validations, except for Fm, Fm’, Fv’/Fm’, and qL that were lower (Table S2).
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Figure 1. Observed vs. partial least squares regression (PLSR)-predicted values of chlorophyll a 
fluorescence parameters in date palm leaves; error bars for predicted values represent the standard 
deviation generated from 500 simulated models; dashed line is 1:1 relationship; model goodness-fit 
(R2), and root mean square error (RMSE) for validation data generated using 80% of the data for 
calibration and 20% for validation are reported. Bias outputs are not shown as they were always lower 
than 0.01. (a) F0; (b) Fm; (c) Fv/Fm; (d) Fs; (e) Fm’; (f) F0′; (g) ΦPSII; (h) Fv’/Fm’; (i) ETR; (j) qP; (k) qN; (l) 
NPQ; (m) qL ; (n) P; (o) D. See Table 1 caption for the parameter abbreviations.  

Figure 1. Observed vs. partial least squares regression (PLSR)-predicted values of chlorophyll a
fluorescence parameters in date palm leaves; error bars for predicted values represent the standard
deviation generated from 500 simulated models; dashed line is 1:1 relationship; model goodness-fit (R2),
and root mean square error (RMSE) for validation data generated using 80% of the data for calibration
and 20% for validation are reported. Bias outputs are not shown as they were always lower than 0.01.
(a) F0; (b) Fm; (c) Fv/Fm; (d) Fs; (e) Fm’; (f) F0

′; (g) ΦPSII; (h) Fv’/Fm’; (i) ETR; (j) qP; (k) qN; (l) NPQ; (m)
qL; (n) P; (o) D. See Table 1 caption for the parameter abbreviations.
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Profiles of standardized coefficients (i.e., centered and scaled) and variable importance to the
projection (VIP) metrics from PLSR models using the 600–900 nm spectral range (i.e., those for the
predictions of F0, Fm, Fv/Fm, F0

′

, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, and D) highlighted the 600–750 nm
wavelengths as particularly important for estimations, especially peaking around 650, 680–690 and
700–750 nm (Figure 2). Standardized coefficients and VIP values of PLSR models, including the
400–1200 nm wavelength range (i.e., those for the estimations of Fs and Fm’) highlighted not only
important spectral wavelengths from 650 to 750 nm, but also those that peaked around 420 and
500–550 nm. Peaks from 450 to 750 nm were also observed in profiles of standardized coefficients and
VIP of PLSR models using the full range (i.e., those for the predictions of ETR and P), but here other
peaks were also observed around 1400, 1700, and 1900–1950 nm.
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2.2. Hyperspectral Phenotyping 

Multiple different spectral ranges were initially investigated to optimize the statistical outputs 
of the permutational analysis of variance (PERMANOVA; Table S1), and the best outputs were finally 
recorded using the full range (i.e., 400–2400 nm). Although no visible symptoms were observed on 
the leaves, PERMANOVA revealed that O3 exposure affected the reflectance profile of the date palm 
(F: 3.92, P: 0.004; Figure 3a), as well shown by Figure 3b, which summarizes the outputs of the 
principal coordinates analysis (PCoA). Best classifications of O3 treatments from the spectra (i.e., 
higher mean Kappa) by partial least squares discriminant analysis (PLS-DA) were found with an 80:20 

Figure 2. Mean (solid), 5th and 95th percentile (dotted) of standardized coefficients (black) and variable
importance for projection (VIP, blue) by wavelengths for the PLSR models predicting chlorophyll
a fluorescence parameters in date palm leaves. (a) F0; (b) Fm; (c) Fv/Fm; (d) Fs; (e) Fm’; (f) F0

′;
(g) ΦPSII; (h) Fv’/Fm’; (i) ETR; (j) qP; (k) qN; (l) NPQ; (m) qL; (n) P; (o) D. See Table 1 caption for
parameter abbreviations.
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2.2. Hyperspectral Phenotyping

Multiple different spectral ranges were initially investigated to optimize the statistical outputs of
the permutational analysis of variance (PERMANOVA; Table S1), and the best outputs were finally
recorded using the full range (i.e., 400–2400 nm). Although no visible symptoms were observed
on the leaves, PERMANOVA revealed that O3 exposure affected the reflectance profile of the date
palm (F: 3.92, P: 0.004; Figure 3a), as well shown by Figure 3b, which summarizes the outputs of the
principal coordinates analysis (PCoA). Best classifications of O3 treatments from the spectra (i.e., higher
mean Kappa) by partial least squares discriminant analysis (PLS-DA) were found with an 80:20 ratio
for calibration:validation data, using 13 components: Kappa, and the Accuracy for the validation were
0.71 ± 0.20 and 0.81 ± 0.13 (mean ± standard deviation), respectively. Specifically, elevated O3 (EO) was
accurately discriminated from the other O3 treatments, while misclassifications occurred between the
ambient air (AA) and moderate O3 (MO) treatments (Figure 3b, Table S3).
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Figure 3. (a) Average foliar reflectance profiles of date palms exposed to ambient air (AA), moderate
ozone (MO), and elevated ozone (EO); F- and P-values from permutational analysis of variance
(PERMANOVA) for the effects of ozone on the full range (400–2400 nm) reflectance profiles of date
palm leaves are reported in the bottom-right corner of the panel. (b) Scores (mean ± standard error) for
the first and second principal components from principal coordinates analysis (PCoA) of the reflectance
data (400–2400 nm) collected from date palm leaves, highlighting the capability of spectroscopy to
discriminate plants exposed to AA (white circle) vs. plants exposed to MO (gray square) and EO (black
triangle); average accuracy (Acc.) and Kappa (K) values from partial least squares discriminant analysis
(PLS-DA) are reported on the bottom-left corner of the panel.

2.3. Variations of Spectra-Estimated ChlF Parameters and VIs

The significant effects of O3 on VIs and selected ChlF parameters (i.e., those for whom the PLSR
models showed R2

≥ 0.55 for external validation) estimated from the spectra are shown in Figure 4.
ΦPSII, ETR, P, and photochemical reflectance index (scaled; sPRI) decreased only under elevated ozone
(EO; −27, −30, −30, and −2% compared with ambient air, AA, respectively), whereas qN increased
only under EO (+21%). Although D values were higher under EO than under moderate ozone (MO),
no significant differences were observed among plants exposed to AA and those exposed to higher
O3 concentrations. No significant O3 effects were observed on Fv/Fm, qP, plant senescence reflectance
index (scaled; sPSRI), and CI (p > 0.05).
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Figure 4. Variations of PSII operating efficiency in light conditions, ΦPSII (a); ETR, electron transport
rate, ETR (b); non-photochemical quenching calculated as (Fm − Fm’)/(Fm − F0

′), qN (c); fraction of
light absorbed in PSII antennae that is utilized in PSII photochemistry, P (d); fraction of light absorbed
in PSII antennae that is dissipated thermally, D (e); and (scaled) photosynthetic reflectance index, sPRI
(f) estimated from spectra collected on leaves of date palm under ambient (AA, white), moderate (MO,
gray) and elevate (EO, black) ozone concentrations. Data are shown as mean ± standard deviation.
F- and p-values for the effects of ozone from a one-way ANOVA are shown in the top-right corner
of panels. According to Tukey’s post-hoc test, different letters indicate significant differences among
means (p: ≤0.05).

3. Discussion

This study shows the ability of reflectance spectroscopy to rapidly, accurately, and non-destructively
monitor the sensitivity of PSII efficiency to environmental constraints, specifically to O3 pollution.
By combining hyperspectral reflectance collections, standard PAM ChlF measurements, and robust
statistical modeling, this study demonstrated the potential to concomitantly predict from spectra of



Int. J. Mol. Sci. 2020, 21, 6441 9 of 18

light-adapted leaves of date palm a number of ChlF parameters that are commonly collected from
measurements of both dark- and light-adapted leaves to investigate the photosynthetic performance of
plants under abiotic and biotic stressors.

Standard collections of the whole set of PAM ChlF parameters are often logistically challenging,
usually requiring several minutes per leaf as the leaf has first to reach the dark-adapted state and
then come back to the light-adapted state [2]. Spectral approaches have been shown as a valid
alternative to standard measurements of photosynthetic activity in plants since they are able to estimate
photosynthetic processes through VIs correlated with photosynthetic processes (e.g., the xanthophyll
cycle by PRI [39,40]). In addition, specific and commonly used photosynthetic traits such as net
photosynthesis, stomatal conductance, the maximum rate of carboxylation, and the maximum rate of
electron transport [17,41–44] could directly be predicted from spectral data. Some attempts to evaluate
the relations between VIs and a few ChlF parameters have also been reported (e.g., [19,20]). However,
to our knowledge, this is the first study to document the potential of vegetation spectroscopy to directly
estimate widely used ChlF parameters.

We found an excellent prediction performance for most of the PLSR modeled ChlF parameters.
Fv/Fm, ΦPSII, Fv’/Fm’, ETR, qP, qL, P and D were estimated with very high accuracy (validation R2

0.68–0.82), and the PLSR prediction approach resulted in more precise data than previous efforts
performed through relations between VIs and some ChlF parameters (i.e., Fv/Fm and Fv’/Fm’; e.g., [20]).
Good prediction performance was also found for F0, Fm, Fm’, and qN (validation R2: 0.53–0.65).
However, we encourage more caution when interpreting results from a narrow range of values of these
parameters, since the PLSR models we developed may have limitations by discriminating fine scale
differences. Low accuracies were instead reported only for Fs, F0

′, and NPQ. Undoubtedly, a novel
outcome of these results is the ability to rapidly, precisely, and simultaneously estimate a number
of ChlF parameters commonly calculated from both dark- and light-adapted leaves from reflectance
hyperspectral data collected on light-adapted leaves. This was likely possible because ChlF parameters
that also require dark-adapted leaves, describe PSII mechanisms that are related to the foliar properties
expressed in the leaf spectrum collected under the light-adapted state. It is also interesting to note
that none of the ChlF parameters representing punctual fluorescence intensity at a specific time and
light condition (i.e., F0, Fm, Fm’, Fs, and F0

′) was among the parameters estimated with high accuracy.
This might be due to an inability of leaf spectra to describe a specific fluorescence emission, as opposed
to their ability to summarize plant features related to the PSII photochemistry described by Fv/Fm, ΦPSII,
Fv’/Fm’, ETR, qP, qL, P, and D. Another explanation might be found in the smaller ranges observed
for F0, Fm, Fm’, Fs, and F0

′ values compared with other parameters, since PLSR models would work
better when the calibration is accomplished by pairing spectral data with the observed traits having
a greater proportion of variation. Furthermore, even if we might have expected complexity in the
prediction from leaf spectra of a phenomenon like the photoprotective thermal dissipation of excess
excitation energy (i.e., non-photochemical quenching), the reason for differences in the prediction
accuracy between qN and NPQ remains an open question. The drop-in prediction accuracy observed
for the external validation of a few PLSR modeled parameters (compared with PLSR validation) was
instead likely due to the scarcity of available samples usable for external validation. However, this is
just one of many points that require further research on the topic to be addressed.

Nevertheless, it is not surprising that best predictions of most of the modeled ChlF parameters
were obtained using only the wavelengths from 600 to 900 nm (this also means that these parameters
could be estimable by inexpensive optical instrumentation [9]). The use of narrower ranges, including
only specific absorption wavelengths for the trait to be estimated, sometimes leads to better predictions
than using wider ranges, since the incorporation of other spectral regions may reduce the prediction
ability of trait-specific wavelengths [15,17]. Indeed, the 600–900 nm spectral range finally used for
estimations of F0, Fm, Fv/Fm, F0

′, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, and D includes the red chlorophyll
absorption peaks around 700 nm [45], the whole re-emission ChlF spectrum of a leaf ranging from 650
to 800 nm [46], as well as the red-edge at 700–750 nm [47]. The importance of this pigment-related
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spectral region in the assessment of photosynthetic processes has been largely shown for several plant
species (e.g., [39,41,43,45]). A number of studies have also reported that the shape of the red-edge
is dependent on chlorophyll content (e.g., [48,49]) and stress conditions (e.g., [9,47]). This supports
the importance of wavelengths around 650, 680–690, and 700–750 nm in predicting F0, Fm, Fv/Fm,
F0
′, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, and D highlighted by their standardized coefficient and VIP

profiles. Standardized coefficients and VIP values of Fs and Fm’ PLSR models, using the VIS-NIR (i.e.,
400–1200 nm) spectral range, also highlighted the importance of including wavelengths around 420 and
500–550 nm in the prediction of these parameters, thus also containing the blue peaks of chlorophylls
as well as of carotenoids [45]. Conversely, since using wider ranges means the incorporation of more
signals of chemical, morphological, and physiological properties of leaves included in the spectra [8],
ETR and P values were better predicted using the full range (i.e., 400–2400 nm), thus including other
absorbance features contained outside the pigment-related spectral range. Effectively, profiles of
standardized coefficients and the VIP of PLSR models of these traits also peaked around 1400, 1700,
and 1900–1950 nm, which are well-known water and protein absorption features [50], suggesting that
the variations of these compounds somehow helped the estimation of ETR and P from spectra.

The present study also evidenced that we were able to discriminate with high accuracy (81% of
success) the effects of O3 exposure on reflectance profiles of the date palm leaves. Specifically, even in
the absence of visible foliar symptoms, we were able to discriminate plants exposed to the higher O3

concentration (i.e., EO) from those exposed to the lower O3 levels, while a certain misclassification
occurred between samples exposed to AA and MO. This might be due to a moderate O3 susceptibility
of date palm, but better outputs might be reached by raising the experimental/plant replications
adopted for the hyperspectral phenotyping (this is especially true under field conditions, usually
characterized by highly variable growth environments). On the one hand, these results confirm the
capability of this approach (i.e., hyperspectral phenotyping through the analyses of spectral signatures)
to detect O3 effects on plants, as previously reported for various other abiotic and for biotic stressors
(e.g., [8,17,51,52]). On the other hand, the present results confirm that the efficiency of this spectral
approach is dependent on the sensitivity of the plants/cultivars to O3, as well as to the magnitude at
which this environmental pressure is imposed on vegetation.

The phytotoxicological outcomes of the analyses of spectral signatures were confirmed by
variations of the investigated ChlF parameters derived from spectra (again, only parameters from
best performing PLSR models were used) and VIs, further confirming the potential of vegetation
spectroscopy in monitoring the responses of plants to O3. Although increased O3 concentrations did
not induce photoinhibitory damage and early senescence or altered chlorophyll levels (i.e., unchanged
Fv/Fm, qP, sPSRI and CI), EO caused a reduction of PSII performance (i.e., reduced ΦPSII, ETR, and P),
together with an activation of the dissipation of the excess excitation energy as heat (i.e., increased qN
and sPRI; and higher D values under EO than under MO, although no significant differences with
AA). Although further molecular, biochemical, physiological, and morphological investigations are
needed to properly investigate the interaction of date palm with O3, the results reported in the present
study suggest an ability of the date palm to tolerate moderate O3 pollution levels, in accordance with
previous reports highlighting the high capability of this ancient plant species to withstand extreme
and harsh climatic conditions (e.g., [23–26]).

In conclusion, the present study firstly shows that vegetation spectroscopy can be a rapid,
non-destructive, and relatively inexpensive tool to concomitantly and accurately estimate an array
of widely-used ChlF parameters, using a single spectral measurement. This result suggests that the
prediction from spectral data can be used in standard reference measurements, thus allowing a dramatic
increase of ChlF data collection from a larger number of individual genotypes and plants, than reference
measurements alone. Second, this study confirms that hyperspectral information can successfully
detect stress conditions in plants exposed to O3, even in the absence of visible foliar symptoms and
using a moderately O3-susceptible species like the date palm, as suggested by the few variations of the
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investigated ChlF parameters and VIs. It would be interesting to perform further investigations and
validations of the proposed approach on other species under heterogeneous environments.

The results presented in the current study could be applied in a number of scientific fields such as
precision agriculture and high-throughput plant phenotyping and could provide significant benefits to
increase our knowledge on the intimate mechanisms of oxidative stress in plant cells, so to achieve
better plant yield and quality. Furthermore, while logistical challenges (e.g., solar angle or atmospheric
interference) exist, leaf-level spectroscopy, as adopted in the present study, can be effectively used as a
ground reference or training input for airborne-based platforms, and scaled to field and landscape
levels [13,53].

4. Materials and Methods

4.1. Plant Material and Experimental Design

On December 2018, micro-propagated one-year-old plants of P. dactylifera cv Nabut Saif were
purchased from a commercial nursery (Date Palm Developments Ltd., Sommerset, U.K.) and directly
planted in 4.5 L pots containing gravel (∅ 3–6 mm) and commercial planting peat-rich soil (70:30
in volume). Pots were kept to overwinter in a phytotron on plastic tablets continuously filled with
tap water at 1–2 cm height and watered daily with 50 mL tap water per plot. Controlled conditions
included 25 ◦C temperature and artificial illumination at around 200 µmol m−2 s−1 with a 16 h of
photoperiod. On the 1st of May 2019, plants were transferred into 20-L pots containing the same
substrate and maintained well-irrigated under shaded tunnels under field conditions, and moved to
full light after one week into the O3-FACE facility of Sesto Fiorentino, Florence, Italy (43◦48′59′’ N,
11◦12′01′’ E, 55 m a.s.l.). Here, uniform-sized plants (around 1 m tall) were selected and exposed to
three levels of O3 (target concentrations: 1.0, 1.5 and 2.0 times the ambient air level) named as ambient
air (AA), moderate O3 (MO) and elevated O3 (EO); treatments lasted from the 20th of May to the 2nd
of August 2019, for 75 consecutive days (i.e., around 2.5 months). Three replicated 5 × 5 × 2 m (L ×W
× H) plots were assigned to each O3 treatment, with five plants per each plot. Each pot was fertilized
once a month with NPK 20:10:20 with micronutrients (Soluplant 20.10.20, Haifa, Bologna, Italy). Each
pot was watered daily by a drip system with 200 mL of tap water (i.e., 90% of field capacity). A detailed
description of the facility and of O3 exposure methodology is reported in Paoletti et al. [54]. The
maximum hourly O3 concentrations throughout the whole experimental period were 110.2 ppb in AA,
169.4 ppb in MO and 183.2 ppb in EO, respectively; while the Accumulated exposure Over Threshold
of 40 ppb (AOT40) values resulted of 16.1 ppm h, 36.9 ppm h and 50.1 ppm h, respectively.

The collection of ChlF measurements and leaf spectra was performed from the 30th of July to
the 2nd of August 2019 (i.e., four consecutive days). The youngest mature leaves (the 4th or the 5th
counting from the top) of each plant were selected, and measurements were performed on the 4th
leaflets (counting from the apex of the leaf) located on the right side of the rachis, looking at the
adaxial leaf surface. Every day, around 25 plants, randomly distributed across O3 treatments, and
the experimetal plots were measured from 9.00 to 16.00, with a total of 102 samples collected. These
combined spectral and standard measurements were used to build multivariate methods to predict
ChlF parameters from spectral data (see below). Furthermore, on the last day of measurements, eight
plants per O3 treatment were randomly selected, and consecutively measured only for leaf reflectance
within the shortest possible time (i.e., around 20 min). These reflectance measurements were used for
the analyses of spectral signatures (i.e., hyperspectral phenotyping), and for the final estimations of
vegetation indexes and other leaf traits by the PLSR models developed in this study (see below).

4.2. Chlorophyll a Fluorescence

Chlorophyll a fluorescence measurements were collected using a PAM-2000 fluorometer (Walz,
Effeltrich, Germany). The minimum and maximum fluorescence yield in the dark-adapted state (F0 and
Fm, respectively) were determined immediately before and after the application of a 0.8 s saturating
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light pulse at 8000 µmol m−2 s−1 in 40 min dark-adapted leaves. An actinic light at around 270 µmol
m−2 s−1 was then turned on, and maximum fluorescence intensity in the light-adapted state (Fm’) was
determined applying saturating light pulses every 20 s, whereas minimum fluorescence intensity in the
light-adapted state (F0

′) was determined immediately after turning off the actinic source in the presence
of a far-red (>710 nm) background for 3 s to ensure maximal oxidation of PSII electron acceptors. Both
Fm’ and F0

′ were recorded 10 min after the turning on of the actinic light, when fluorescence reached a
steady-state intensity in a light-adapted state (Fs).

The maximum quantum efficiency of PSII photochemistry was calculated as Fv/Fm = (Fm − F0)/Fm,
whereas the PSII operating efficiency in light conditions was calculated as ΦPSII = (Fm’ − Fs)/Fm’ [55].
The maximum efficiency of PSII in light conditions was calculated as Fv’/Fm’ = (Fm’ − F0′)/Fm’ [56].
The electron transport rate was calculated as ETR = ΦPSII × photosynthetic photon flux density (PPFD)
× 0.5 × 0.84, where 0.5 is the partitioning of absorbed quanta between PSII and photosystem I (PSI) and
0.84 is the absorption coefficient of an average leaf [57]. The photochemical quenching was calculated
as qP = (Fm’ − Fs)/(Fm’ − F0

′), whereas the non-photochemical quenching was calculated as qN = (Fm

− Fm’)/(Fm − F0
′) and as NPQ = (Fm − Fm’)/Fm’ [58]. The fraction of open PSII centers was estimated

as qL = qP × (F0
′/Fs) [59]. The fraction of light absorbed in the PSII antennae that is utilized in the PSII

photochemistry was estimated as P = (Fv’/Fm’) × qP, whereas the fraction of light absorbed in the PSII
antennae that is dissipated thermally was estimated as D = 1 − Fv’/Fm’ [56]. Further details about the
ChlF parameters are reported in several reviews (e.g., [2–4]).

4.3. Hyperspectral Reflectance

The full range (350–2500 nm) leaf reflectance profiles were collected by an ASD FieldSpec 4
spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA), using a leaf clip with an internal
halogen light source attached to a plant probe. The measurements were acquired on four areas
(randomly selected, ∅ 1 cm) of the adaxial surface of each leaf, with one measurement per area, and
the collections were combined to produce an average leaf spectrum. The relative reflectance of each
leaf was determined from the measurement of the leaf radiance divided by the radiance of a white
reference panel included in the leaf clip, measured before each plant (i.e., four spectral collections)
when collecting spectra for modeling, or every four plants (i.e., 16 spectral collections) when collecting
spectra for hyperspectral phenotyping.

4.4. PLSR-model Calibration and Validations

The above-mentioned ChlF parameters (i.e., F0, Fm, Fv/Fm, Fs, Fm’, F0
′, ΦPSII, Fv’/Fm’, ETR, qP, qN,

NPQ, qL, P, D) were predicted from spectra using a PLSR [12] modeling approach, using untransformed
reflectance profiles (only spectral jump correction and data interpolation were performed). This
“spectra-trait” modeling was performed using ca. 80% of the whole dataset, in order to also allow for
an external validation of the developed PLSR models (see below). PLSR modeling has become the
favorite chemometric approach (e.g., [14–16,60]) because, conversely to classical regression techniques,
it reduces a large number of collinear predictor variables (as in the case of hyperspectral data) to
relatively few, uncorrelated latent variables, avoiding the risk of producing unreliable coefficients and
error estimates [61]. To avoid potential model overfitting, the numbers of the latent variables used
were selected based on the reduction of the predicted residual sum of squares (PRESS) statistics [62] by
leave-one-out cross-validation. Finally, the selected sets of extracted components were combined with
linear models predicting ChlF parameters from leaf reflectance profiles.

The model performance was assessed by running 500 randomized permutations of the datasets
using 80% of the data for calibration and the remaining 20% for validation (i.e., internal validation). The
R2, RMSE, bias, and %RMSE of both the calibration and the validation datasets were calculated to assess
model performance. These randomized investigations generated a distribution of fit statistics allowing
for the evaluation of model stability, as well as uncertainty in the model predictions. The strength
contribution of PLSR loadings by individual wavelengths was also assessed using the VIP selection



Int. J. Mol. Sci. 2020, 21, 6441 13 of 18

statistics, which highlight the importance of individual wavelengths in explaining the variation in
both the response and predictor variables: larger weightings confer higher value to the contribution of
individual wavelengths to the predictive model [12,63]. The modeling approach and the data analyses
were run using the ‘pls’ package in R (www.r-project.org; [64]).

Before developing the final modeling, we investigated preliminary models to identify poorly
predicted outliers. Prediction residuals were explored to identify potential outliers [14]. Spectral
profiles of outliers were further examined for errors (e.g., elevated reflectance in the VIS wavelengths,
spectral jumps produced by misaligned detector splicing, concave spectral shape at the red-edge peak)
all likely due to the operational errors during spectral measurements (in reference or target collections).
The standard measurements of the outliers were also examined for extremes in the data distribution.
The outliers removed accounted for approximately 10% of the initial data, which was in agreement
with previous studies (e.g., [14,17]).

We also performed an external validation by applying PLSR coefficients on a dataset independent
from the one used for calibration and validation (ca. 20% of the whole dataset). Relations between
predicted and observed values were tested by regression analysis, and fit statistics (i.e., R2, RMSE, bias)
were investigated to assess the model estimation accuracy.

4.5. Estimation of Leaf Traits by Vegetation Indices and PLSR Models

Three common VIs were calculated from spectra: the PRI = (R531 − R570)/(R531 + R570) [39], scaled
as sPRI = (PRI + 1)/2 to avoid negative values, was determined to assess any potential effect on the
photochemical system; the PSRI = (R678 − R500)/R750 [65], scaled as sPSRI = (PSRI + 1)/2 to avoid
negative values, was determined to evaluate the occurrence of any potential senescence process; and
the CI = (R750 − R705)/(R750 + R705) [11] was determined to investigate any potential variation in
chlorophyll content. Rx indicates the reflectance at x nm wavelength.

Chlorophyll a fluorescence parameters were estimated from spectra by using the best performing
PLSR models. As stated above, vegetation indices and spectra-derived ChlF parameters were calculated
from the spectra averaged per plant.

4.6. Statistical Analyses for the Effects of Ozone on Leaf Traits Derived from Spectra, and on the Leaf Spectral
Signatures (i.e., Hyperspectral Phenotyping)

The Shapiro–Wilk test was first used to assess the normal distribution of spectral indices and ChlF
parameters derived from the spectra by the PLSR-models. The effect of O3 on these leaf traits (the
statistical unit was the single plant) was then investigated by a one-way repeated measure analysis
of variance (ANOVA). Tukey’s test was used as post-hoc test. Statistically significant effects were
considered for p < 0.05. Univariate statistical analyses were run in JMP 13.2.0 (SAS Institute Inc., Cary,
NC, USA).

The effects of O3 on the untransformed reflectance profiles (averaged per plant) were assessed
by PERMANOVA [66], employing Euclidian measurements of dissimilarity and 10,000 permutations;
and PCoA was used on these spectral data to visualize the spectral responses to O3, always using
Euclidean distances through the ‘vegan’ package in R (www.r-project.org; [67]). Finally, the capability of
spectroscopy to classify O3 treatments was further determined by PLS-DA [8,68]. The analyses were run
500 times by splitting observations into different groups of calibration (training) and validation (testing)
sets, and the number of correct classifications both in the calibration and in the validation sets across
the 500 iterations was used to determine the accuracy of the tested model. The calibration:validation
data ratio and the number of components used to get the models that would give the best fit to the
data were determined by iteratively running the PLS-DA models with different calibration:validation
data ratios (i.e., 50:50, 70:30, 80:20), and the numbers of components, and were based on the highest
kappa values returned for the validation models. Partial least squares-discriminant analysis was run
with the ‘caret’ and ‘vegan’ packages in R (www.r-project.org; [67,69]).

www.r-project.org
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Abbreviations

AA Ambient air
ANOVA Analysis of variance
AOT40 Accumulated exposure over a threshold of 40 ppb
ChlF Chlorophyll a fluorescence
CI Chlorophyll index
D Fraction of light absorbed in PSII antennae that is dissipated thermally
EO Elevated ozone
ETR Electron transport rate
F0 Minimum fluorescence yield in the dark-adapted state
F0
′ Minimum fluorescence intensity in the light-adapted state

Fm Maximum fluorescence yield in the dark-adapted state
Fm’ Maximum fluorescence intensity in the light-adapted state
Fs Steady state fluorescence intensity in light-adapted state
Fv/Fm Maximum quantum efficiency of PSII photochemistry
Fv’/Fm’ Maximum efficiency of PSII in light conditions
FACE Free air controlled exposure
MO Moderate ozone
NDVI Normalized difference vegetation index
NIR Near-infrared spectral region
NPQ Non-photochemical quenching calculated as (Fm-Fm’)/Fm’
O3 Ozone
P Fraction of light absorbed in PSII antennae that is utilized in PSII photochemistry
PAM Pulse-amplitude-modulation
PCoA Principal coordinates analysis
PERMANOVA Permutational analysis of variance
PLS-DA Partial least squares discriminant analysis
PLSR Partial least squares regression
PRESS Predicted residual sum of squares
PRI Photochemical reflectance index
PSI Photosystem I
PSII Photosystem II
PSRI Plant senescence reflectance index
qL Fraction of open PSII centers
qN Non-photochemical quenching calculated as (Fm-Fm’)/(Fm-F0′ )
qP Photochemical quenching
R2 Model goodness-of-fit
RMSE Root mean square error
sPRI Scaled photochemical reflectance index
sPSRI Scaled plant senescence reflectance index
SWIR Short-wave infrared spectral region
VIs Vegetation indices
VIP Variable importance to the projection
VIS Visible spectral region
ΦPSII PSII operating efficiency in light conditions
%RMSE Percent root mean square error of the data range
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